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Abstract. A classical inequality of Rogers and Shephard states that if K is
a centered convex body of volume 1 in Rn then

1 6 g(K, k;F ) :=
(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/k
6
(n
k

)1/k
6

cn

k

for every F ∈ Gn,k, where c > 0 is an absolute constant. We show that if
K is origin symmetric and isotropic then, for every 1 6 k 6 n − 1, a random
F ∈ Gn,k satisfies

c1L
−1
K

√
n/k 6 g(K, k;F ) 6 c2

√
n/k (logn)2LK

with probability greater than 1 − e−k, where LK is the isotropic constant of
K and c1, c2 > 0 are absolute constants.

1. Introduction

Let K be a convex body of volume 1 in Rn with 0 ∈ int(K). For every 1 6 k 6
n− 1 and any F ∈ Gn,k we define

(1.1) g(K, k;F ) :=
(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/k
,

where F⊥ denotes the orthogonal subspace of F in Rn. A classical inequality

of Rogers and Shephard [13] (see also Chakerian [5]) states that if K is origin

symmetric then

(1.2) 1 6 g(K, k;F ) 6
(n
k

)1/k
6
c0n

k
,

where c0 > 0 is an absolute constant. The right-hand side inequality holds true un-

der the more general assumption that 0 ∈ int(K). On the other hand, Spingarn [15]

showed that the lower bound remains valid if we assume that K is centered, i.e.

that the barycenter of K is at the origin.

Both estimates are sharp: let fe1, . . . , eng be an orthonormal basis of Rn and set

F = spanfe1, . . . , ekg. Consider a convex body A ⊂ F and a convex body B ⊂ F⊥
with 0 ∈ int(A) ∩ int(B). One can check that if K = A × B = fa + b : a ∈ A, b ∈
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Bg then PF (K) = A, K ∩ F⊥ = B and voln(K) = volk(A)voln−k(B). On the

other hand, if we consider the convex body K ′ = conv(A ∪ B) = f(1 − t)a + tb :

a ∈ A, b ∈ B, 0 6 t 6 1g then PF (K ′) = A, K ′ ∩ F⊥ = B and voln(K ′) =(
n
k

)
volk(A)voln−k(B).

Our starting point is the observation that the behavior of g(E , k;F ) lies “in the

middle” when E is an ellipsoid.

Proposition 1.1. For every ellipsoid E in Rn and for all 1 6 k 6 n − 1 and

F ∈ Gn,k the product volk
(
PF (E)

)
voln−k(E ∩F⊥) is independent of the subspace

F . More precisely, we have

(1.3) volk
(
PF (E)

)
voln−k(E ∩ F⊥) =

volk(B
k
2 )voln−k(B

n−k
2 )

voln(Bn2 )
voln(E).

Therefore,

(1.4)
(c1n
k

)k/2
voln(E) 6 volk

(
PF (E)

)
voln−k(E ∩ F⊥) 6

(c2n
k

)k/2
voln(E),

where c1, c2 > 0 are absolute constants.

For the reader’s convenience we include a proof of this observation in Section 3.

Assuming that voln(E) = 1, from Proposition 1.1 we see that

(1.5) g(E , k;F ) '
√
n/k

for all 1 6 k 6 n − 1 and F ∈ Gn,k. The question that we discuss in this note

is if this is the typical (with respect to F ∈ Gn,k) behavior of g(K, k;F ) for any

symmetric (or, more generally, centered) convex body K of volume 1 in Rn. Our

main result provides an (almost sharp) affirmative answer if we assume that K is

in isotropic position.

Theorem 1.2. Let K be an origin symmetric isotropic convex body in Rn. For

every 1 6 k 6 n− 1 a random F ∈ Gn,k satisfies

(1.6) c1L
−1
K

√
n/k 6 g(K, k;F ) 6 c2

√
n/k(logn)2LK

with probability greater than 1− e−k, where c1, c2 > 0 are absolute constants.

Our approach is presented in Section 4 and leads to some general lower and upper

bounds that might be useful for other classical positions of K, such as the minimal

surface area position or minimal mean width position or John position. In Section 5

we use the additional information that one has when K is isotropic, and obtain the

bounds of Theorem 1.2. The left hand side inequality in (1.6) remains valid for any

isotropic convex body K in Rn. For the right hand side inequality we employ a

recent result of E. Milman on the mean width of origin symmetric isotropic convex

bodies, see [8]; this forces the assumption of symmetry in Theorem 1.2. Background

information is provided in Section 2 and in the beginning of Section 5.



REMARKS ON AN INEQUALITY OF ROGERS AND SHEPHARD 3

2. Notation and background information

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote

by ‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for the Euclidean unit

ball, and Sn−1 for the unit sphere. The volume of an s-dimensional set A is denoted

by vols(A). We write ωn for the volume of Bn2 and σn for the rotationally invariant

probability measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional

subspaces of Rn is equipped with the Haar probability measure νn,k. Let 1 6
k 6 n − 1 and F ∈ Gn,k. We write F⊥ for the orthogonal subspace of F in Rn.

We will denote the orthogonal projection from Rn onto F by PF . We also define

BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may

change from line to line. Whenever we write a ' b, we mean that there exist

absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a. Similarly, if K,L ⊆ Rn
we will write K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆
L ⊆ c2K. We also write A for the homothetic image of volume 1 of a convex body

A ⊆ Rn, i.e. A := voln(A)−1/nA.

A convex body is a compact convex subset K of Rn with non-empty interior.

We say that K is origin symmetric if −x ∈ K whenever x ∈ K. We say that K is

centered if it has barycenter at the origin, i.e.
∫
K
〈x, θ〉dx = 0 for every θ ∈ Sn−1.

The support function hK : Rn → R of K is defined by hK(x) = maxf〈x, y〉 : y ∈
Kg. The radius of K is defined as R(K) = maxf‖x‖2 : x ∈ Kg and, if the origin is

an interior point of K, the polar body K◦ of K is

(2.1) K◦ := fy ∈ Rn : 〈x, y〉 6 1 for all x ∈ Kg.

We will use the fact that

(2.2) cnvoln(Bn2 )2 6 voln(K)voln(K◦) 6 voln(Bn2 )2

for every centered convex body K in Rn. The right-hand side inequality is the

Blaschke-Santaló inequality, while the left-hand side inequality is due to Bourgain

and V. Milman [3] and holds true if we just assume that 0 ∈ int(K).

For each p > −n, p 6= 0, we set

(2.3) Ip(K) :=

(∫
K

‖x‖p2dx
)1/p

and for each −∞ < p <∞, p 6= 0, we define the p-mean width of K by

(2.4) wp(K) :=

(∫
Sn−1

h
p
K(θ)dσn(θ)

)1/p

.

From Hölder’s inequality, both are increasing functions of p. The mean width of

K is the quantity w(K) = w1(K). Note that

(2.5) w−n(K) =

(
voln(Bn2 )

voln(K◦)

) 1
n

.
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This is immediate if we express voln(K◦) in polar coordinates. If K is an origin

symmetric convex body in Rn and ‖ · ‖K is the norm induced to Rn by K, we set

M(K) =

∫
Sn−1

‖x‖Kdσn(x)

and write b(K) for the smallest positive constant b with the property ‖x‖K 6 b‖x‖2
for all x ∈ Rn. From V. Milman’s proof of Dvoretzky’s theorem (see [10]) we know

that if k 6 cn(M(K)/b(K))2 then for most F ∈ Gn,k we have K ∩ F ' 1
M(K) BF .

For every convex body K in Rn and for every 1 6 k 6 n − 1 we define the

normalized k-th quermassintegral of K by

(2.6) Qk(K) =

(
1

ωk

∫
Gn,k

volk(PF (K)) dνn,k(F )

)1/k

.

Note that Q1(K) = w(K). From the Aleksandrov-Fenchel inequality (see [14]) it

follows that Qk(K) is a decreasing function of k. In particular,

(2.7)

(∫
Gn,k

volk(PF (K)) dνn,k(F )

)1/k

6
c1w(K)√

k
.

where c1 > 0 is an absolute constant. We refer to the books [14] and [10] for

basic facts from the Brunn-Minkowski theory and the asymptotic theory of finite

dimensional normed spaces.

The next two functionals will play an essential role in our argument.

(i) p-mean projection function. For every 1 6 k 6 n − 1 and for every p 6= 0 we

define the p-mean projection function W[k,p](K) by

W[k,p](K) :=

(∫
Gn,k

volk(PF (K))pdνn,k(F )

) 1
kp

.

We also set W[n](K) := voln(K)1/n.

(ii) p-mean section function. For every 1 6 k 6 n − 1 and for every p 6= 0 we

define the p-mean section function W̃[k,p](K) by

W̃[k,p](K) =

(∫
Gn,k

voln−k(K ∩ F⊥)pdνn,k(F )

) 1
kp

.

The normalized dual k-th quermassintegral ofK is the quantity W̃[k](K) := W̃[k,1](K).

3. Ellipsoids

We start with the proof of Proposition 1.1. We will use the classical fact that

Steiner symmetrization transforms an ellipsoid to an ellipsoid (see for example [2]).

Here we state it as a lemma and include its proof for the sake of completeness.

Lemma 3.1. For every u ∈ Sn−1 and for every ellipsoid E the Steiner sym-

metral Su(E) of E with respect to u is an ellipsoid.
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Proof. Assume without loss of generality that the ellipsoid is centered at the origin.

Consider a positive definite map T : Rn → Rn so that

E = fx ∈ Rn : 〈Tx, x〉 6 1g.

By the definition of Steiner symmetrization, a point y ∈ Rn belongs to Su(E) if the

line L = fy + λu : λ ∈ Rg intersects E and

j〈y, u〉j 6 1

2
length(E ∩ L).(3.1)

The assumption that L intersects E means that there exists λ ∈ R so that 〈T (y +

λu), (y + λu)〉 6 1. The left-hand side is a quadratic function of λ, so its discrimi-

nant is non-negative, that is

〈Ty, u〉2 + 〈Tu, u〉 − 〈Tu, u〉〈Ty, y〉 > 0.

In this case the length in (3.1) equals

2
√
〈Ty, u〉2 − 〈Tu, u〉

(
〈Ty, y〉 − 1

)
〈Tu, u〉

.

Substituting in (3.1) we get that

Su(E) =
{
y ∈ Rn : 〈Tu, u〉2〈y, u〉2 6 〈Ty, u〉2 − 〈Tu, u〉

(
〈Ty, y〉 − 1

)}
.

This set is clearly an ellipsoid (it is defined by a quadratic form). 2

Note. In fact, it is known that Lemma 3.1 characterizes ellipsoids in the following

sense: if K is a convex body with the property that all its Steiner symmetrals

Su(K) are affine images of K, then K is an ellipsoid (see e.g. [7]).

Proof of Proposition 1.1. Assume without loss of generality that E is centered

at the origin. We first prove (1.3). We distinguish two cases.

Case 1: F is generated by the unit vectors of k semiaxes of E . In this case if

λ1, . . . , λn are the positive lengths of the ellipsoid’s semiaxes then obviously

volk
(
PF (E)

)
voln−k(E ∩ F⊥) =

( n∏
j=1

λj

)
volk(B

k
2 )voln−k(B

n−k
2 )

=
volk(B

k
2 )voln−k(B

n−k
2 )

voln(Bn2 )
voln(E).

Case 2: F is any element of Gn,k. Let u1, . . . , uk be any orthonormal basis of F .

We write E ′ = Su1(. . . (Suk(E) . . .) for the ellipsoid obtained by successive Steiner

symmetrizations of E in the directions u1, . . . , uk. By the properties of Steiner

symmetrization we have that

volk(PF (E)) = volk(PF (E ′)) and voln−k(E ∩ F⊥) = voln−k(E ′ ∩ F⊥).

From Lemma 3.1 it follows that E ′ is an ellipsoid which in addition has the same

volume as E . Moreover, observe that Case 1 applies now to the ellipsoid E ′ and the
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subspace F . Thus, we get

volk
(
PF (E)

)
voln−k(E ∩ F⊥) = volk

(
PF (E ′)

)
voln−k(E ′ ∩ F⊥)

=
volk(B

k
2 )voln−k(B

n−k
2 )

voln(Bn2 )
voln(E ′)

=
volk(B

k
2 )voln−k(B

n−k
2 )

voln(Bn2 )
voln(E),

completing the proof of (1.3).

Since voln(Bn2 ) = πn/2/Γ(1+n/2) it is elementary to check that (1.4) holds true

as well. 2

4. General bounds

Let K be a centered convex body of volume 1 in Rn. In order to obtain a lower

bound for g(K, k;F ) we will estimate the expectation Eνn,k

[(
g(K, k;F )

)−a]
for

some a > 0. For any pair (p, q) of conjugate exponents, using Hölder’s inequality

we write

∫
Gn,k

1

volk(PF (K)) voln−k(K ∩ F⊥)
dνn,k(F )

(4.1)

6

(∫
Gn,k

1

volk(PF (K))p
dνn,k(F )

)1/p(∫
Gn,k

1

voln−k(K ∩ F⊥)q
dνn,k(F )

)1/q

.

For the first integral in the right-hand side of (4.1) one may use the next lemma

(from [6]) which relates it to the mixed widths of K.

Lemma 4.1. Let K be a centered convex body of volume 1 in Rn. Then, for

every 1 6 k 6 n− 1 and p > 1,

(4.2) W[k,−p](K) =

(∫
Gn,k

volk(PF (K))−pdνn,k(F )

)− 1
kp

> c1
w−kp(K)√

k
,

where c1 > 0 is an absolute constant.
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Proof. Using Hölder’s inequality, the Blaschke-Santaló and the reverse Santaló

inequality, for every p > 1 we can write(∫
Gn,k

volk(PF (K))−pdνn,k(F )

) 1
kp

'

(∫
Gn,k

volk((PF (K))◦)p

ω
2p
k

dνn,k(F )

) 1
kp

'
√
k

(∫
Gn,k

(∫
SF

1

hkPF (K)(θ)
dσF (θ)

)p
dνn,k(F )

) 1
kp

'
√
k

(∫
Gn,k

(∫
SF

1

hkK(θ)
dσF (θ)

)p
dνn,k(F )

) 1
kp

6 c
√
k

(∫
Gn,k

∫
SF

1

h
kp
K (θ)

dσF (θ) dνn,k(F )

) 1
kp

= c
√
k

(∫
Sn−1

1

h
kp
K (θ)

dσ(θ)

) 1
kp

= c
√
kw−1−kp(K).

The lemma follows. 2

We set p := n/k > 1. Then, from Lemma 4.1, (2.5) and (2.2) we get

(4.3) W[k,−n/k](K) >
w−n(K)

c1
√
k
' 1

c1
√
k

(
voln(Bn2 )

voln(K◦)

)1/n

'
√
n/k.

This gives:

Lemma 4.2. Let K be a centered convex body of volume 1 in Rn. Then, for

every 1 6 k 6 n− 1,

(4.4) W−1[k,−n/k](K) =

(∫
Gn,k

volk(PF (K))−n/kdνn,k(F )

)1/n

6 c2
√
k/n

where c2 > 0 is an absolute constant.

Taking into account (4.1) we get the next general estimate.

Proposition 4.3. Let K be a centered convex body of volume 1 in Rn. For

any 1 6 k 6 n− 1 we have∫
Gn,k

1

volk(PF (K)) voln−k(K ∩ F⊥)
dνn,k(F )(4.5)

6
(
c1
√
k/n

)k(∫
Gn,k

1

voln−k(K ∩ F⊥)
n

n−k

dνn,k(F )

)n−k
n

,

where c1 > 0 is an absolute constant.

We turn to the upper bound. The next proposition shows that the normalized

dual quermassintegrals W̃[k](K) are strongly related to the quantities Ip(K).
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Lemma 4.4. Let K be a convex body of volume 1 in Rn and let 1 6 k 6 n− 1.

Then,

(4.6) W̃[k](K)I−k(K) =

(
(n− k)ωn−k

nωn

)1/k

= W̃[k](B
n

2 )I−k(B
n

2 ).

Direct computation shows that
(

(n−k)ωn−k

nωn

)1/k
'
√
n.

Proof. We integrate in polar coordinates:

I−k−k (K) =
nωn
n− k

∫
Sn−1

1

‖x‖n−kK

dσ(x)

=
nωn

(n− k)ωn−k

∫
Gn,n−k

ωn−k

∫
SF

1

‖θ‖n−kK∩F
dσ(θ)dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,n−k

voln−k(K ∩ F )dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,k

voln−k(K ∩ F⊥)dνn,k(F ),

and the result follows from the definition of W̃[k](K). 2

It was proved in [12] that if K is a centered convex body of volume 1 in Rn then

for any p > −n we have

Ip(K) > Ip(B
n

2 ).

One can also check that W̃[k](B
n

2 ) ' 1 for all 1 6 k 6 n − 1. Then, Lemma 4.4

immediately gives:

Lemma 4.5. Let K be a centered convex body of volume 1 in Rn. Then, for

every 1 6 k 6 n− 1,

W̃[k](K) 6 W̃[k](B
n

2 ) ' 1.

Now we write∫
Gn,k

(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/2
dνn,k(F )(4.7)

6

(∫
Gn,k

volk(PF (K))dνn,k(F )

)1/2(∫
Gn,k

voln−k(K ∩ F⊥)dνn,k(F )

)1/2

,

and taking into account Lemma 4.5 we get the next general estimate.

Proposition 4.6. Let K be a centered convex body of volume 1 in Rn. For

any 1 6 k 6 n− 1 we have∫
Gn,k

(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/2
dνn,k(F )(4.8)

6 ck2

(∫
Gn,k

volk(PF (K))dνn,k(F )

)1/2

,

where c2 > 0 is an absolute constant.
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Taking into account (2.7) we see that

(4.9)

∫
Gn,k

(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/2
dνn,k(F ) 6

(
c3w(K)√

k

)k/2
.

where c3 > 0 is an absolute constant. Then, Markov’s inequality implies the

following.

Proposition 4.7. Let K be a centered convex body of volume 1 in Rn. For

any 1 6 k 6 n− 1 we have that a random F ∈ Gn,k satisfies

(4.10) g(K, k;F ) =
(
volk(PF (K)) voln−k(K ∩ F⊥)

)1/k
6
c4w(K)√

k

with probability greater than 1− e−k, where c4 > 0 is an absolute constant.

5. The isotropic case

Recall that a convex body K in Rn is called isotropic if it has volume 1, it is

centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of

the identity: there exists a constant LK > 0 such that

(5.1)

∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. More generally, a log-concave prob-

ability measure µ on Rn is called isotropic if its barycenter is at the origin and its

inertia matrix is the identity; in this case, the isotropic constant of µ is defined as

(5.2) Lµ := sup
x∈Rn

(
fµ(x)

)1/n
,

where fµ is the density of µ with respect to the Lebesgue measure. Note that a

centered convex body K of volume 1 in Rn is isotropic if and only if the log-concave

probability measure µK with density x 7→ LnK1K/LK
(x) is isotropic. The reader

may find a detailed and updated exposition of the theory of isotropic log-concave

measures in the book [4].

Let µ be a probability measure on Rn with density fµ with respect to the

Lebesgue measure. For every 1 6 k 6 n − 1 and every E ∈ Gn,k, the marginal of

µ with respect to E is the probability measure with density

(5.3) fπEµ(x) =

∫
x+E⊥

fµ(y)dy.

It is easily checked that if µ is centered, isotropic or log-concave, then πEµ is also

centered, isotropic or log-concave, respectively. For every log-concave probability

measure µ on Rn and any p > 0 we define the set Kp(µ) as follows:

Kp(µ) =

{
x ∈ Rn :

∫ ∞
0

fµ(rx)rp−1 dr >
fµ(0)

p

}
.

The bodies Kp(µ) were introduced by K. Ball [1] who showed that they are convex.

The next proposition is a generalization of a result of Ball from the same work (see

also [9], and [4] for the precise statement below); it gives a very useful expression

for the volume of central sections of an isotropic convex body.
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Proposition 5.1. Let K be an isotropic convex body in Rn. We denote by

µK the isotropic log-concave measure with density LnK1L−1
K K . Then, for every

1 6 k 6 n− 1 and F ∈ Gn,k, the body Kk+1(πF (µK)) satisfies

(5.4) voln−k(K ∩ F⊥)1/k '
LKk+1(πF (µK))

LK
.

Assume that K is an isotropic convex body in Rn. From Proposition 5.1 we

know that, for every 1 6 k 6 n− 1 and F ∈ Gn,k,

(5.5) voln−k(K ∩ F⊥)−1/k ' LK
LKk+1(πF (µK))

6 c2LK ,

because LC > c for every convex body C, where c > 0 is an absolute constant (see

for example Proposition 2.3.12 in [4]). Therefore, Proposition 4.3 gives∫
Gn,k

1

volk(PF (K)) voln−k(K ∩ F⊥)
dνn,k(F ) 6

(
c1
√
k/n

)k
(c2LK)k

6 (c3
√
k/nLK)k.

From Markov’s inequality we get:

Proposition 5.2. Let K be an isotropic convex body in Rn. For every 1 6 k 6
n− 1, a random F ∈ Gn,k satisfies

(5.6) g(K, k;F ) :=
(
volk(PF (K)) voln−k(K ∩ F⊥)

) 1
k >

c4
√
n/k

LK

with probability greater than 1− e−k, where c4 > 0 is an absolute constant.

For the upper bound we use (2.7) and a recent result of E. Milman [8]: if K is

isotropic, and if we make the additional assumption that K is origin symmetric,

then

w(K) 6 c5
√
n(logn)2LK .

Thus, applying directly Proposition 4.7 we get:

Proposition 5.3. Let K be an origin symmetric isotropic convex body in Rn.

For every 1 6 k 6 n− 1 a random F ∈ Gn,k satisfies

(5.7) g(K, k;F ) :=
(
volk(PF (K)) voln−k(K ∩ F⊥)

) 1
k 6 c6

√
n/k(logn)2LK

with probability greater than 1− e−k.

Combining Proposition 5.2 and Proposition 5.3 we obtain Theorem 1.2.

Remark 5.4. (i) It is known that for every isotropic convex body K in Rn we can

find an origin-symmetric convex body T with the property that LT ' LK (see [4,

Proposition 2.5.10]): if we define a function f supported on K −K by

f(x) = (1K ∗ 1−K)(x) =

∫
Rn

1K(y)1−K(x− y) dy = voln(K ∩ (x+K))

then f is an even isotropic log-concave density and one can check that Lf =
√

2LK .

It follows that the convex body T = Kn+2(f) has the desired properties. From

Proposition 4.6 we see that the upper bound in Theorem 1.2 remains valid for
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a not necessarily symmetric isotropic convex body K and some 1 6 k 6 n − 1,

provided that∫
Gn,k

volk(PF (K))dνn,k(F ) 6 Ck
∫
Gn,k

volk(PF (T ))dνn,k(F ).

(ii) The logarithmic terms in (5.7) cannot be completely eliminated as long as the

proof passes through estimates of the mean width of K. This is evident from the

case of K = B
n

1 , where w(B
n

1 ) '
√
n log(1 + n). However, some of these terms

may not be needed. For example, if the body is in the `-position (see [4, Section

1.11]) then the reverse Urysohn inequality w(K) 6 c
√
n logn and Proposition 4.7

imply that g(K, k;F ) 6 c6
√
n/k logn for a random F ∈ Gn,k.
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