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Asymptotic shape of the convex hull of isotropic log-concave
random vectors
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Abstract

Let x1, . . . , xN be independent random points distributed according to an isotropic log-concave
measure µ on R

n, and consider the random polytope KN := conv{±x1, . . . ,±xN}. We provide
sharp estimates for the quermaßintegrals and other geometric parameters of KN in the range
cn 6 N 6 exp(n); these complement previous results from [13] and [14] that were given for the
range cn 6 N 6 exp(

√
n). One of the basic new ingredients in our work is a recent result of

E. Milman that determines the mean width of the centroid body Zq(µ) of µ for all 1 6 q 6 n.

1. Introduction

The purpose of this work is to add new information on the asymptotic shape of random
polytopes whose vertices have a log-concave distribution. Without loss of generality we shall
assume that this distribution is also isotropic. Recall that a convex body K in R

n is called
isotropic if it has volume 1, it is centered, i.e. its center of mass is at the origin, and its inertia
matrix is a multiple of the identity: there exists a constant LK > 0 such that

(1.1)

∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. More generally, a log-concave probability measure
µ on R

n is called isotropic if its center of mass is at the origin and its inertia matrix is the
identity; in this case, the isotropic constant of µ is defined as

(1.2) Lµ := sup
x∈Rn

(

fµ(x)
)1/n

,

where fµ is the density of µ with respect to the Lebesgue measure. Note that a centered convex
body K of volume 1 in R

n is isotropic if and only if the log-concave probability measure µK
with density x 7→ LnK1K/LK

(x) is isotropic.
A very well-known open question in the theory of isotropic measures is the hyperplane

conjecture, which asks if there exists an absolute constant C > 0 such that

(1.3) Ln := sup{Lµ : µ is an isotropic log-concave measure on R
n} 6 C

for all n > 1. Bourgain proved in [9] that Ln 6 c 4
√
n logn (more precisely, he showed that LK 6

c 4
√
n logn for every isotropic symmetric convex body K in R

n), while Klartag [18] obtained
the bound Ln 6 c 4

√
n. A second proof of Klartag’s estimate appears in [20].

The study of the asymptotic shape of random polytopes whose vertices have a log-concave
distribution was initiated in [13] and [14]. Given an isotropic log-concave measure µ on R

n, for
every N > n we consider N independent random points x1, . . . , xN distributed according to µ
and define the random polytope KN := conv{±x1, . . . ,±xN}. The main idea in these works
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was to compare KN with the Lq-centroid body of µ for a suitable value of q; roughly speaking,
KN is close to the body Zlog(2N/n)(µ) with high probability. Recall that the Lq-centroid bodies
Zq(µ), q > 1, are defined through their support function hZq(µ), which is given by

(1.4) hZq(µ)(y) := ‖〈·, y〉‖Lq(µ) =

(∫
Rn

|〈x, y〉|qdµ(x)

)1/q

.

These bodies incorporate information about the distribution of linear functionals with respect
to µ. The Lq-centroid bodies were introduced, under a different normalization, by Lutwak and
Zhang in [23], while in [29] for the first time, and in [30] later on, Paouris used geometric
properties of them to acquire detailed information about the distribution of the Euclidean
norm with respect to µ.

It was proved in [13] that, given any isotropic log-concave measure µ on R
n and any cn 6

N 6 en, the random polytope KN defined by N independent random points x1, . . . , xN which
are distributed according to µ satisfies, with high probability, the inclusion

(1.5) KN ⊇ c1Zlog(N/n)(µ)

(for the precise statement see Fact 3.3). Then, using the fact that the volume of the Lq-centroid
bodies satisfies the lower bounds |Zq(µ)|1/n > c2

√

q/n if q 6
√
n and |Zq(µ)|1/n > c3L

−1
µ

√

q/n

if
√
n 6 q 6 n (see Section 2), we see that for n 6 N 6 e

√
n we have

(1.6) |KN |1/n > c4

√

log(2N/n)√
n

,

while in the range e
√
n 6 N 6 en we have

(1.7) |KN |1/n > c5L
−1
µ

√

log(2N/n)√
n

with probability exponentially close to 1. On the other hand, one can check that for every
α > 1 and q > 1,

(1.8) E
[

σn({θ : hKN (θ) > αhZq(µ)(θ)})
]

6 Nα−q,

where σn is the rotationally invariant probability measure on the Euclidean unit sphere Sn−1.
This estimate is sufficient for some sharp upper bounds. First, for all n 6 N 6 exp(n) one has

(1.9) E
[

w(KN )
]

6 c6 w(ZlogN (µ)),

where the mean width w(C) of a convex body C in R
n containing the origin, is defined as twice

the average of its support function on Sn−1:

w(C) =

∫
Sn−1

hC(θ) dσn(θ).

Second, one has

(1.10) |KN |1/n 6 c7

√

log(2N/n)√
n

with probability greater than 1 − 1
N , where C > 0 is an absolute constant.

In [14] these results were extended to the full family of quermaßintegrals Wn−k(KN ) of KN .
These are defined through Steiner’s formula

(1.11) |K + tBn2 | =

n
∑

k=0

(

n

k

)

Wn−k(K)tn−k,
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where Wn−k(K) is the mixed volume V (K, k;Bn2 , n− k). It is more convenient to express the
estimates using a normalized variant of Wn−k(K): for every 1 6 k 6 n we set

(1.12) Qk(K) =

(

Wn−k(K)

ωn

)1/k

=

(

1

ωk

∫
Gn,k

|PF (K)| dνn,k(F )

)1/k

,

where the last equality follows from Kubota’s integral formula (see Section 2 for background
information on mixed volumes). Then, one has the following results on the expectation of
Qk(KN) for all values of k:

Theorem 1.1 (Dafnis, Giannopoulos and Tsolomitis, [14]). If n2 6 N 6 exp(cn) then for

every 1 6 k 6 n we have

(1.13) L−1
µ

√

logN . E
[

Qk(KN )
]

. w(ZlogN (K)).

In the range n2 6 N 6 exp(
√
n) one has an asymptotic formula: for every 1 6 k 6 n,

(1.14) E
[

Qk(KN )
]

≃
√

logN.

All these estimates remain valid for n1+δ 6 N 6 n2, where δ ∈ (0, 1) is fixed, if we allow the
constants to depend on δ. Working in the range N ≃ n is possible, but requires some additional
attention (see e.g. [5] for the case of mean width).

A more careful analysis (which can be found in [14, Theorem 1.2]) shows that if n2 6 N 6
exp(

√
n) then, for any s > 1, a random KN satisfies, with probability greater than 1 −N−s,

(1.15) Qk(KN) 6 c1(s)
√

logN

for all 1 6 k 6 n and, with probability greater than 1 − exp(−√
n),

(1.16) Qk(KN ) > c8
√

logN

for all 1 6 k 6 n, where c1(s) > 0 depends only on s, and c8 > 0 is an absolute constant.
A natural question that arises is whether these results can be extended to the full range

cn 6 N 6 exp(n) of values of N . If one decides to follow the approach of [13] and [14] then
there are two main obstacles. The first one is that the lower bound |Zq(µ)|1/n > c

√

q/n is
currently known only in the range q 6

√
n. In fact, proving the same for larger values of q

would lead to improved estimates on Ln (see [20, proof of Theorem 6.1]). The second one was
to be added

that, until recently, a sharp estimate on the mean width of Zq(µ) was known only for q 6
√
n;

G. Paouris proved in [29] that for every isotropic log-concave measure µ on R
n and any q 6

√
n

one has

(1.17) w
(

Zq(K)
)

6 c9
√
q.

Recently, E. Milman [25] obtained the same upper bound (modulo logarithmic terms) for q
beyond

√
n.

Theorem 1.2 (E. Milman). For every isotropic log-concave measure µ on R
n and for all

q ∈ [
√
n, n] we have

w(Zq(µ)) 6 c10
√
q log2(1 + q).(1.18)

An immediate consequence of this result is that it provides a new bound for the mean width
of an isotropic convex body K in R

n. Since Zn(K) ⊇ cK, we conclude that

w(K) 6 C1

√
n log2(1 + n)LK(1.19)
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improving the earlier known bound w(K) 6 C2n
3/4LK of Hartzoulaki, from her PhD thesis

[17]. We note here that not all of the logarithmic terms in (1.19) can be removed, as the
example of Bn1 /|Bn1 |1/n shows.

Using E. Milman’s theorem we can show the following.

Theorem 1.3. Let x1, . . . , xN be independent random points distributed according to

an isotropic log-concave measure µ on R
n, and consider the random polytope KN :=

conv{±x1, . . . ,±xN}. If exp(
√
n) 6 N 6 exp(cn) then for every 1 6 k 6 n we have

(1.20) L−1
µ

√

logN . E
[

Qk(KN )
]

.
√

logN
(

log logN
)2
.

Next we provide estimates for Qk(KN ) for “most” KN :

Theorem 1.4. Let x1, . . . , xN be independent random points distributed according to

an isotropic log-concave measure µ on R
n, and consider the random polytope KN :=

conv{±x1, . . . ,±xN}. For all exp(
√
n) 6 N 6 exp(n) and s > 1 we have

Qk(KN ) 6 c2(s)
√

logN (log logN)2,(1.21)

for all 1 6 k < n, with probability greater than 1 −N−s.

We also provide estimates on the volume radius of a random projection PF (KN ) of KN onto
F ∈ Gn,k (in terms of n, k and N) in the range e

√
n 6 N 6 en; these extend the sharp estimate

v.rad(PF (KN)) ≃ √
logN that was obtained in [14] for the case N 6 e

√
n.

Theorem 1.5. If exp(
√
n) 6 N 6 ecn and s > 1, then a random KN satisfies with

probability greater than 1 − max{N−s, e−c11
√
n} the following: for every 1 6 k 6 n there exists

a subset Mn,k of Gn,k with νn,k(Mn,k) > 1 − e−c12k such that

(1.22) c13L
−1
µ

√

logN 6 v.rad(PF (KN)) :=

( |PF (KN )|
ωk

)1/k

6 c3(s)
√

logN
(

log logN
)2

for all F ∈Mn,k.

In Section 4 we provide an alternative proof of an estimate of Alonso-Gutiérrez, Dafnis,
Hernández-Cifre and Prochno from [3] on the k-th mean outer radius

(1.23) R̃k(KN ) =

∫
Gn,k

R(PF (KN )) dνn,k(F )

of a random KN , as a function of N,n and k.

Theorem 1.6. Let x1, . . . , xN be independent random points distributed according to

an isotropic log-concave measure µ on R
n, and consider the random polytope KN :=

conv{±x1, . . . ,±xN}. If n 6 N 6 exp(
√
n) then, for all 1 6 k 6 n and s > 0 one has

(1.24) c4(s) max
{√

k,
√

log(N/n)
}

6 R̃k(KN ) 6 c5(s) max
{√

k,
√

logN
}

with probability greater than 1 −N−s, where c4(s), c5(s) are positive constants depending only

on s.



CONVEX HULL OF ISOTROPIC LOG-CONCAVE RANDOM VECTORS Page 5 of 22

We provide a formula for R̃k(KN ) which is valid for all cn 6 N 6 exp(n). This allows us to
recover (and explain) the sharp estimate of Theorem 1.6 for “small” values of N and to obtain
its analogue for “large” values of N ; see Theorem 4.5.

In Section 5 we obtain estimates on the regularity of the covering numbers and the dual
covering numbers of a random KN . In a certain range of values of N , these allow us to conclude
that a random KN is in α-regular M -position with α ∼ 1 (see Section 5 for definitions and
terminology).

Theorem 1.7. Let µ be an isotropic log-concave measure on R
n. Then, assuming that

n2 6 N 6 exp
(

(n logn)2/5
)

, we have that a random KN satisfies with probability greater than

1 −N−1 the entropy estimates
exponent
was 4,
log(1 + t)
was missing

max {logN(KN , trNB
n
2 ), logN(rNB

n
2 , tKN)} 6 c14

n log2 nlog(1 + t)

t

for every t > 1, where rN =
√

logN and c14 > 0 is an absolute constant.

As an application we estimate the average diameter of k-dimensional sections of a random
KN , defined by

(1.25) D̃k(KN) =

∫
Gn,k

R(KN ∩ F ) dνn,k(F ).

The discussion shows that the behavior of D̃k(KN ) is not always the same as that of R̃k(KN).
In order to give an idea of the results, let us mention here the following simplified version.

Theorem 1.8. Let µ be an isotropic log-concave measure on R
n. Given 0 < a < b < 1, a

random KN satisfies with probability greater than 1 − exp(−ca
√
n):

what is a, b
doing here?
They must
relate to
somehow. I
can not get
this result.
See my
modification
below.

(i) If n2 6 N 6 exp(
√
n) then

ca max

{√
logN

log2 n
, 1

}

6 D̃k(KN ) 6 cb
√

logN,

(ii) If exp(
√
n) 6 N 6 exp(n) then

ca

√
logN

log2 n
6 D̃k(KN ) 6 cb

√

logN(log logN)2,

where ca, cb are positive constants that depend only on a and b respectively.

Theorem 1.8 Let µ be an isotropic log-concave measure on R
n and 0 < a < b < 1. Then

(i) a random KN , for k ≤ bn satisfies with probability 1 −N−1

D̃k(KN ) 6 cb
√

logN if n2 6 N 6 exp(
√
n)

and

D̃k(KN ) 6 cb
√

logN(log logN)2 if exp(
√
n) 6 N 6 exp(n).

(ii) a random KN , for k ≥ an and N ≤ exp((n logn)2/5) satisfies with probability 1 −
exp(−√

n)

ca

√
logN

log2 n
6 D̃k(KN ).

where ca, cb are positive constants that depend only on a and b respectively.
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We conclude this paper with a brief discussion of the interesting (open) question whether
the isotropic constant of a random KN is bounded by a constant independent from n and N .
The first class of random polytopes KN in R

n for which uniform bounds were established was
the class of Gaussian random polytopes. Klartag and Kozma proved in [19] that if N > n and
if G1, . . . , GN are independent standard Gaussian random vectors in R

n, then the isotropic
constant of the random polytope KN = conv{±G1, . . . ,±GN} is bounded by an absolute
constant C > 0 with probability greater than 1 − Ce−cn. The same idea works in the case
where the vertices xj of KN are distributed according to an isotropic ψ2-measure µ; the bound
then depends only on the ψ2-constant of µ. Alonso-Gutiérrez [2] and Dafnis, Giannopoulos
and Guédon [12] have applied the same more or less method to obtain a positive answer in the
case where the vertices of KN are chosen from the unit sphere or an unconditional isotropic
convex body respectively. We show that, in the general isotropic log-concave case, the method
of Klartag and Kozma gives the bound O(

√

log(2N/n)) if N 6 exp(
√
n) (a proof along the

same lines and an extension to random perturbations of random polytopes appear in [4]).

2. Notation and background material

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2

the corresponding Euclidean norm, and write Bn2 for the Euclidean unit ball, and Sn−1 for
the unit sphere. Volume is denoted by | · |. We write ωn for the volume of Bn2 and σn for
the rotationally invariant probability measure on Sn−1. The Grassmann manifold Gn,k of k-
dimensional subspaces of Rn is equipped with the Haar probability measure νn,k. Let 1 6 k 6 n
and F ∈ Gn,k. We will denote the orthogonal projection from R

n onto F by PF . We also define
BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may change from
line to line. Whenever we write a ≃ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a 6 b 6 c2a. Similarly, if K,L ⊆ R

n we will write K ≃ L if there exist absolute
constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K. We also write A for the homothetic image of
volume 1 of a convex body A ⊆ R

n, i.e. A := A
|A|1/n .

A convex body is a compact convex subset C of Rn with non-empty interior. We say that C
is symmetric if −x ∈ C whenever x ∈ C. We say that C is centered if it has center of mass at
the origin i.e.

∫
C〈x, θ〉dx = 0 for every θ ∈ Sn−1. The support function hC : R

n → R of C is
defined by hC(x) = max{〈x, y〉 : y ∈ C}. For each −∞ < p <∞, p 6= 0, we define the p-mean
width of C by

(2.1) wp(C) :=

(∫
Sn−1

hpC(θ)dσn(θ)

)1/p

.

The mean width of C is the quantity w(C) = w1(C). The radius of C is defined as R(C) =
max{‖x‖2 : x ∈ C} and, if the origin is an interior point of C, the polar body C◦ of C is

(2.2) C◦ := {y ∈ R
n : 〈x, y〉 6 1 for all x ∈ C}.

Finally, if C is a symmetric convex body in R
n and ‖ · ‖C is the norm induced to R

n by C, we
set

M(C) =

∫
Sn−1

‖x‖Cdσn(x)

and write b(C) for the smallest positive constant b with the property ‖x‖C 6 b‖x‖2 for all
x ∈ R

n. From V. Milman’s proof of Dvoretzky’s theorem (see [6, Chapter 5]) we know that if
k 6 cn(M(C)/b(C))2 then for most F ∈ Gn,k we have C ∩ F ≃ 1

M(C) BF .
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2.1. Quermaßintegrals

Let Kn denote the class of non-empty compact convex subsets of Rn. The relation between
volume and the operations of addition and multiplication of compact convex sets by nonnegative
reals is described by Minkowski’s fundamental theorem: If K1, . . . ,Km ∈ Kn, m ∈ N, then the
volume of t1K1 + · · · + tmKm is a homogeneous polynomial of degree n in ti > 0:

(2.3) |t1K1 + · · · + tmKm| =
∑

16i1,...,in6m

V (Ki1 , . . . ,Kin)ti1 · · · tin ,

where the coefficients V (Ki1 , . . . ,Kin) can be chosen to be invariant under permutations of
their arguments. The coefficient V (Ki1 , . . . ,Kin) is called the mixed volume of the n-tuple
(Ki1 , . . . ,Kin).

Steiner’s formula is a special case of Minkowski’s theorem; if K is a convex body in R
n then

the volume of K + tBn2 , t > 0, can be expanded as a polynomial in t:

(2.4) |K + tBn2 | =

n
∑

k=0

(

n

k

)

Wn−k(K)tn−k,

where Wn−k(K) := V (K, k;Bn2 , n− k) is the (n− k)-th quermaßintegral of K. It will be
convenient for us to work with a normalized variant of Wn−k(K): for every 1 6 k 6 n we
set

(2.5) Qk(K) =

(

1

ωk

∫
Gn,k

|PF (K)| dνn,k(F )

)1/k

.

Note that Q1(K) = w(K). Kubota’s integral formula

(2.6) Wn−k(K) =
ωn
ωk

∫
Gn,k

|PF (K)|dνn,k(F )

shows that

(2.7) Qk(K) =

(

Wn−k(K)

ωn

)1/k

.

The Aleksandrov-Fenchel inequality states that if K, L, K3, . . . ,Kn ∈ Kn, then

(2.8) V (K,L,K3, . . . ,Kn)2 > V (K,K,K3, . . . ,Kn)V (L,L,K3, . . . ,Kn).

This implies that the sequence (W0(K), . . . ,Wn(K)) is log-concave: we have

(2.9) W k−i
j >W k−j

i W j−i
k

if 0 6 i < j < k 6 n. Taking into account (2.7) we conclude that Qk(K) is a decreasing function
of k. For the theory of mixed volumes we refer to [33].

2.2. Lq-centroid bodies of isotropic log-concave measures

We denote by Pn the class of all Borel probability measures on R
n which are absolutely

continuous with respect to the Lebesgue measure. The density of µ ∈ Pn is denoted by fµ. We
say that µ ∈ Pn is centered if, for all θ ∈ Sn−1,

(2.10)

∫
Rn

〈x, θ〉dµ(x) =

∫
Rn

〈x, θ〉fµ(x)dx = 0.

A measure µ on R
n is called log-concave if µ(λA+ (1 − λ)B) > µ(A)λµ(B)1−λ for all compact

subsets A and B of Rn and all λ ∈ (0, 1). A function f : Rn → [0,∞) is called log-concave if its
support {f > 0} is a convex set and the restriction of log f to it is concave. Borell has proved
in [8] that if a probability measure µ is log-concave and µ(H) < 1 for every hyperplane H ,
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then µ ∈ Pn and its density fµ is log-concave. Note that if K is a convex body in R
n then the

Brunn-Minkowski inequality implies that 1K is the density of a log-concave measure.
If µ is a log-concave measure on R

n with density fµ, we define the isotropic constant of µ by

(2.11) Lµ :=

(

supx∈Rn fµ(x)∫
Rn fµ(x)dx

)
1

n

[det Cov(µ)]
1

2n ,

where Cov(µ) is the covariance matrix of µ with entries

(2.12) Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−

∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

Note that Lµ is an affine invariant of µ and does not depend on the choice of the Euclidean
structure. We say that a log-concave probability measure µ on R

n is isotropic if it is centered
and Cov(µ) is the identity matrix.

Recall that if µ is a log-concave probability measure on R
n and if q > 1 then the Lq-centroid

body Zq(µ) of µ is the symmetric convex body with support function

(2.13) hZq(µ)(y) :=

(∫
Rn

|〈x, y〉|qdµ(x)

)1/q

.

Observe that µ is isotropic if and only if it is centered and Z2(µ) = Bn2 . From Hölder’s inequality
it follows that Z1(µ) ⊆ Zp(µ) ⊆ Zq(µ) for all 1 6 p 6 q <∞. Conversely, using Borell’s lemma
(see [28, Appendix III]), one can check that

(2.14) Zq(µ) ⊆ c1
q

p
Zp(µ)

for all 1 6 p < q. In particular, if µ is isotropic, then R(Zq(µ)) 6 c2q.
For any α > 1 and any θ ∈ Sn−1 we define the ψα-norm of x 7→ 〈x, θ〉 as follows:

(2.15) ‖〈·, θ〉‖ψα := inf

{

t > 0 :

∫
Rn

exp

( |〈x, θ〉|
t

)α

dµ(x) 6 2

}

,

provided that the set on the right hand side is non-empty. We say that µ satisfies a ψα-estimate
with constant bα = bα(θ) in the direction of θ if we have

‖〈·, θ〉‖ψα 6 bα‖〈·, θ〉‖2.
We say that µ is a ψα-measure with constant Bα > 0 if

sup
θ∈Sn−1

‖〈·, θ〉‖ψα

‖〈·, θ〉‖2
6 Bα.

From Borell’s lemma it follows that every log-concave measure is a ψ1-measure with constant
C, where C is an absolute positive constant.

From [29] and [30] one knows that the “q-moments”

(2.16) Iq(µ) :=

(∫
Rn

‖x‖q2dx
)1/q

, q ∈ (−n,+∞) \ {0},

of the Euclidean norm with respect to an isotropic log-concave probability measure µ on R
n

are equivalent to I2(µ) =
√
n as long as |q| 6 √

n. Two main consequences of this fact are: (i)
Paouris’ deviation inequality

(2.17) µ({x ∈ R
n : ‖x‖2 > c3t

√
n}) 6 exp

(

−t√n
)

for every t > 1, where c3 > 0 is an absolute constant, and (ii) Paouris’ small ball probability
estimate: for any 0 < ε < ε0, one has

(2.18) µ({x ∈ R
n : ‖x‖2 < ε

√
n}) 6 εc4

√
n,
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where ε0, c4 > 0 are absolute constants.
The next theorem summarizes our knowledge on the mean width of Zq(µ). The first statement

was proved by Paouris in [29], while the second one is E. Milman’s Theorem 1.2.

Theorem 2.1. Let µ be an isotropic log-concave measure on R
n. If 1 6 q 6

√
n, then

(2.19) w(Zq(µ)) ≃ √
q.

Moreover, for all q ∈ [
√
n, n] we have

(2.20) w(Zq(µ)) 6 c5
√
q log2(1 + q).

The next theorem summarizes our knowledge on the volume radius of Zq(µ). The first
statement follows from the results of [29] and [20], while the left hand-side in the second one
was obtained in [24] and the right hand-side in [29].

Theorem 2.2. Let µ be an isotropic log-concave measure on R
n. If 1 6 q 6

√
n then

(2.21) |Zq(µ)|1/n ≃
√

q/n,

while if
√
n 6 q 6 n then

(2.22) c6L
−1
µ

√

q/n 6 |Zq(µ)|1/n 6 c7
√

q/n.

The reader may find a detailed exposition of the theory of isotropic log-concave measures in
the book [11].

3. Estimates for the Quermaßintegrals

We start with the proof of Theorem 1.3. Recall that the equivalence E
[

Qk(KN )
]

≃ √
logN

in the range n2 6 N 6 exp(
√
n) was proved in [14] (see Theorem 1.1). What is new is the right

hand-side estimate in (1.20). However, in [14] it was proved that E[Qk(KN )] 6 w(ZlogN (K))
for the full range of N . So the result follows immediately by applying Theorem 2.1.

To prove Theorem 1.4 we will need Lemma 4.2 from [14] which holds true in the more general
setting of isotropic log-concave random vectors.

Lemma 3.1. Let µ be an isotropic log-concave measure on R
n. For every n2 6 N 6 exp(cn)

and for every q > logN and r > 1, we have

(3.1)

∫
Sn−1

hqKN
(θ)

hqZq(µ)
(θ)

dσn(θ) 6 (c1r)
q

with probability greater than 1 − r−q , where c1 > 0 is an absolute constant.
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Proof of Theorem 1.4. Let exp(
√
n) 6 N 6 exp(n). Applying Hölder’s inequality we get

w(KN ) =

∫
Sn−1

hKN (θ) dσn(θ)

6

(∫
Sn−1

(

hZq(µ)(θ)
)p
dσn(θ)

)1/p(∫
Sn−1

(

hKN (θ)

hZq(µ)(θ)

)q

dσn(θ)

)1/q

= wp
(

Zq(µ)
)

(∫
Sn−1

(

hKN (θ)

hZq(µ)(θ)

)q

dσn(θ)

)1/q

,

where p is the conjugate exponent of q. If we now choose q = logN >
√
n and use Lemma 3.1

we arrive at

w(KN ) 6 c1rwp
(

Zq(µ)
)

with probability greater than 1 − r−q . Since q = logN it follows that p < 2 and thus wp(Zq(µ))
is equivalent with w(Zq(µ)) (see [6, Chapter 5]). Using this and applying Theorem 1.2 we
conclude that

w(KN ) 6 c2r
√

logN
(

log logN
)2

with probability greater than 1 − r− logN . Choosing r = e we complete the proof of (1.21). ✷

Remark 3.2. The proof can provide a better estimate of the probability if one leaves the remark to be
deletedparameter r in the estimates. Then (1.21) shows that for every r > 1 one has

Qk(KN ) 6 c2r
√

logN
(

log logN
)2

with probability greater than 1 − 1/N log r.

We can also give estimates on the volume radius of a random projection PF (KN ) of KN

onto F ∈ Gn,k in terms of n, k and N . In [14] it was shown that if n2 6 N 6 exp(
√
n) then, a

random KN satisfies with probability greater than 1 −N−s the following: for every 1 6 k 6 n,

(3.2) c3
√

logN 6 v.rad(PF (KN )) 6 c4(s)
√

logN

with probability greater than 1 − e−c5k with respect to the Haar measure νn,k on Gn,k. We
extend this result to the case exp(

√
n) 6 N 6 exp(n).

For the proof we will use Theorem 1.1 from [13], which was already mentioned in the
introduction. We formulate it in the more general setting of isotropic log-concave random
vectors (the probability estimate in the statement makes use of [1, Theorem 3.13]: if Γ : ℓn2 → ℓN2
is the random operator Γ(y) = (〈x1, y〉, . . . 〈xN , y〉) defined by the vertices x1, . . . , xN of KN

then P(‖Γ : ℓn2 → ℓN2 ‖ > γ
√
N) 6 exp(−c0γ

√
N) for all N > cγn—see [13] for the details).

Fact 3.3. Let µ be an isotropic log-concave measure on R
n and let x1, . . . , xN be

independent random vectors distributed according to µ, with N > c1n where c1 > 1 is an

absolute constant. Then, for all q 6 c2 log(N/n) we have that

(3.3) KN ⊇ c3 Zq(µ)

with probability greater than 1 − exp(−c4
√
n).

Remark 3.4. In fact this probability is much closer to 1 since if c3 = c3(β) for β ∈ (0, 1/2]
remark to be
added
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then the inclusion KN ⊇ c3 Zq(µ) is true with probability larger than 1 − exp(−cN1−βnβ).
However, we write for simplicity 1 − e−c4

√
n since the use of (1.21) in the proof below will not

allow a better statement of Theorem 1.5.

Proof of Theorem 1.5. For the upper bound we use (1.21) and Kubota’s formula to get

(

1

ωk

∫
Gn,k

|PF (KN )| dνn,k(F )

)1/k

6 c6(s)
√

logN
(

log logN
)2
LK .

Applying now Markov’s inequality we get that with probability greater than 1 − t−k with
respect to the Haar measure νn,k on Gn,k we have

( |PF (KN )|
ωk

)1/k

6 c6(s)t
√

logN
(

log logN
)2
.

Choosing t = e proves the result.
For the lower bound integrating in polar coordinates and using Hölder’s inequality we have∫

Gn,k

|P ◦
F (KN )|
ωk

dνn,k(F ) =

∫
Gn,k

∫
SF

1

hkPF (KN )(θ)
dσF (θ) dνn,k(F )(3.4)

=

∫
Gn,k

∫
SF

1

hkKN
(θ)

dσF (θ) dνn,k(F )

6

(∫
Gn,k

∫
SF

1

hnKN
(θ)

dσF (θ) dνn,k(F )

)k/n

=

(∫
Sn−1

1

hnKN
(θ)

dσn(θ)

)k/n

=

( |K◦
N |
ωn

)k/n

.

Apply now the Blaschke-Santaló inequality and the fact that KN ⊇ c7ZlogN(µ) (with
probability greater than 1 − exp(−c√n)) to get

(3.5)

( |K◦
N |
ωn

)k/n

6

(

ωn
|KN |

)k/n

6

(

ωn
|c7ZlogN (µ)|

)k/n

.

Since logN is greater than
√
n we can apply the inequality |ZlogN (K)|1/n > cL−1

µ

√

(logN)/n
to arrive at

(3.6)

∫
Gn,k

|P ◦
F (KN)|
ωk

dνn,k(F ) 6

(

c8Lµ√
logN

)k

.

Finally, we apply Markov’s inequality and the reverse Santaló inequality of Bourgain and V.
Milman [10] to complete the proof. ✷

4. Mean outer radii

For any convex body C in R
n and any 1 6 k 6 n, the k-th mean outer radius of C is defined

by

(4.1) R̃k(C) =

∫
Gn,k

R(PF (C)) dνn,k(F ).
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Alonso-Gutiérrez, Dafnis, Hernández-Cifre and Prochno studied in [3] the order of growth of
R̃k(KN) as a function of N,n and k. Their main result is Theorem 1.6: If n 6 N 6 exp(

√
n)

then, for all 1 6 k 6 n and s > 0 one has

(4.2) c1(s) max
{√

k,
√

log(N/n)
}

6 R̃k(KN ) 6 c2(s) max
{√

k,
√

logN
}

with probability greater than 1 −N−s, where c1(s), c2(s) are positive constants depending only
on s.

In this section we give an alternative (and simpler) proof of this result. We also extend the
estimates to the range exp(

√
n) 6 N 6 exp(n). Our approach is based on the next general fact,

which is a standard application of concentration of measure on the Euclidean sphere (see [6,
Section 5.7] for the details). If C is a symmetric convex body in R

n then, for any 1 6 k < n
and any s > 1 there exists a subset Γn,k ⊂ Gn,k with measure greater than 1 − e−c1s

2k such
that the orthogonal projection of C onto any subspace F ∈ Γn,k satisfies

(4.3) R(PF (C)) 6 w(C) + c2s
√

k/nR(C),

where c1 > 0, c2 > 1 are absolute constants. In fact, one has that the reverse inequality
R(PF (C)) > cmax{w(C),

√

k/nR(C)} holds for most F ∈ Gn,k. To see this, first note that if
x ∈ C and ‖x‖2 = R(C) then, for most F ∈ Gn,k we have ‖PF (x)‖2 > c

√

k/n‖x‖2, and hence
R(PF (C)) > c

√

k/nR(C); integrating with respect to νn,k we get R̃k(C) > c
√

k/nR(C). On
the other hand, if

√

k/nR(C) 6 c′w(C) for a small enough absolute constant 0 < c′ < 1 then
V. Milman’s proof of Dvoretzky’s theorem shows that most k-dimensional projections of C
are isomorphic Euclidean balls of radius w(C), which implies that R̃k(C) > cw(C). These
observations lead to the next asymptotic formula.

Proposition 4.1. Let C be a symmetric convex body in R
n. For any 1 6 k 6 n one has

(4.4) R̃k(C) ≃ w(C) +
√

k/nR(C).

We will exploit this formula for a random KN . Because of (4.4) we only need to estimate
w(KN ) and R(KN) for a random KN . This is done in Proposition 4.2 and Proposition 4.4
below. Essential ingredients are the deviation and small ball probability estimates (2.17) and
(2.18) of Paouris, as well as Fact 3.3.

We start with the case N 6 exp(
√
n).

Proposition 4.2. If n2 6 N 6 exp(
√
n) then, for any s > 1, a random KN satisfies

c1
√

logN 6 w(KN ) 6 c2s
√

logN

and

c3
√
n 6 R(KN ) 6 c4s

√
n

with probability greater than 1 − max{N−s, e−c
√
n}.

Proof. In the proof of Theorem 1.4 we saw that, for any n 6 N 6 exp(n),

(4.5) w(KN ) 6 c1sw
(

ZlogN (µ)
)

with probability greater than 1 −N−s. Assuming that N 6 exp(
√
n) we have that logN 6

√
n;

then Theorem 2.1 and (4.5) show that

(4.6) w(KN ) 6 c2s
√

logN
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with probability greater than 1 −N−s. For the lower bound we use Fact 3.3: we know that for
all N > c3n we have

(4.7) KN ⊇ c4 Zlog(N/n)(µ)

with probability greater than 1 − exp(−c5
√
n). It follows that if N 6 exp(

√
n) then

w(KN ) > w(Zlog(N/n)(µ)) > c6
√

log(N/n)

with probability greater than 1 − exp(−c7
√
n).

For the radius of KN , applying (2.17) we see that, for any t > 1,

(4.8) R(KN) = max
16j6N

‖xj‖2 6 c8t
√
n

with probability greater than 1 −N exp (−t√n) ≥ 1 − exp(−(t− 1)
√
n) > 1 −N−(t−1). For

the lower bound, if n2 6 N 6 exp(
√
n) we use (2.18) to write

Prob(R(KN ) 6 ε0
√
n) = Prob

(

max
16j6N

‖xj‖2 6 ε0
√
n

)

=
[

µ({x ∈ R
n : ‖x‖2 < ε0

√
n})
]N

6 e−c9
√
nN ,

which shows that R(KN) > ε0
√
n with probability greater than 1 − exp(−c9

√
nN). ✷

Remark 4.3. In fact, for the proof of the lower bound R(KN) > c
√
n we do not really

need the small ball probability estimate of Paouris. Lata la has proved in [22] that if µ is a
log-concave probability measure on R

n then, for any norm ‖ · ‖ on R
n and any 0 6 t 6 1 one

has

(4.9) µ({x : ‖x‖ 6 tEµ(‖x‖)}) 6 Ct,

where C > 0 is an absolute constant. If we assume that µ is isotropic then we easily see that
Eµ(‖x‖2) 6

√
n, and hence, choosing a small enough absolute constant ε0 we have by (4.9)

that

µ({x ∈ R
n : ‖x‖2 < ε0

√
n}) 6 e−1.

This information is enough for our purposes.

Proof of Theorem 1.6. Let N 6 exp(
√
n). From (4.4) and Proposition 4.2 we get that KN

satisfies with probability greater than 1 − max{N−s, e−c
√
n} the following: for any 1 6 k 6 n

R̃k(KN ) =

∫
Gn,k

R(PF (KN )) dνn,k(F ) ≃ w(KN ) +
√

k/nR(KN)

> c1

(

√

log(N/n) +
√

k/n
√
n
)

≃ max
{

√

log(N/n),
√
k
}

and similarly,

R̃k(KN ) =

∫
Gn,k

R(PF (KN )) dνn,k(F ) ≃ w(KN ) +
√

k/nR(KN)

6 c2(s)
(

√

logN +
√

k/n
√
n
)

≃ max
{

√

logN,
√
k
}

,

as in [3]. ✷

The next proposition will allow us to handle the case exp(
√
n) 6 N 6 exp(n).

Proposition 4.4. If exp(
√
n) 6 N 6 exp(n) then, for any s > 1, a random KN satisfies

c1L
−1
µ

√

logN 6 w(KN ) 6 c2s
√

logN(log logN)2
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and

c3 max{√n,R(ZlogN (µ))} 6 R(KN ) 6 c3s logN

with probability greater than 1 − max{N−s, e−c
√
n}.

Proof. Applying again (4.5) in the range exp(
√
n) 6 N 6 exp(n) we have that

(4.10) w(KN ) 6 c2s
√

logN(log logN)2

from Theorem 1.2. For the lower bound we use again Fact 3.3, Urysohn’s inequality and (2.22)
from Theorem 2.2 to write

w(KN ) > w(ZlogN (µ)) > (|ZlogN (µ)|/|Bn2 |)1/n > c6L
−1
µ

√

logN

with probability greater than 1 − exp(−c4
√
n).

For the radius of KN we first use the estimate R(KN ) 6 ct
√
n from (4.8) with t ≃ s logN/

√
n

to obtain the bound c logN with probability greater than 1 −N−s. For the lower bound, we
show that R(KN ) > c

√
n exactly as in the proof of Proposition 4.2, and we also use the bound

R(KN) > R(ZlogN (µ)). ✷

Using Proposition 4.4 and Proposition 4.1 as in the proof of Theorem 1.6, we arrive at the
following estimate:

Theorem 4.5. Let x1, . . . , xN be independent random points distributed according to

an isotropic log-concave measure µ on R
n, and consider the random polytope KN :=

conv{±x1, . . . ,±xN}. If exp(
√
n) 6 N 6 exp(n) then, for all 1 6 k 6 n one has

cmax
{

L−1
µ

√

logN,
√
k,
√

k/nR(ZlogN (µ))
}

6 R̃k(KN ) 6 C max{
√

logN(log logN)2,
√

k/n logN}

with probability greater than 1 −N−1, where c(s) depends only on s.
to be
deleted;
no s in this
statement

In full generality one cannot expect something significantly better: for example, if µ = µn1 is
the uniform measure on Bn1 /|Bn1 | then R(ZlogN (µn1 )) ≃ logN , and for large values of N (i.e.
exponential in N) we get

R̃k(KN ) ≃
√

k/n logN.

On the other hand, if µ satisfies a ψ2 estimate with constant b then we know that Lµ 6 C1b (see
[20]) and we also know that In(µ) 6 cb

√
n (see [29]), which implies that w(KN ) 6 R(KN) 6

C2b
√
n. Thus, in this case (which e.g. includes the case of the standard Gaussian measure) we

get:

Theorem 4.6. Let x1, . . . , xN be independent random points distributed according to an

isotropic log-concave measure µ on R
n which satisfies a ψ2-estimate with constant b, and

consider the random polytope KN := conv{±x1, . . . ,±xN}. If n 6 N 6 exp(n) and s > 1 then

KN satisfies with probability greater than 1 −N−s

(4.11) c1b
−1 max

{√
k,
√

log(N/n)
}

6 R̃k(KN ) 6 c2(s)bmax
{√

k,
√

logN
}

for all 1 6 k 6 n, where c2(s) is a positive constant depending only on s.
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5. Entropy estimates and diameter of sections

For every pair of convex bodies A and B in R
n, the covering number N(A,B) of A by B

is defined to be the smallest number of translates of B whose union covers A. A fundamental
theorem of V. Milman states that there exists an absolute constant β > 0 such that every
symmetric convex body K in R

n has a linear image K̃ which satisfies |K̃| = |Bn2 | and

(5.1) max
{

N(K̃, Bn2 ), N(Bn2 , K̃), N(K̃◦, Bn2 ), N(Bn2 , K̃
◦)
}

6 exp(βn).

A convex body which satisfies the above is said to be in M -position with constant β. Pisier has
offered in [31] a refined version of this result: for every 0 < α < 2 and every symmetric convex
body K in R

n there exists a linear image K̃α of K such that

(5.2) max
{

N(K̃α, tB
n
2 ), N(Bn2 , tK̃α), N(K̃◦

α, tB
n
2 ), N(Bn2 , tK̃

◦
α)
}

6 exp

(

c(α)n

tα

)

for every t > 1, where c(α) depends only on α, and c(α) = O
(

(2 − α)−α/2
)

as α→ 2. One says

that K̃α is an α-regular M -position of K (we refer to [6, Chapter 8] and [32] for a detailed
exposition of these results).

In this section we will first show that if µ is an isotropic log-concave measure on R
n then,

for a considerably large range of values of N , a random KN is in α-regular M -position with
α ∼ 1. To this end, it is convenient to set rN =

√
logN : recall that if n2 ≤ N ≤ exp(

√
n) then

v.rad(KN ) ≃ rN for a random KN (in the case N > exp(
√
n) one has the weaker estimate

c1L
−1
µ rN 6 v.rad(KN ) 6 c2rN ). We provide estimates for the covering numbersN(KN , trNB

n
2 )

and N(rNB
n
2 , tKN) for a random KN and for all t > 1; by the duality of entropy theorem

of Artstein-Avidan, V. Milman and Szarek [7], these also determine the covering numbers
N(rNK

◦
N , tB

n
2 ) and N(Bn2 , trNK

◦
N ), thus completing the proof of the four required entropy

estimates in (5.2).

Proposition 5.1. Let µ be an isotropic log-concave measure on R
n. Then a random KN

satisfies with probability greater than 1 −N−1 the entropy estimate

logN(KN , trNB
n
2 ) 6

{

cn
t2 if n2 6 N 6 exp(

√
n)

cn log4 n
t2 if exp(

√
n) 6 N 6 exp(cn).

for every t > 1, where c > 0 is an absolute constant.

Proof. We simply recall that a random KN satisfies w(KN ) 6 c1
√

logN ≃ rN for “small” N ,
and w(KN ) 6 c2

√
logN(log logN)2 ≃ rN (log logN)2 for “large” N , by Proposition 4.2 and

Proposition 4.4 respectively. The bound for N(KN , trNB
n
2 ) is then a direct consequence of

Sudakov’s inequality logN(C, tBn2 ) 6 cn(w(C)/t)2 which is true for every convex body C in
R
n and every t > 0 (see e.g. [6, Chapter 4]). ✷

We turn to estimates for the dual covering numbers N(rNB
n
2 , tKN). We will make use

of the following fact (see [16] and [11, Proposition 9.2.8] or [15] for the stronger statement
below): If µ is an isotropic log-concave measure on R

n, then for any 2 6 q 6
√
n and for any

1 6 t 6 min
{√

q, c1
n log q
q2

}

we have

(5.3) logN
(√
qBn2 , tZq(µ)

)

6 c2
n log2 q log t

t
,

where c1, c2 > 0 are absolute constants. Moreover, if q 6 (n logn)2/5 then (5.3) holds true for
all t > 1. Analogous estimates are available for larger values of q, but they are weaker and do
not seem to be final; so, we prefer to restrict ourselves to the next case.
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Proposition 5.2. Let µ be an isotropic log-concave measure on R
n. Then, assuming that

n2 6 N 6 exp
(

(n logn)2/5
)

, we have that a random KN satisfies with probability greater than

1 − exp(−c1
√
n) the entropy estimate

exponent
was 4/5

logN(rNB
n
2 , tKN) 6 c2

n log2 n log(1 + t)

t

for every t > 1, where c1, c2 > 0 are absolute constants.

Proof. It is an immediate consequence of the fact that KN ⊇ c3ZlogN (µ) with probability
greater than 1 − exp(−c1

√
n). Then, we clearly have

logN(rNB
n
2 , tKN ) 6 logN(rNB

n
2 , c3tZlogN(µ)),

and the result follows from (5.3). ✷
to be added

Proof of Theorem 1.7: By Proposition 5.2

logN(rNB
n
2 , tKN) ≤ c

n log2 n log(1 + t)

t
.

By Proposition 5.1, since

N ≤ exp
(

(n logn)2/5
)

≤ exp(θ
√
n),

for suitable absolute constant θ > 0, we have

logN(KN , trNB
n
2 ) ≤ cn

t

(here we can compensate for the extra factor θ in the exponent since for the proof of
Proposition 5.1 we can use the fact that Zθ

√
n(µ) ⊆ θZ√

n(µ)). Combining the above bounds
we get the result. ✷

Remark 5.3. Following the reasoning of [14] one can also check that there exist absolute
positive constants c1, c2, c3 and c4 so that for every 0 < t < 1 a random KN satisfies with
probability greater than 1 −N−1 the next entropy estimates:

(i) If n2 6 N 6 exp(
√
n) then

c1n log
c2
t

6 logN(KN , trNB
n
2 ) 6 c3n log

c4
t
,(5.4)

(ii) If exp(
√
n) 6 N 6 exp(n) then

Here in
(5.5) the
referee says
that an L−1

µ

is missing
inside the
logarithm.
Do you see
this?

c1n log
c2
t

6 logN(KN , trNB
n
2 ) 6 c3n log

(

log logN)
)2

t
.(5.5)

As an application we provide estimates for the average diameter of k-dimensional sections of
a random KN . This parameter can be defined for any convex body C in R

n and any 1 6 k 6 n
as follows:

(5.6) D̃k(C) =

∫
Gn,k

R(C ∩ F ) dνn,k(F ).

We shall use the next lemma that (in the case α = 2) can be essentially found in the article
[26] of V. Milman (see also [11, Lemma 9.2.5]):

Lemma 5.4. Let C be a symmetric convex body in R
n and assume that

(5.7) logN(C, tBn2 ) 6
γn

tα
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for all t > 1 and some constants α > 0 and γ > 1. Then, for every integer 1 6 d < n, a subspace

H ∈ Gn,d satisfies

(5.8) C ∩H⊥ ⊆ c1α
−1
(γn

d

)1/α

log
(n

d

)

BH⊥

with probability greater than 1 − exp(−c2d), where c1, c2 > 0 are absolute constants.

From Proposition 5.1 we know that a random r−1
N KN satisfies the assumption of Lemma 5.4

with γ ≃ 1 if N 6 exp(
√
n) and γ ≃ log4 n if N > exp(

√
n). Therefore, for any k < n we have

that if N 6 exp(
√
n) then a k-dimensional section of KN has radius

(5.9) R(KN ∩ F ) 6 c1
√

logN

√

n

n− k
log

(

n

n− k

)

,

while if exp(
√
n) 6 N 6 exp(n) then the bound becomes

(5.10) R(KN ∩ F ) 6 c1
√

logN(log n)2
√

n

n− k
log

(

n

n− k

)

,

both with probability greater than 1 − exp(−c2(n− k)), where c1, c2 > 0 are absolute con-
stants. From Proposition 4.2 and Proposition 4.4 we also know that a random KN has
radius

R(KN) 6 cmax{√n, logN} 6 cn,

and the same bound is clearly true for all its sectionsKN ∩ F . Therefore, if n exp(−c2(n− k)) 6
1 (which is true provided that k < n− c3 logn) integration on Gn,k shows that the bounds (5.9)
and (5.10) hold for D̃k(KN) as well. Taking into account the fact that D̃k(KN ) 6 R̃k(KN ) we
conclude the following.

Proposition 5.5. Let µ be an isotropic log-concave measure on R
n. Then a random KN

satisfies with probability greater than 1 −N−1 the following:

(i) If n2 6 N 6 exp(
√
n) then:

(i) If k 6 logN then D̃k(KN ) 6 c1
√

logN .

(ii) If k > logN then D̃k(KN ) 6 c1 min
{√

k,
√

logN
√

n
n−k log

(

n
n−k

)

, logN
}

,

(ii) If exp(
√
n) 6 N 6 exp(n) then:

(i) If k 6 n(log logN)4/ logN then D̃k(KN ) 6 c2
√

logN(log logN)2.
(ii) If k > n(log logN)4/ logN then

D̃k(KN ) 6 c2 min

{

√

k/n logN,
√

logN(log n)2
√

n

n− k
log

(

n

n− k

)}

,

where c1, c2 > 0 are absolute constants.

Remark 5.6. An alternative way to estimate the average radius of KN ∩ F on Gn,k for
some values of k is given by the next theorem of Klartag and Vershynin from [21]: If 1 6 k 6

c1n(M(C)/b(C))2, then

(5.11)
c2

M(C)
6

(∫
Gn,k

R(C ∩ F )k dνn,k(F )

)1/k

6
c3

M(C)
,

where c1, c2, c3 > 0 are absolute constants.
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Note that a random KN satisfies KN ⊃ Z2(µ) = Bn2 and integration in polar coordinates
combined with Hölder’s inequality shows that

M(KN ) >
1

v.rad(KN )
≃ 1√

logN
.

Therefore, we may apply (5.11) to KN : for all 1 6 k 6 cn/ logN we have

(5.12) D̃k(KN ) 6

(∫
Gn,k

R(C ∩ F )k dνn,k(F )

)1/k

6
c3

M(C)
6 c4

√

logN.

We pass now to lower bounds for D̃k(KN ). In fact, we will give a lower bound which is valid
for the radius of every section KN ∩ F , F ∈ Gn,k. We need the next lemma.

Lemma 5.7. Let C be a symmetric convex body in R
n and assume that

(5.13) logN(Bn2 , tC) 6
γn

tα

for all t > 1 and some constants α > 0 and γ > 1. Then, for every 1 6 k < n and any subspace

F ∈ Gn,k we have

(5.14) R(C ∩ F ) > cαγ−1/α(k/n)1/α.

where c > 0 is an absolute constant.

Proof. Let 1 6 k < n and consider any F ∈ Gn,k. The projection PF (C◦) of C◦ onto F satisfies

(5.15) N(PF (C◦), tBF ) 6 N(C◦, tBn2 ) 6 exp(
γn

k

k

tα
),

for every t > 1. We apply Lemma 5.4 for the body PF (C◦) (with γ′ = γn/k): there exists
H ∈ Gk,⌊k/2⌋(F ) such that

(5.16) PF (C◦) ∩H ⊆ c1α(γn/k)1/αBH .

Taking polars in H we see that PH(C ∩ F ) ⊇ c1α(k/γn)1/αBH . Using the fact that for every
symmetric convex body A in R

k and every H ∈ Gk,s we have M(A ∩H) 6
√

k/sM(A) (see
[6, Chapter 5]) we get

w(C ∩ F ) = M((C ∩ F )◦) >
1√
2
M((C ∩ F )◦ ∩H) =

1√
2
w(PH(C ∩ F ))

> c2(k/γn)1/α.

The same lower bound holds for R(C ∩ F ). ✷

From Proposition 5.2 we know that if e.g. n2 6 N 6 exp
(

(n logn)2/5
)

then a random KN

satisfies with probability greater than 1 − exp(−c1
√
n) the entropy estimate

exponent
was 4/5

logN(Bn2 , tr
−1
N KN ) 6 c2

n log2 n log(1 + t)

t
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for every t > 1, where c1, c2 > 0 are absolute constants. So, we may apply Lemma 5.7 with
C = r−1

N KN , γ = log2 n and α = 1 to get:
here we have
a problem:
because of
log(1 + t)
the
parameter α
can not be
1, but 1 − ε,
and the
constands
appearing
will depend
on ε. This
is on of the
reasons I
rewrote Thm
1.8. Check
statement.
Another
reason is the
restriction
n2 6 N 6
exp
(

(n logn)2/5
)

which seems
to persist
for the low
bounds. Also
the prob for
upper bound
is 1 −N−1

Proposition 5.8. Let µ be an isotropic log-concave measure on R
n. If n2 6 N 6

exp
(

(n logn)2/5
)

then a random KN satisfies with probability greater than 1 − exp(−c1
√
n)

the following: for every 1 6 k < n and any subspace F ∈ Gn,k,

(5.17) R(KN ∩ F ) > c
√

logN
k

n log2 n
,

where c > 0 is an absolute constant. The same bound holds for D̃k(KN ).

Remark 5.9. The question to give an upper bound for M(KN ) seems open and interesting.
Let us note that the analogous question for Zq(µ) is still open. The best known result appears
in [15] (see also [16]): For any isotropic log-concave probability measure µ on R

n and any
2 6 q 6 q0 := (n logn)2/5 one has

(5.18) M(Zq(µ)) 6 C

√
log q
4
√
q
.

This estimate does not seem to be optimal; note that since KN ⊇ cZlogN (µ) we also have

(5.19) M(KN) 6 C

√
log logN
4
√

logN

for a random KN , at least in the range logN 6 (n logn)2/5.

6. Remarks on the isotropic constant

In this last section we apply directly the method of Klartag and Kozma in order to estimate
the isotropic constant LKN of a random KN . The starting point is the inequality

(6.1) |KN |2/nnL2
KN

6
1

|KN |

∫
KN

‖x‖22 dx

(it is well-known that this holds for any symmetric convex body in R
n; see e.g. [27] or [11,

Chapter 3]). Assuming that N 6 exp(
√
n) we know by (1.6) that

(6.2) |KN |1/n > c1

√

log(2N/n)√
n

with probability greater than 1 − exp(−c2
√
n).

We write F(KN ) for the family of facets of KN and we denote by [y1, . . . , yn] the convex
hull of y1, . . . , yn. Observe that, with probability equal to 1, all the facets of KN are simplices
and that, for all 1 6 j 6 n, xj and −xj cannot belong to the same facet of KN . Following [19,
Lemma 2.5] one can show the next lemma.

Lemma 6.1. Let F1, . . . , FM be the facets of KN . Then,

(6.3)
1

|KN |

∫
KN

‖x‖22dx 6
n

n+ 2
max

16s6M

1

|Fs|

∫
Fs

‖u‖22du.
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Let y1, . . . , yn ∈ R
n and define F = [y1, . . . , yn]. Then, F = T (∆n−1) where ∆n−1 =

[e1, . . . , en] and Tij = 〈yj , ei〉 =: yji. Assume that det T 6= 0. Then,

1

|F |

∫
F

‖u‖22du =
1

|∆n−1|

∫
∆n−1

‖Tu‖22du

=
1

|∆n−1|

∫
∆n−1

n
∑

i=1





n
∑

j=1

yjiuj





2

du.

Using the fact that

(6.4)
1

|∆n−1|

∫
∆n−1

(uj1uj2) du =
1 + δj1,j2
n(n+ 1)

,

we see that

(6.5)
1

|F |

∫
F

‖u‖22du =
1

n(n+ 1)

n
∑

i=1







n
∑

j=1

y2ji +





n
∑

j=1

yji





2





,

from where one can conclude that

(6.6)
1

|F |

∫
F

‖u‖22du 6
2

n(n+ 1)
max
εj=±1

‖ε1y1 + · · · + εnyn‖22 .

Next we use a Bernstein type inequality:
Reference?
GAFA
Bourgain-
Lindenstrauss-
Milman or
something
else?

Lemma 6.2. Let g1, . . . , gn be independent random variables with E (gj) = 0 on some

probability space (Ω, µ). Assume that ‖gj‖ψ1
6 A for all 1 6 j 6 n and some constant A > 0.

Then,

(6.7) P







∣

∣

∣

∣

∣

∣

n
∑

j=1

ajgj

∣

∣

∣

∣

∣

∣

> t







6 2 exp

(

−cmin

{

t2

A2‖a‖22
,

t

A‖a‖∞

})

for every t > 0.

We first fix θ ∈ Sn−1 and a choice of signs εj = ±1, and apply Lemma 6.2 to the random
variables gj(y1, . . . , yn) = 〈εjyj, θ〉 on Ω = (Rn, µ)n. Since µ is isotropic, we know that ‖gj‖ψ1

6
C. Choosing α = C0 log(2N/n) we get

(6.8) P {|〈ε1y1 + · · · + εnyn, θ〉| > αn} 6 2 exp(−cαn).

Consider a 1/2-net N for Sn−1 with cardinality |N | 6 5n. Then, with probability greater than
1 − exp(−c2αn) we have

(6.9) |〈ε1y1 + · · · + εnyn, θ〉| 6 αn

for every θ ∈ N and every choice of signs εj = ±1. Using a standard successive approximation
argument, and taking into account all 2n possible choices of signs εj = ±1, we get that, with
probability greater than 1 − exp(−c3αn),

(6.10) max
εj=±1

‖ε1y1 + · · · + εnyn‖2 6 C1αn.

Now, we use the fact that

(6.11) |F(KN)| 6
(

2N

n

)

6 exp(c3αn/2)
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provided that C0 is large enough. Therefore, taking also Lemma 6.1 and (6.6) into account, we
see that, with probability greater than 1 − |F(KN)| exp(−c3αn) > 1 − exp(−c4αn),

(6.12)
1

|KN |

∫
KN

‖x‖22dx 6 C2α
2 = C3 log2(2N/n),

where C3 > 0 is an absolute constant. From (6.1) and (6.2) we get (with probability greater
than 1 − exp(−c√n))

(6.13) L2
KN

6
c4

log(2N/n)

1

|KN |

∫
KN

‖x‖22 dx 6 C5 log(2N/n)

and hence LKN 6 C6

√

log(2N/n).
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