
Lecture course: Metric projective

geometry

Plan:
◮ Definition and basic properties of projective structure.
Application: Isometries of Hilbert metrics

◮ Projective invariant equations. Application: Topology in
the 2-dimensional case

◮ Local normal forms in dimension 2. Application: Solution
of the problems stated by Sophus Lie in 1882.

◮ Projectively invariant tenrors. Application: Proof of
projective Lichnerowicz conjecture

◮ Conifications. Application: solution of Weyl-Ehlers
problem

◮ Open problems, generalizations, and possible analogies in
the Finsler geometry



What is a projective structure?

Informal and inefficient definition: Projective structure is a
sufficiently big
︸ ︷︷ ︸

to be explained

family of curves that after a reparameterisation can

be geodesics of some affine connection.

Sufficiently big: In any point in any direction there exists a curve
from the family passing through this point in this direction.

Simplest example: the set of all straight lines on R
2: it is

sufficiently big, and they are geodesics of the flat (and not only of
the flat) connection.



Efficient definition of projective structure requires theory

Let us first study the following question: Suppose we have two
symmetric affine connections, ∇ = (Γijk) and ∇̄ = (Γijk). When each

geodesic of ∇, possibly after a reparameterization, is a geodesic of ∇̄?

Def. Two connections are ∇ and ∇̄ said to be projectively equivalent, if
any geodesic of ∇, possibly after a reparameterization, is a geodesic of ∇̄.

The above question using the new terminology: Reformulate
projective equivalence of ∇, ∇̄ as an easy-to-check condition

Theorem 1 (deep classics: Levi-Civita 1896, Weyl 1924). ∇ = (Γijk)

is projectively equivalent to ∇̄ = (Γijk), if and only if there exists an
1-form φ = φi such that

Γ̄ijk = Γijk + φkδ
i
j + φjδ

i
k . (∗)

The condition (∗) in the index-free form: for any vector X and any
vectorfield V ,

∇̄XV −∇XV = φ(X )V + φ(V )X (∗∗)



Easy control question to the audience:

Theorem 1 (deep classics: Levi-Civita 1896, Weyl 1924). ∇ = (Γijk ) is projectively equivalent to

∇̄ = (Γijk ), if and only if there exists an 1-form φ = φi such that

Γ̄
i
jk = Γ

i
jk + φkδ

i
j + φjδ

i
k . (∗)

Question: please answer now: Does there exist two projectively
equivalent symmetric affine connections on R

2 (or Rn) such that
they coincide in some neighborhood and are different in another
neighborhood?

Of course YES!!! Take a 1-form which is not zero in a
neighborhood but is zero outside the neighborhood, take any
connection ∇ = (Γijk) and “deform” it by (∗).



I will prove Theorem 1 in one direction; the second
direction is your homework, I will give some hints

Let us first study the following natural question: What is a
differential equation of a reparameterized geodesic?

We all know that the differential equation of the geodesic parameterized
by the natural (“affine”) parameter is

∇γ̇ γ̇ = 0

(Or, in the index notation, γ̈ i + Γijk γ̇
j γ̇k = 0.)

Claim. Any reparameterised geodesic satisfies the equation
∇γ̇ γ̇ = α(t)γ̇ for a certain function α(t). Any regular curve satisfying
this equation is a reparameterized geodesic.

Physical interpretation: ∇γ̇ γ̇ is an acceleration, so geodesics are the
trajectories of particles with no acceleration (= freely falling particles).
The condition ∇γ̇ γ̇ = α(t)γ̇ means that at every point the acceleration is
proportional to the velocity, which implies that the particles go along the
same trajectory as in no acceleration case but the speed is not constant.



Claim. Any reparameterised geodesic satisfies the equation ∇γ̇ γ̇ = α(t)γ̇ for a certain function α(t).
Any regular curve satisfying this equation is a reparameterized geodesic.

Proof in direction =⇒ . We assume that the curve γ(t) is a geodesic,
and that the curve γ̄(τ) is the geometrically the same curve but other
parameterized: ∃τ(t) such that γ̄(τ(t)) = γ(t).

We denote the t-derivative by dot, the τ derivative by prime, and we
clearly have γ̇ = τ̇ γ̄′.

Then, the geodesic equation 0 = ∇γ̇ γ̇ reads

0 = ∇γ̇ γ̇ = ∇τ̇γ′(τ̇ γ′) = τ̈ γ̄′ + (τ̇)
2∇γ̄′ γ̄′.

We see that the curve γ̄ satisfies the equation

∇γ̄′ γ̄′ = α(t)γ̄′ (∗ ∗ ∗)

with the function α(τ) = − τ̈
(τ̇)2

.

Proof in direction ⇐=. Just observe that all steps in the proof in the

”
=⇒“-direction are invertible: if we have a regular γ̄(τ) such that curve
such that (∗ ∗ ∗) is satisfied, find a function τ(t) such that α = − τ̈

(τ̇)2
, its

existence follows from the theory of ODE, and then go upwards along the
formulas in the proof in =⇒-direction.



Proof of Theorem 1 in direction ⇐=

Theorem 1 (deep classics: Levi-Civita 1896, Weyl 1924). ∇ = (Γijk ) is projectively equivalent to

∇̄ = (Γijk ), if and only if there exists an 1-form φ = φi such that for all vector fields

Γ̄
i
jk = Γ

i
jk + φkδ

i
j + φjδ

i
k . (∗)

We assume that ∇ = (Γijk) and ∇̄ = (Γijk) are related by (∗), our goal is
to show that they they are projectively equivalent. That is, we need to
show that any ∇-geodesic γ, after some reparameterization, is a geodesic
of ∇̄. Because of the Claim on the previous slide we need to show that
∇̄γ̇ γ̇ = α(t)γ̇. We obtain this formula by direct calculation: we do it in
the index form

0 = ∇̄γ̇ γ̇ = γ̈+Γ̄ijk γ̇
k γ̇j = γ̈+(Γijk γ̇

k γ̇j)+(φkδ
i
j+φjδ

i
k)γ̇

j γ̇k = ∇̄γ̇ γ̇+2φ(γ̇)γ̇

as we want.



Remark The proof may look more easier in the index-free notation: recall
that the analog of the formula (∗) is (∗∗) and is

∇̄XV −∇XV = φ(X )V + φ(V )X (∗∗)
and using this we have

0 = ∇̄γ̇ γ̇ = ∇γ̇ γ̇ + φ(γ̇)γ̇ + φ(γ̇)γ̇

as we want. For the proof in the =⇒-direction, which I leave you as a
homework, I recommend you though to use the index notation.

Homework. Prove theorem in the =⇒-direction.

Hint. Involves some not-completely-trivial linear algebra.



Definition of projective structure

Informal and inefficient definition: Projective structure is
a sufficiently big family of curves that after a reparameteri-
sation can be geodesics of some affine connection.

Efficient Def. By projective structure we understand the
equivalence class of symmetric affine connections with respect to
the equivalence relation “projective equivalence”.

Remark. From Theorem 1 it follows that two symmetric affine
connection correspond to one projective structure, iff their
difference has the form φkδ

i
j + φjδ

i
k for an 1-form φ.



2-dim projective structures and second order ODEs

In dimension n = 2, because of the symmetries Γijk = Γikj , the components

of Γikj in coordinates are n2(n+1)
2 = 6 function. The freedom in choosing

the connection in the projective class is n = 2 “functions” (φ1, φ2). Thus,
locally, projective structure is given by 4 functions of the coordinates. Let
us give, following Beltrami 1859, a geometric sense to these 4 functions.

Theorem 2. Let
[

Γijk

]

be a projective structure on U ⊂ R
2(x , y).

Consider the following second order ODE

y ′′ = −Γ211
︸ ︷︷ ︸

K0

+(Γ111 − 2Γ212)
︸ ︷︷ ︸

K1

y ′ + (2Γ112 − Γ222)
︸ ︷︷ ︸

K2

y ′2 + Γ122
︸︷︷︸

K3

y ′3. (1)

Then, for every solution y(x) of (1) the curve (x , y(x)) is a
(reparametrized) geodesic.

Corollary. The coefficients K0, ...,K3 of ODE (1) contain all the
information of the projective structure: two connections are projectively
related iff the corresponding functions K0, ...,K3 coincide.

Homework. Prove the Corollary: show that the kernel of the (linear)
mapping Γijk 7→ (K0,K1,K2,K3) consists of tensors T

i
jk = φkδ

i
j + φjδ

i
k .



Theorem 2. Let
[

Γijk

]

be a projective structure on U ⊂ R
2(x, y). Consider the following second order ODE

y
′′

= −Γ
2
11

︸ ︷︷ ︸

K0

+ (Γ
1
11 − 2Γ

2
12)

︸ ︷︷ ︸

K1

y
′
+ (2Γ

1
12 − Γ

2
22)

︸ ︷︷ ︸

K2

y
′2

+ Γ
1
22

︸︷︷︸

K3

y
′3
. (1)

Then, for every solution y(x) of (1) the curve (x, y(x)) is a (reparametrized) geodesic.

Example. The flat projective structure [Γijk ≡ 0] corresponds to the ODE
y ′′ = 0. The solutions of this ODE are y(x) = ax + b, and the curves
x 7→ (x , y(x)) = (x , ax + b) are indeed straight lines.

Remark 1. Note that the set of curves of the form (x , y(x)) is quite big:
at any point in any direction there exists such a curve passing through
this point in this direction.

Remark 2. We see a special feature of geodesics of affine connections:
they are essentially the same as solutions of 2nd order ODE
y ′′ = F (x , y , y ′) such that the right hand side is polynomial
in y ′ of degree ≤ 3. In particular, taking an ODE y ′′ = F (x , y , y ′)
such that F is not a polynomial in y ′ of degree ≤ 3, the set of the
curves of the form (x , y(x)) are geodesics of no affine connection. We
will return to this problem in the last lecture.



How many geodesics determine the projective structure?

We will answer this question in dimension 2, and give an application in
the next slides.
We consider a projective structure

[

Γijk

]

and the corresponding ODE

y ′′ = −Γ211
︸ ︷︷ ︸

K0

+(Γ111 − 2Γ212)
︸ ︷︷ ︸

K1

y ′+(2Γ112 − Γ222)
︸ ︷︷ ︸

K2

y ′2+ Γ122
︸︷︷︸

K3

y ′3. (1)

Claim. For any point (x̂ , ŷ), 4 different geodesics passing through this
point determine the coefficients K0(x̂ , ŷ),K1(x̂ , ŷ),K2(x̂ , ŷ),K3(x̂ , ŷ) at
this point.

Proof. 4 different geodesics passing through (x̂ , ŷ) correspond to 4
different solutions y1, y2, y3, y4 of (1) such that yi (x̂) = ŷ . Knowing
geodesics implies that we know y ′

i (x̂) and y ′′
i (x̂) which implies that we

known the values of the polynomial

P(y ′) = K0(x̂ , ŷ) + K1(x̂ , ŷ)y
′ + K2(x̂ , ŷ)y

′2 + K3(x̂ , ŷ)y
′3

at four points y ′
1(x̂), ..., y

′
4(x̂) and we know that values at 4 points

determines a polynomial of degree ≤ 3.



Application in Finsler geometry: proof of the 2-dim de la
Harpe conjecture

Let K ⊂ R
n be a compact convex body.

Hilbert metric is the following distance func-
tion d : int(K )× int(K )→ R on the interior
of K : for x 6= y ∈ int(K ) we consider the
straight line containing x , y and denote by x̄
and ȳ the intersection points of this straight
line with the boundary of K .

Then, we put

d(x , y) := ln
(
(x̄ , x ; y , ȳ)

)
:= ln

( |ȳ − x |
|ȳ − y | :

|x̄ − x |
|x̄ − y |

)

,

where | · | denotes the usual Euclidean length.



Known properties of the Hilbert metrics

Hilbert metric is a Finsler metric, the corre-
sponding Finsler function is given by

F (x , v) = |v |
|x−x+| +

|v |
|x−x−| .

◮ Straight line segments are geodesics

◮ Projective transformations preserving the convex body preserve the
Hilbert metric

Remark. If the boundary is not strictly convex, the geodesics are not
necessary unique.



Question of de la Harpe (1991)

For what K all isometries of K are projective transformations?

◮ Example (de la Harpe): If K is simplex, there exist isometries that
do not come from projective transformations.

◮ If K is strictly convex, any isometry is a projective transformation
(deep classics; possibly Hilbert)

◮ 2011: Answer by Walsh and Lemmens for polyhedral K .

◮ 2013: Answer by Walsh for all convex bodies

Theorem (M∼ – Troyanov 2014, in arXive today). In dimension
two, each isometry φ : K → K is a projective transformation unless K is
a triangle.

We see that our theorem is not new; but the proof of Walsh is relatively
complicated and you will see that our proof is trivial for those who heard
the first part on today’s lecture.



Proof .

Fact (possibly Hilbert 1895, de la Harpe 1991). A straight line
containing an extremal point is UNIQUE MINIMIZING geodesic.

We consider four extremal points A,B ,C ,D of K .

For every point P ∈ int(K ), we consider the in-
tersections of the straight lines containing A and P
(resp., B and P , C and P , D and P).

A B

C

D

P

As we learned today, these four straight lines define
uniquely a projective structure; this projective structure
is projectively flat (all geodesics are straight lines)

The push-forward of this projective structure is a projective structure,
since the 4 geodesics are unique, isometry maps sends them to straight
lines and therefore the push-forward of the projective structure is
projectively flat and φ is a projective transformation



Lecture two: Projectively invariant differential operators

Plan

1. Definition

2. Two main examples: (projective) Killing and metrization
equations

3. Philosophy of metric projective geometry

4. Application: what 2 dim manifolds admit projectively related
metrics.



Projectively invariant operators: def and trivial examples

Projectively invariant = does not depend on the choice of a connection in
the projective class and on the coordinate system.

Not an Example. Covariant differentiation of vectors or tensors is NOT
projectively invariant: If we replace ∇ by a projectively equivalent ∇̄,
then the covariant derivative will be CHANGED:

∇̄XV −∇XV = φ(X )V + φ(V )X .

Trivial Example. The outer derivative ω 7→ dω on the space of k-forms
is projectively invariant. Indeed, it does not depend on a connection at

all. (Say, for 1-forms, d(adx + bdy) =
(

∂b
∂x
− ∂a

∂y

)

dx ∧ dy)

Our next goal is to construct two ‘nontrivial’ projectively invariant
differential operations; they will play an important role later today
and in other lectures but the price we need to pay now is that we
need to introduces weighted tensor fields



What are weighted tensors? What is weight?

We assume that our manifold M is orientable and fix an
orientation. We consider the bundle ΛnM of positive volume forms
on M

Recall. Volume form is a scew-symmetic form of maximal order,
Vol = f (x)dx1 ∧ ... ∧ dxn with f 6= 0. “Positive” means that if the
basis ∂

∂x1
, ..., ∂

∂xn
is positively oriented then f (x) > 0.



Positive volume bundle is a locally trivial 1-dimensional bundle over our
manifold M with the structure group (R>0, ·). That means in particular
that for small neighborhood U ⊂ M we have an isomorphisms between
ΛnU and R>0 × U: there are two natural ways to choose the
isomorphism, let us discuss them.

1. Choose a section in this bundle, i.e., a volume form, the other
sections of this bundle can be thought to be positive functions on
the manifold (and if we change coordinates they
transform like functions, i.e., do not transform at
all). This situation will be actively used later, when the volume
form is parallel with respect to an affine connection in the projective
class.

2. In local coordinates x = (x1, ..., xn), we can choose the volume form
dx1 ∧ ... ∧ dxn, the volume form Ω = f (x)dx1 ∧ ... ∧ dxn

corresponds to the function f (x). Its transformation rule is different
from that of functions: a coordinate change, x = x(y) transforms

f (x) to det
(

dx
dy

)

f (x(y)).



(Λn)
α
M

Let α ∈ R \ {0}. Since t → tα is an isomorphism of (R>0, ·), for
any 1-dimensional (R>0, ·)-bundle its power α is well-defined and is
also an one-dimensional bundle. We consider (Λn)

αM. It is an
1-dimensional bundle, so its sections locally can be viewed as
functions. Again we have two ways to view the sections as
functions:

1. Choose a volume form Ω, and the corresponding section
ω = (Ω)α of (Λn)

αM. Then, the other sections of this bundle
can be thought to be positive functions on the manifold.

2. In local coordinates x = (x1, ..., xn), we can choose the section
(dx1 ∧ ...∧ dxn)α, then the section ω = (f (x)dx1 ∧ ...∧ dxn)α
corresponds to the function (f (x))α. Its transformation rule is
different from that of functions: a coordinate change,

x = x(y) transforms (f (x))α to
(

det
(
dx
dy

))α

f (x(y))α.



Weighted tensors

Def. By a (p,q)-tensor field of projective weight k we understand a
section of the following bundle:

T (p,q) ⊗ (Λn)
k

n+1 M (notation := T (p,q)M(k))

If we have a preferred volume form on the manifold, the sections of
T (p,q)M(k) can be identified with (p,q)-tensors fields. The identification
depends of course on the choice of the volume form.

If we do not have a preferred volume form on the manifold, in a local
coordinate system one can choose (dx1 ∧ ... ∧ dxn) as the preferred
volume, and still think that sections are “almost” (p,q)-tensors: they are
also given by np+q functions but their transformation rule is slightly
different from that for tensors: in addition to the usual transformation

rule for tensors one needs to multiply by
(

det
(

dx
dy

))α

with α = k
n+1 .



Covariant differentiation of weighted tensor bundles

Fact (e.g. brute force calculations). Suppose (projectively equivalent)
connections ∇ = (Γijk) and ∇̄ = (Γijk) are related by the formula

∇̄XV −∇XV = φ(X )V + φ(V )X (∗∗).

Then, the covariant derivatives of a volume form Ω ∈ Γ (ΛnM) in the
connections ∇ and ∇̄ are related by

∇̄XΩ = ∇XΩ− (n + 1)φ(X )Ω.

In particular, the covariant derivatives of the section

ω :=

(

Ω
k

n+1

)

∈ Γ((Λn)
k

n+1 M) are related by

∇̄Xω = ∇Xω − kφ(X )ω. (2)



First example of projectively invariant differential operation

∇̄Xω = ∇Xω − kφ(X )ω. (2)

Let K ∈ Γ
(
T (0,1)M(−2)

)
be an 1-form of projective weight (−2).

We calculate the difference their ∇- and ∇̄- derivatives assuming

∇̄XV −∇XV = φ(X )V + φ(V )X (∗∗) :

∇̄XK = ∇XK −φ(X )K − K (X )φ
︸ ︷︷ ︸

because of (∗∗)

+ 2φ(X )K
︸ ︷︷ ︸

because of (2)

= ∇XK+φ(X )K−K (X )φ. (3)

Theorem. For (0, 1)-tensors of projective weight (-2) the operation

K 7→ Symmetrization Of(∇K ) (K1)

is projectively invariant: it does not depend on the choice of the affine
connection in the projective class.

Proof. Observe in (3) that the difference between (∇̄XK )(Y ) and
(∇XK )(Y ) is scewsymmetric in X ,Y and vanishes after symmetrization.

Remark. In the index notation, the mapping (K1) reads

Ki 7→ Ki,j + Kj,i . The equation (K1) = 0 is called projective Killing

equation for weighted 1-forms.



Theorem. For (0, 1)-tensors of projective weight (-2) the operation

K 7→ Symmetrization Of(∇K)

is projectively invariant: it does not depend on the choice of the affine connection in the projective class.

Corollary 1. For (0, 2)-tensors of projective weight (−4) the operation

K 7→ Symmetrization Of(∇K )

is projectively invariant: it does not depend on the choice of the affine
connection in the projective class.

Proof. Decompose (0, 2) tensors of weight −4 into the sum of
symmetric tensor product of (0, 1) tensors of weight −2 and apply
Corollary 1.

Notation. The equation in Corollary 1 is called projective Killing
equation; it will play important role at the end of the lecture.



One more important projectively invariant operation

Theorem. For (1, 0)-tensors of projective weight 1 the operation

σ 7→ Trace Free Part Of∇(σ) = σi
,j − 1

n
σs

,sδ
i
j .

is projectively invariant: it does not depend on the choice of the affine
connection in the projective class.

Proof. By calculations which are essentially the same as in Corollary 1.

Corollary 3. For symmetric (2, 0)-tensors of projective weight 2 the
operation

σij 7→ σij
,k − 1

n+1 (σ
is
,sδ

j
k + σjs

,sδ
i
k) (4)

is projectively invariant: it does not depend on the choice of the affine
connection in the projective class.

Proof. Decompose (2, 0) tensors of weight 2 into the sum of symmetric
tensor products of (0, 1) tensors of weight −2 and apply Corollary 2

Remark. In the index-free notation the operation (4) reads

σ 7→ Trace Free Part Of (∇σ) ,
though ∇σ is a (2,1)-(weighted)-tensor and trace is a (weighted) vector.



Geometric importance of the operator
σ 7→ Trace Free Part Of (∇σ) .

(Metrization) Theorem 3 (Eastwood-M∼ 2006). Suppose the
Levi-Civita connection of a metric g lies in a projective class [∇]. Then,
σij := g ij ⊗ (Volg )

2
n+1 is a solution of

Trace Free Part Of (∇σ) = 0. (5)

Moreover, for every solution of the equation (5) such that det(σ) 6= 0
there exists a metric whose Levi-Civita connection lies in the projective
class.

Proof in the direction ⇒. We assume that ∇g ∈ [∇]. Since our
equation is projectively invariant, we may assume that we work in the
connection ∇g . In this connection the metric and therefore all objects
constructed by the metric are parallel so ∇g (σ) = 0 which of course
implies (5)



(Metrization) Theorem 3. Suppose the Levi-Civita connection of a metric g lies in a projective class

[∇]. Then, σij := g ij ⊗
(
Volg

) 2
n+1 is a solution of

Trace Free Part Of (∇σ) = 0. (5)

Moreover, for every solution of the equation (5) such that det(σ) 6= 0 there exists a metric whose
Levi-Civita connection lies in the projective class.

Proof in the direction ⇐ is your homework: Observe that though
equation

σij 7→ σij
,k − 1

n+1

(

σis
,sδ

j
k + σjs

,sδ
i
k

)

does not depend on the choice of a connection in the projective class, the
part of it marked by blue color does depend. Find out how it depends and
prove that there exists a connection in the projective class such that the
blue part is zero, show then that this connections preserves a metric such
that σ is obtained by the metric by the formula in Theorem 3.



Relation between (nondegenerate) solutions σ of
metrization equations and metrics in coordinates

Let us work in a coordinate system and choose dx1 ∧ ...∧ dxn. as a
volume form.

◮ If we have a metric gij , then the corresponding solution of the
metrization equation is given by

σij :=

(

g ij ⊗ (Volg )
2

n+1

)

= g ij | det g |
1

n+1 .

◮ For a solution σ = σij of the metrisation equation such that its
determinant in not zero, the corresponding metric is given by

g ij := | det(σ)|σij .



Metrization equations in dimension 2 in coordinates:

Theorem 3 (Metrization equations in all dimensions:) Trace Free Part Of (∇σ) = 0. (5)

As we remember from Lecture 1, in dimension 2 the four functions
K0,K1,K2,K3 (which are the coefficients of the equation) (essentially R.
Liouville 1889)

y
′′

= −Γ
2
11

︸ ︷︷ ︸

K0

+ (Γ
1
11 − 2Γ

2
12)

︸ ︷︷ ︸

K1

y
′
+ (2Γ

1
12 − Γ

2
22)

︸ ︷︷ ︸

K2

y
′2

+ Γ
1
22

︸︷︷︸

K3

y
′3
.

encode the projective class of the connection Γijk .

In this setting, the metrization equations in the following system of 4
PDE on three unknown functions:







σ22
x − 2

3 K1 σ
22 − 2K0 σ

12 = 0
σ22

y − 2σ12
x − 4

3 K2 σ
22 − 2

3 K1 σ
12 + 2K0 σ

11 = 0
−2σ12

y + σ11
x − 2K3 σ

22 + 2
3 K2 σ

12 + 4
3 K1 σ

11 = 0
σ11

y + 2K3 σ
12 + 2

3 K2 σ
11 = 0

Corollary. Generic projective structure is not metrizable.
Explanation (formal proof in Bryant et al 2009). The system is
overdertermined: 4 equations on three unknown functions, and generic
overdetermined systems have no solution.



Metric Projective Geometry: philosophy and goals

One can of course study projective structures without thinking about
whether there is a (Levi-Civita connection of a) metric in the projective
class.

◮ Luck of “easy to formulate, hard to prove” results.

◮ Virtually no applications in physics

Let us study metrizable projective structures, i.e., such
that there exists a metric in the projective class.

Generic metrizable projective structure has only one, up to a scaling,
metric in the projective class. In this case, all geometric questions can be
reformulated as questions on this metric.

We will study metrisable projective structures such
that there exists at least two nonproportional metrics in
the projective class.

◮ Many “easy to formulate, hard to prove” results. Many named
problems. Applications in physics

◮ Many questions and methods can be generalized for Finsler
manifolds



Next goal: easy to formulate result for today

Theorem (M∼-Topalov 1998). Let (M2, g) be a two-dimensional
closed (compact, no boundary) Riemannian manifold. Assume a metric ḡ
is projectively related to g and is nonproportional to g . Then, M2 has
nonnegative Euler characteristic.

I will give an easy proof of this theorem using what we learned today.



I use: projective Killing equation is projectively invariant.

Corollary 2. For (0, 2)-tensors of projective weight −4 the operation

K 7→ Symmetrization Of(∇K)

is projective invariant.

Example. The (Levi-Civita connection of the) metric g does have
one nontrivial solution of this equation, namely

K = g ⊗ (Volg )
−4
n+1 .

But the projective Killing equation does not depend on the choice
of connection in the projective class.

Thus, any metric in the projective class allows us
to construct a solution of the projective Killing
equation. Say, if we have another metric ḡ in the
same projective class, then

K̄ = ḡ ⊗ (Volḡ )
−4
n+1 .

is (still) a solution.



Geometric sense of Killing equations: conservative
quantities.

Theorem 4. Suppose K is a solutions of the projective Killing equation.
Then, for any metric g in the projective class the tensor field

K̂ := K ⊗ (Volg )
4

n+1 .

is a Killing tensor, this means that for any parameterized g -geodesic γ
the function

t 7→ I (γ(t), γ̇(t)) = K (γ̇(t), γ̇(t))

is constant.
Proof. We need to show that

∇γ̇ (K (γ̇, γ̇)) = 0. (⋆)

Because of the definition of geodesic, ∇γ̇ γ̇ = 0, and (⋆) reduces to

∇K (γ̇, γ̇, γ̇) = 0,

which follows from Symmetrization Of(∇K ) = 0.



Trivial conservative quantity: energy

Example above. The following section of T (0,2)M(−4)

K = ḡ ⊗ (Volḡ )
−4
n+1

is a solution of the projective Killing equation for g .

Theorem 4. K̂ := K ⊗ (Volg )
4

n+1 . is a Killing tensor.

If we take the K from the first frame, and use it to constract K̂ from the
second frame, then we obtain K̂ = g , which is of course a Killing tensor;
the corresponding conservative quantity is the kinetic energy.



Nontrivial conservative quantity, if we have two
nonproportional metric in the projective class

Example above. For a metric ḡ in the projective class the following section of T (0,2)M(−4)

K̄ = ḡ ⊗ (Volḡ )
−4
n+1

is a solution of the projective Killing equation.

Theorem 4. K̂ := K ⊗ (Volg )
4

n+1 . is a Killing tensor.

If we take the K̄ from the first frame, and use it to constract K̂ from the

second frame, then we obtain K̂ =
∣
∣
∣
det g
det ḡ

∣
∣
∣

2
n+1

ḡ , which is now

nonproportional to the trivial (=always existing) Killing tensor gij . The
corresponding is given by

I (x , ξ) =
∣
∣
∣
det g
det ḡ

∣
∣
∣

2
n+1

ḡ(ξ, ξ)

Historical remark. There are of course direct proofs that I is a
conservative quantity, the most classical is possibly due to Painleve 18... I
will possibly show you other proofs in lecture VI, when I speak about
Finlser metrics.



Proof of announced theorem

Theorem (M∼-Topalov 1998). Let (M2, g) be a two-dimensional closed (compact, no boundary) Rie-

mannian manifold. Assume a metric ḡ is projectively related to g and is nonproportional to g . Then, M2

has nonnegative Euler characteristic.

In dimension 2, the conservative quantity constructed

I0(ξ) :=

∣
∣
∣
∣

det(g)

det(ḡ)

∣
∣
∣
∣

2
3

ḡ(ξ, ξ).

Assume the surface is neither torus nor the sphere. The goal is to show
that g and ḡ are proportional.

Because of topology, there exists x0 such that g|x0 = const ·ḡ|x0 . W.l.o.g.

we assume const = 1. We assume g|x1 6= ḡ|x1 and find a contradiction.



Homework

Use Killing tensors to show that the space of solutions of the
metrization equation is finite-dimensional (for n = 2 first if it
makes your life easier and then for any dimension since there are
no two-dimensional phenomenas in the proof)



Lecture 3

Plan

◮ Local normal forms of projectively related Riemannian metrics

◮ Problems of Lie and their solution

◮ How we solved the problems of Lie



Our first goal is to prove the Dini’s Theorem 1869

Local normal form question (Beltrami 1865): Given two projectively
related metric, how do they look in “the best” coordinate system (near a
generic point)? How unique is such best coordinate system?

Theorem (Dini 1869). Let g and ḡ are projectively related 2 dim
Riemannian metrics. Then, in a neighborhood of almost every point there
exists a coordinate system such that in this coordinate system the metrics
are

g =

(
X (x)− Y (y)

X (x)− Y (y)

)

ḡ =

(
X (x)−Y (y)
X (x)Y (y)2

X (x)−Y (y)
X (x)2Y (y)

)

The coordinates are unique modulo (x , y) 7→ (±x + b,±y + d).

Remark. The answer in higher dimensions is also known (Levi-Civita)
In other signatures the answer to the Beltrami questions is also known
(Darboux/Lie for dim 2, Bolsinov-Matveev 2013 for all dimensions).

Rem. In the 2 dim case of splitted signature, there are two more cases:
when g−1ḡ has complex eiganvalues, and when g−1ḡ has Jordan block.



Proof: coordinates such that g and ḡ are diagonal

Such coordinates exist near every generic points:

Indeed, at the points where g is not proportional to ḡ the (1,1)-tensor
g−1ḡ = g is ḡjs has two different eigenvalues. We consider the coordinate
system (x , y) such that ∂

∂x
and ∂

∂y
are eigenvectors.

Since the eigenvectors are orthogonal w.r.t. g and w.r.t. ḡ , in this
coordinates the metrics are diagonal.



Plugging diagonal σ, σ̄ in the metrization theorem

Thus, we may assume that in the coordinate system (x , y) the metrics
are diagonal and theirfore the corresponding solutions of the metrization

equation σ =

(

g ij ⊗ (Volg )
2

n+1

)

= g ij(det g)
1

n+1 ,

σ̄ =

(

ḡ ij ⊗ (Volḡ )
2

n+1

)

= ḡ ij(det ḡ)
1

n+1 are diagonal.

Consider the (1,1)-tensor field A = σ̄(σ)−1 = σ̄isσjs , it is also diagonal:

σ =

(
σ11

σ22

)

, A =

(
A1

A2

)

, σ̄ =

(
A1σ

11

A2σ
22

)

.

Let us now plug these σ and σ̄ in the metrization theorem whose
two-dimensional version is in Lecture 2:

σ22
x − 2

3
K1 σ22 − 2K0 σ12 = 0

σ22
y − 2σ12

x − 4
3
K2 σ22 − 2

3
K1 σ12 + 2K0 σ11 = 0

−2σ12
y + σ11

x − 2K3 σ22 + 2
3
K2 σ12 + 4

3
K1 σ11 = 0

σ11
y + 2K3 σ12 + 2

3
K2 σ11 = 0



8 equations on 6 unknown is too much – elementary tricks
solve the system

σ22
x − 2

3
K1 σ22 = 0

σ22
y − 4

3
K2 σ22 + 2K0 σ11 = 0

σ11
x − 2K3 σ22 + 4

3
K1 σ11 = 0

σ11
y + 2

3
K2 σ11 = 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

A2σ
22

x + (A2)xσ
22 − 2

3
K1 A2σ

22 = 0

A2σ
22

y + (A2)yσ
22 − 4

3
K2 A2σ

22 + 2K0 A1σ
11 = 0

A1σ
11

x + (A1)xσ
11 − 2K3 A2σ

22 + 4
3
K1 A1σ

11 = 0

A1σ
11

y + (A1)yσ
22 + 2

3
K2 A1σ

11 = 0

Message: systems of PDE with more equations are as a rule easier
to solve than that with less equations

How we proceed: Solve the first 4 questions with respect to K0, ...,K3

and substitute the result in the last 4 equations. One obtains the
equations







(A1)y = 0
(A2)x = 0

((A1 − A2)σ
11(σ22)2)x = 0

((A1 − A2)σ
22(σ11)2)y = 0.







implying








A1 = X (x)
A2 = Y (y)

(X (x) − Y (y))σ11(σ22)2 = 1
Y1(y)

(X (x) − Y (y))σ22(σ11)2 = 1
X1(x)

.

















A1 = X (x)
A2 = Y (y)

(X (x) − Y (y))σ11(σ22)2 = 1
Y1(y)

(X (x) − Y (y))σ22(σ11)2 = 1
X1(x)

.








Observe now, because of the relation g ij = | det(σ)|σ and because of the
matrices σ, σ̄ are diagonal, we have σ11(σ22)2 = g22 and
σ22(σ11)2 = g11. Thus, we obtain that

g = (X − Y )(X1dx
2 + Y1dy

2) and A = diag(X ,Y ).

By a coordinate change x = x(xnew ), y = y(ynew ), one can “hide” X1

and Y1 in dx2 and dy2 and obtain the formulas of Dini



Projective transformations

Def. Projective transformation of a projective structure [Γ] is a (local)
diffeomorphism that preserves [Γ].

Geometric (equivalent) definition. Projective transformations are
diffeomorphisms that send geodesics to geodesics.

Example. Affine transformations from 1st year linear algebra course
(i.e., x 7→ Ax + b with nondegenerate matrix A) are projective
transformations of the flat (i.e., when Γijk ≡ 0) projective structure.

Example. Projective transformations from linear algebra are projective
transformations of the flat projective structure.

Def. A vector field is projective w.r.t. [Γ], if its (local) flow acts by
projective transformations.

Example. A Killing vector field of a metric is projective w.r.t. the
projective structure of the metric.



Beltrami example: projective algebra of the round sphere
is sl(n + 1).

We consider the standard Sn ⊂ Rn+1 with the induced metric.

Fact. Geodesics of the sphere are the
great circles, that are the intersec-
tions of the 2-planes containing the
center of the sphere with the sphere.

Beltrami (1865) observed:

For every A ∈ SL(n + 1)
we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

◮ a is an isometry iff A ∈ O(n + 1).

Thus, Sl(n + 1) acts by projective transformations on Sn. Its stabilizator
is discrete and therefore the algebra of projective vector fields is
sl(n + 1); in dimension n = 2 it has dimension (n + 1)2 − 1 = 8.



Example of Lagrange 1789
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0

f(X)
X

Radial projection f : S2 → R
2

takes geodesics of the sphere to
geodesics of the plane, because
geodesics on sphere/plane are in-
tersection of plains containing 0
with the sphere/plane.

Thus, the projective structure of the plane is the same as that of the
sphere and also has 8-dimensional projective algebra.
Everything survives to all dimensions and all signatures and for negative
curvature



“Nice” result of todays lecture: Problems of Lie

Lie 1882:
Problem I: Es wird verlangt, die Form des Bogenelementes einer
jeden Fläche zu bestimmen, deren geodätische Kurven eine infini-
tesimale Transformation gestatten.

English translation:

Describe all 2 dim metrics admitting

◮ Problem I: one projective vector field

◮ Problem II: many projective vector fields

Lie 1882:
Problem II: Man soll die Form des Bogenelementes einer jeden
Fläche bestimmen, deren geodätische Kurven mehrere infinitesi-
male Transformationen gestatten.

Both problems are local, in a neighborhood of a generic point



Solution of the 2nd Lie Problem

Theorem (Bryant, Manno, M∼ 2007) If a two-dimensional metric g
of nonconstant curvature has at least 2 projective vector fields such that
they are linear independent at the point p, then there exist coordinates
x , y in a neighborhood of p such that the metrics are as follows.

1. ε1e
(b+2) xdx2 + ε2be

b xdy2, where
b ∈ R \ {−2, 0, 1} and εi ∈ {−1, 1}

2. a
(

ε1
e(b+2) xdx2

(eb x+ε2)2
+ eb xdy2

eb x+ε2

)

, where a ∈ R \ {0},
b ∈ R \ {−2, 0, 1} and εi ∈ {−1, 1}

3. a
(

e2 xdx2

x2 + ε dy2

x

)

, where a ∈ R \ {0}, and ε ∈ {−1, 1}

4. ε1e
3xdx2 + ε2e

xdy2, where εi ∈ {−1, 1},

5. a
(

e3xdx2

(ex+ε2)2
+ ε1e

xdy2

(ex+ε2)

)

, where a ∈ R \ {0}, εi ∈ {−1, 1},

6. a
(

dx2

(cx+2x2+ε2)2x
+ ε1

xdy2

cx+2x2+ε2

)

, where a > 0, εi ∈ {−1, 1}, c ∈ R.



Theorem (M∼ 2008): Let v be a projective vector field on (M2, ḡ).
Assume the restriction of ḡ to no neighborhood has an infinitesimal
homothety. Then, there exists a coordinate system in a neighborhood of
almost every point such that certain metric g geodesically equivalent to
ḡ is given by

1. ds2g = (X (x)− Y (y))(X1(x)dx
2 + Y1(y)dy

2), v = ∂
∂x

+ ∂
∂y

, where

1.1 X (x) = 1
x
, Y (y) = 1

y
, X1(x) = C1 · e

−3x

x
, Y1(y) =

e−3y

y
.

1.2 X (x) = tan(x), Y (y) = tan(y), X1(x) = C1 · e
−3λx

cos(x) ,

Y1(y) =
e−3λy

cos(y) .

1.3 X (x) = C1 · eνx , Y (y) = eνy , X1(x) = e2x , Y1(y) = ±e2y .
2. ds2g = (Y (y) + x)dxdy , v = v1(x , y)

∂
∂x

+ v2(y)
∂
∂y

, where

2.1 Y = e
3
2y ·

√
y

y−3 +
∫ y

y0
e

3
2ξ ·

√
ξ

(ξ−3)2 dξ,

v1 =
y−3
2

(

x +
∫ y

y0
e

3
2ξ ·

√
ξ

(ξ−3)2 dξ
)

, v2 = y2.

2.2 Y = e−
3
2λ arctan(y) ·

4
√

y2+1

y−3λ +
∫ y

y0
e−

3
2λ arctan(ξ) ·

4
√

ξ2+1

(ξ−3λ)2 dξ,

v1 =
y−3λ

2

(

x +
∫ y

y0
e−

3
2λ arctan(ξ) ·

4
√

ξ2+1

(ξ−3λ)2 dξ

)

, v2 = y2 + 1.

2.3 Y (y) = yν , v1(x , y) = νx , v2 = y .



Why the problems of Lie were not solved before? What
know-how allowed us to solve it?

◮ Many people tried (including Lie and his students)

◮ One immediately reformulates the problem as a (quasilinear)
2ND ORDER system of PDE on the components of metric
and of the vector field; the system is to hard to solve by hands.

◮ Our new viewpoint on the problem which allowed
to solve it was to use projectively-invariant
objects.

◮ This allowed to reduced the PDE-reformulation to MORE
equations of the 1ST order which can be solved by hands.



How we solve the problems of Lie: first observation:

We had two projectively invariant equations: Killing equations and
metrization equations: let us compare them in dimension 2:

Metrization equation in dimension 2:

σ22
x − 2

3
K1 σ22 − 2K0 σ12 = 0

σ22
y − 2σ12

x − 4
3
K2 σ22 − 2

3
K1 σ12 + 2K0 σ11 = 0

−2σ12
y + σ11

x − 2K3 σ22 + 2
3
K2 σ12 + 4

3
K1 σ11 = 0

σ11
y + 2K3 σ12 + 2

3
K2 σ11 = 0

Killing equation in dimension 2:

a11x − 2
3
K1 a11 + 2K0 a12 = 0

a11y + 2 a12x − 4
3
K2 a11 + 2

3
K1 a12 + 2K0 a22 = 0

2 a12y + a22x − 2K3 a11 − 2
3
K2 a12 + 4

3
K1 a22 = 0

a22y − 2K3 a12 + 2
3
K2 a22 = 0

We see that the equations coincide after renaming the variables:

(
a11 a12
a12 a22

)

= Comatrix

((
σ11 σ12

σ12 σ22

))

=

(
σ22 −σ12

−σ12 σ11

)

. (∗)

Remark. The operation of taking the comatrix is a “geometric”
operation: it does not depend on the coordinate system, it is invertible,
and in dimension 2 it gives a linear bijection between (2, 0)-tensors of
projective weight 2 and (0, 2)-sections of projective weight −4.



We just have proved the following theorem:

Theorem. In dimension 2, solutions of metrization equations are in
one-to-one correspondence to the solutions of projective Killing equations
(Killing tensors are assumed symmetric), the correspondence is given in
coordinates by

(
a11 a12
a12 a22

)

= Comatrix

((
σ11 σ12

σ12 σ22

))

. (∗)

Corollary. Suppose there exists a solution σij of the metrisation
equation such that aij is degenerate but nonzero (in every point). Then,
there exists a (projective) Killing 1-form, and in the case we have a
metric in the projective class, a Killing vector field.

Proof. In dimension 2, comatrix of a nonzero degenerate matrix is a
nozero degenerate matrix. It has therefore rank 1 and degenerate nonzero
projective Killing tensor has the form a = ±K ⊗ K for some 1-form K .
This 1-form is Killing: one can see it from equations but let us see it
geometrically in metric situation which is sufficient for our goals.

The corresponding conservative quantity is K (ξ) =
√

±a(ξ, ξ). Since the
function a(ξ, ξ) is preserved along geodesics, the function K (ξ) is also
preserved along geodesics, so that K is a Killing one form (and after
raising the index we obtain a Killing vector field).



We may assume that our metrics do not have Killing
vector fields

Corollary. Suppose there exists a solution σij of the metrisation equation such that aij is degenerate
but nonzero (in every point). Then, there exists a (projective) Killing 1-form, and in the case we have a
metric in the projective class, a Killing vector field.

Killing vector field is automatically projective, so without
loss of generality in the solution of the first Lie problem we
assume nonexistence of a Killing vector field and therefore
we assume that all nonzero solutions of the metrization
equation we meet are nondegenerate.



Lie derivative w.r.t. projective vector field sends solutions
of the metrization equations to solutions

Claim. Let v be projective for [Γ] and suppose σ is a solution of the
metrization equation. Then, Lvσ is also a solution of the metrization
equation.

Proof in the 2 dim case. Everything is coordinate-invariant, so w.l.o.g.
we can work in coordinates (x , y) such that v = ∂

∂x
. In this coordinates,

the coefficients K0, ...,K3 do not depend on x , so the coefficients of the
metrization equation

σ22
x − 2

3
K1 σ22 − 2K0 σ12 = 0

σ22
y − 2σ12

x − 4
3
K2 σ22 − 2

3
K1 σ12 + 2K0 σ11 = 0

−2σ12
y + σ11

x − 2K3 σ22 + 2
3
K2 σ12 + 4

3
K1 σ11 = 0

σ11
y + 2K3 σ12 + 2

3
K2 σ11 = 0

do not depend on x as well. Then, for any solution σij the
∂
∂x
-Lie derivative (will be explained on trivial language on

the next slide), which is simply ∂
∂x

is also a solution

Remark. The proof actually works in other dimensions as well – we
simply need to observe that in coordinates (x1, ..., xn) such that v = ∂

∂x1

the coefficients of the metrization equation does not depend on x1.





The action of the Lie derivative of a projective vector field
on the space of solutions of the metrization equation

Notation. We denote the space of solutions of metrization equation by
Sol([Γ]).
Fact (Liouville 1889 in dim 2, Sinjukov 1959 in dim n), will be
possibly explained later and was your homework:

dim (Sol([Γ])) ≤ (n+1)(n+2)
2 <∞.

Consider the linear mapping Lv : Sol([Γ])→ Sol([Γ]). Well-defined
because by Claim above Lie derivative of a solution is a solution.

Fact from linear algebra. If dim (Sol([Γ])) ≥ 2, there exists a
two-dimensional invariant subspace of Lv , we will work with this subspace
and forget the rest.

By linear algebra, there exists a basis σ, σ̄ ∈ Sol([Γ]) such that in this
basis the matrix of Lv is given by the following (real) Jordan normal form.

(
λ1

λ2

)

,

(
λ 1

λ

)

,

(
α β
−β α

)

.

As we explained above, w.l.o.g. we may assume that σ and σ̄ are
nondegenerate; then they correspond to some metrics.



Assume that the matrix of Lv is

(
λ1

λ2

)

, and assume in addition that

σ, σ̄ ∈ (Sol([Γ])) corresponds to Riemannian metrics. Then, by the Dini
Theorem the metrics g and ḡ corresponding to σ and σ̄ are given by

g =

(
X (x)− Y (y)

X (x)− Y (y)

)

ḡ =

(
X (x)−Y (y)
X (x)Y (y)2

X (x)−Y (y)
X (x)2Y (y)

)

Observe that the projective vector field v preserves the pencil of the
solutions ασ + βσ̄, and therefore any object constructed by these
solutions, in particular the lines of the coordinates (x , y). Then, the
vector field v = (v1(x), v2(y)). Now, from Lvσ = λσ it follows that v
preserves the conformal structure of the metric g , so it is a holomorphic
vector field. Then, it is constant or linear, i.e., up to a coordinate change
and factor it is either

v = (x , y) or v = (const1, const2).

In both cases the flow is given by precise formulas, which after some work
give formulas for X (x) and Y (y) from case 1.1. of Theorem.



Few words about the solution of the second problem of Lie

Recall: Difference between the first and the second problem: in the 1st
problem we look for metrics with one projective vector field, and in the
2nd problem with many.

◮ One should of course check whether the metrics we obtained do not
have another projective vector field.

◮ This is an algorithmically doable problem assuming we can
differentiate and arithmetic operations.

◮ The algorithm is essentially due to Lie and is build in Maple
and since the metrics in Theorem are explicit Maple can work
with them and gives an answer.

◮ Then, the only additional problem to solve is to omit the
assumption that their exists no Killing vector field. But if there
exists a Killing vector field, one can use again projective invariance
of the Killing equation (I do not go into details at this point)

Historical Remark. In this lecture I first solved the 1st problem, and then
used it in the 2nd problems of Lie, historically first the 2nd problem was solved
(Bryant, Manno, M∼ 2006) and then the 1st (M∼ 2008); but the solution of
the 2nd without having the 1st is computationally quite hard.



What Lie did not know? Why he did not solved his
problems himself?

Ingredients of the proof.

◮ Local normal forms of projectively equivalent metrics? Lie knew it

◮ Linear algebra? Lie understood it much better than we. In that
time some people said Lienear algebra because of him

◮ Quite big calculations (9 cases etc)? Read any paper of Lie and
see how good he was in calculations before asking such
questions again.

• He did not know the projective invariance of the
metrization equation!!!
• Message of this lecture: projective invariance is
important!!!
• In the next lecture we will construct another type of
projectively invariant objects and prove a classical
conjecture with their help



Lecture 4

Plan

◮ Tensor invariants of the projective structure: Weyl and Liouville
tensors

◮ Proof of Lichnerowicz conjecture



What are tensor invariants?

Tensor invariants of a projective structure are tensor fields canonically
constructed by an affine connection in the projective structure such that
they do not depend on the choice of affine connection within this
projective structure.

Γ̄
i
jk = Γ

i
jk + φkδ

i
j + φjδ

i
k . (∗)

Example. Curvature and Ricci tensors are NOT tensor invariants.
Indeed, if we replace a connection Γ by the connection Γ̄, then the direct
calculations using the straightforward formula

Rm
ikp = ∂kΓ

m
ip − ∂pΓ

m
ik + Γa ipΓ

m
ak − Γa ikΓ

m
ap

give us the following relation between the curvature tensors of Γ and Γ̄:

R̄h
ijk = Rh

ijk + (φj,k − φk,j)δ
h
i + δhk (φi,j − φiφj)− δhj (φi,k − φiφk) .

Contracting this formula with respect to h, k , we obtain the following
relation of the Ricci curvatures of Γ and Γ̄:

R̄ij = Rij + (n − 1) (φi,j − φiφj) + φi,j − φj,i .



Projective Weyl tensor.

It is the following tensor field:

W h
ijk = Rh

ijk− 1
n−1

(
δhkRij − δhjRik

)
+ 1

n+1

(

δhiR[jk] − 1
n−1

(
δhkR[ji ] − δhjR[ki ]

))

.

Theorem (Weyl, Schouten). Projective Weyl tensor is a tensor
invariant of a projective structure, i.e. it does not depend on the choice
of connection within the projective structure.

Proof. Substituting the formulas

R̄
h
ijk = R

h
ijk +

(
φj,k − φk,j

)
δ
h
i + δ

h
k

(
φi,j − φiφj

)
− δ

h
j

(
φi,k − φiφk

)
.

R̄ij = Rij + (n − 1)
(
φi,j − φiφj

)
+ φi,j − φj,i .

in the definition of the projective Weyl tensor changing the covariant
derivative in Γ by the covariant derivative in Γ̄, we see after an hour of
calculations that all φ’s disappear.



Liouville invariant

In dimension 2, Weyl tensor is necessary identically zero, since each (1, 3)
tensor with its symmetries is zero. Fortunately and exceptionally, there is
one more tensor invariant in dimension 2:

Theorem (Liouville 1889). The tensor field Li jk := Ri j,k − Rik,j is a
tensor invariant in dimension 2.

Proof. Substituting

R̄ij = Rij + (n − 1)
(
φi,j − φiφj

)
+ φi,j − φj,i .

in the definition of L and changing the covariant derivative in Γ by the
covariant derivative in Γ̄ we again see that all terms containing φ
disappear (assuming n = 2).

Remark. There is a similar story in conformal geometry: conformal
Weyl tensor vansihes for n ≤ 3 but in dimension 3 there exists an
additional conformal invariant and in dimension 2 conformal geometry is
not interesting all. There is a deep explanation of this similarity and there
are many results in n + 1 dimensional conformal geometry that are
visually similar to results in n-dimensional projective geometry; we will
not discuss in in this lecture course but just remember that many ideas
from my course can be effectively used in the conformal geometry as well.



How many essential components does Li jk have and when
it vanishes?

Theorem (Liouville 1889). The tensor field Li jk := Ri j,k − Rik,j is a tensor invariant in dim 2.

The tensor Li jk is skew-symmetric in j , k , assuming n = dimM = 2 it
implies that it has two essential components and can be written in the
form L = (L1dx

1 + L2dx
2)⊗ (dx1 ∧ dx2).

Theorem. Let ∇g = (Γijk) be the Levi-Civita connection of g on 2-dim
M. Then, Lijk ≡ 0 if and only if g has constant curvature.

Proof. It is well-known (and follow from the symmetries of the curvature
tensor) that the 2-dim manifold are automatic Einstein in the sense that

Rij =
1
2Rgij .

Calculating Lijk gives

Li jk = Ri j,k − Ri j,k = 1
2 (R,kgi j − R,jgik) .

Since g is nondegenerate, vanishing of L implies vanishing of dR and
hence the constancy of the curvature.

Remark. We also see (or can easily check) that Lijk = dR ⊗ (dx ∧ dy).



W ≡ 0 implies constant curvature

Theorem. Let Γ be the Levi-Civita connection of g on M with n > 2.
Then, W h

ijk ≡ 0 if and only if g has constant sectional curvature.

Proof. For Levi-Civita connections the Ricci tensor is symmetric so the
formula for W reads

W h
ijk = Rh

ijk − 1
n−1

(
δhkRij − δhjRik

)
.

If W ≡ 0, we obtain

Rh
ijk = 1

n−1

(
δhkRij − δhjRik

)
.

After lowing the index we have therefore

Rhijk = 1
n−1 (ghkRij − ghjRik) .

We see that the left-hand-side is symmetric with respect to
(h, i , j , k)←→ (j , k , h, i), so should be the right-hand-side, which implies
that Rij is proportional to gij , Rij =

R
n
gij so we have

Rhijk = R
n(n−1) (ghkgij − ghjgik)

which is equivalent to “sectional curvature is constant”.



By-product: Beltrami Theorem

Theorem. Let ∇g = (Γijk ) be the Levi-Civita connection of g on 2-dim M. Then, Lijk ≡ 0 if and only

if g has constant curvature.

Theorem. Let Γ be the Levi-Civita connection of g on M with n > 2. Then, W h
ijk ≡ 0 if and only if g

has constant sectional curvature.

Corollary (Beltrami Theorem; Beltrami 1865 for dim 2; Schur 1886
for dim¿2). A metric projectively equivalent to a metric of constant
curvature has constant curvature.



Nice result for today: projective Lichnerowicz conjecture

Theorem. Let (M, g) be a compact Riemannian manifold such that the
sectional curvature is not constant positive. Then, any projective vector
field is a Killing vector field.

Remark. We have seen in Lecture 3 that the algebra of projective vector
fields of the round sphere is sl(n + 1) and is bigger than the algebra of
isometries which is so(n + 1).

Remark. We have also seen that in dimension 2 there are (local) metrics
of nonconstant curvature admitting projective vector fields. One can
construct similar examples in all dimensions. Theorem above says that
these examples can not be extended to a closed manifold.



Was a very popular conjecture

Special cases were proved before by French, Japanese and Soviet
geometry schools.

France
(Lichnerowicz)

Japan
(Yano, Obata, Tanno)

Soviet Union
(Raschewskii)

Couty (1961) proved
the conjecture assu-
ming that g is Einstein
or Kähler

Yamauchi (1974) pro-
ved the conjecture as-
suming that the scalar
curvature is constant

Solodovnikov (1956)
proved the conjecture
assuming that all ob-
jects are real analytic
and that n ≥ 3.



Remark. Stronger statements are also true:

◮ The statement remains true if one replaces “closed” by
“complete”, assumes in addition that the projective vector
field is complete, and also allows flat metrics:

Theorem. On a compete Riemannian manifold such that its
curvature is not nonnegative constant Proj0 = Iso0.

◮ One can show that on closed manifolds |Proj/Iso| ≤ 2n
(Zeghib 2014). Actually, one can even slightly improve the
result:

Theorem (obtained in plane from Munich to Athen). On
closed manifolds such that the curvature is not positive
constant |Proj/Iso| ≤ 2



A difficulty of dimensions n ≥ 3 which I avoid by additional
assumption.
In dimension 2, in the solution of the 1st Lie problem, we assumed
w.l.o.g. that dim(Sol([Γ]) = 2.

The argument was: there exists a 2-dimensional invariant subspace of
Sol([Γ] and if the solutions from this subspace are degenerate there exists
a Killing vector field.

The latter arguments does not work in dimensions ≥ 3, but still we may
assume that dim(Sol([Γ]) ≤ 2 because of the following nontrivial theorem
which will not be proved in this lecture. I will posssibly touch it in the 5th
lecture.

Theorem (M∼ 2003). On a closed Riemannnian manifold such that its
sectional curvature is not constant positive, dim (Sol([Γ])) ≤ 2.



Plan of the proof of the Lichnerowicz conjecture.

Setup.

◮ Our manifold is closed and Riemannian.

◮ The projective structure of the metric admits a projective vector
field.

◮ We assume that dim (Sol([Γ])) ≤ 2.

◮ Our goal is to show that this vector field is a Killing vector field
unless g has constant sectional curvature



The case 2 > dim(Sol([Γ]) = 1

If dim (Sol([Γ])) = 1, every two projective related metrics are
proportional. Then, a projective vector field v is a homothety
vector field. Since our manifold is closed, every homothety is
isometry so our vector field is a Killing vector field as we want.



The case dim(Sol([Γ]) = 2

Important observation already used in the solution of Lie
problems. Lv : Sol([Γ])→ Sol([Γ]), where Lv is the Lie derivative.

After appropriate choice of a basis in Sol([Γ]), we obtained that the v -
Lie derivative σ, σ̄ are given by

[
Lvσ = λσ
Lv σ̄ = µσ̄

] [
Lvσ = λσ +µσ̄
Lv σ̄ = −µσ +λσ̄

] [
Lvσ = λσ +σ̄
Lv σ̄ = λσ̄

]

.

Thus, the evolution of the solutions along the flow Φt of v is

[
Φ∗

t σ = eλtσ
Φ∗

t σ̄ = eµt σ̄

]

[
Φ∗

t σ = eλt cos(µt)σ +eλt sin(µt)σ̄
Φ∗

t σ̄ = −eλt sin(µt)σ +eλt cos(µt)σ̄

]

[
Φ∗

t σ = eλtσ +teλt σ̄
Φ∗

t σ̄ = eλt σ̄

]

.

We will consider all these three cases separately.



The simplest case is when the evolution is given by

[
Φ∗

t σ = eλt cos(µt)σ +eλt sin(µt)σ̄
Φ∗

t σ̄ = −eλt sin(µt)σ +eλt cos(µt)σ̄

]

.

Suppose our metric corresponds to the element aσ + bσ̄.
Its evolution is given by

Φ∗
t (aσ + bσ̄) = a(eλt cos(µt)σ + eλt sin(µt)σ̄)

+b(−eλt sin(µt)σ + eλt cos(µt)σ̄)

= eλt
√
a2 + b2(cos(µt + α)σ + sin(µt + α)σ̄),

where α = arccos(a/(
√
a2 + b2)).

Now, we use that the metric is Riemannian. Then, for any point x there
exists a basis in TxM such that σ and σ̄ are given by diagonal matrices:
σ = diag(s1, s2, ...) and σ̄ = diag(s̄1, s̄2, ...).

Then, Φ∗
t (aσ + bσ̄) at this point is also diagonal with the ith element

eλt
√
a2 + b2(cos(µt + α)si + sin(µt + α)s̄i ).

Clearly, for a certain t we have that Φ∗
t (aσ + bσ̄) is degenerate which

contradicts the assumption,



The proof is is similar when the evolution is given by

[
Φ∗

t σ = eλtσ +teλt σ̄
Φ∗

t σ̄ = eλt σ̄

]

.

We again suppose that our metric corresponds to the element aσ + bσ̄.

Its evolution is given by

Φ∗
t (aσ + bσ̄) = a(eλtσ + eλttσ̄) + b(eλt σ̄)

= eλt(aσ + (b + at)σ̄).

We again see that unless a 6= 0 there exists t such that Φ∗
t (aσ + bσ̄) is

degenerate which contradicts the assumption.

Now, if a = 0, then g corresponds to σ̄ and v is its Killing vector

field,



The most complicated case is when the evolution is given by the matrix

[
Φ∗

t σ = eλtσ
Φ∗

t σ̄ = eµt σ̄

]

. (2)

The case λ = µ is trivial, in this case the projective vector field is
homothety vector field. We assume λ > µ.



We may assume that g corresponds to the solution σ + σ̄.
Consider, for each t ∈ R, the (1, 1)-tensor

At = (σ + σ̄)−1Φ∗
t (σ + σ̄) = (σ + σ̄)−1(eλtσ + eµt σ̄).

Take a point p and consider a basis such that

g = diag(1, ..., 1), σ = diag(s1, ..., sn), σ̄ = diag(s̄1, ..., s̄n)

(Since σ + σ̄ corresponds to g , we have s̄i = 1− si ).

In this basis, we have

At = diag(s1e
λt + s̄1e

µt , ...).

Next, for each t ∈ R, consider the tensor

Gt = g−1Φ∗
t g .

Because of the relation g−1 = σ | det(σ)| (see Lecture 2), we have

Gt = diag
(

1
(s1eλt+s̄1eµt)

∏

i (si e
λt+s̄i eµt)

, ...
)

.



Gt = diag
(

1
(s1eλt+s̄1eµt)

∏

i (si e
λt+s̄i eµt)

, ...
)

.

Let us assume for simplicity that all si , s̄i 6= 0. Since λ > µ,

Gt
t→+∞−→ diag(e−(n+1)λt , ...) and Gt

t→−∞−→ diag(e(n+1)µt , ...). (⋆)

Consider now the function f = (|W |g )2 = W i
jkℓgii ′g

jj′gkk′

g ℓℓ′W i ′

j′k′ℓ′ . It
is a smooth function on the manifold. At points such that W 6= 0 we
have f (p) 6= 0.

Since Φ∗
t (g) = gGt and because of (⋆) we have that Φ∗

t (g) has
asymptotic e−2(n+1)λt for t → +∞ and e−2(n+1)µt for t → −∞.
Now, because W is projectively invariant, Φ∗

tW = W . Thus,
for t →∞,

f (Φt(p)) = Φ∗
t f (p) = |Φ∗

tW |2Φ∗

t g
∼ const e2(n+1)λt

(where const = 0 iff W = 0)

and for t → −∞ we have f (Φt(p)) ∼ const e−2(n+1)µt .



f (Φt(p)) = Φ∗
t f (p) = |Φ∗

tW |2Φ∗

t g
∼ const e2(n+1)λt

(where const = 0 iff W = 0) and for t → −∞ we have

f (Φt(p)) ∼ const e−2(n+1)µt

We see that if W (p) 6= 0 then the smooth function f on a compact
manifold is unbounded, which gives a contradiction.

Remark. We had an additional assumption: all si 6= 0. It is not essential,
one simply should be slightly more careful.

Remark. In the 2 dim case one should replace W by the Liouville
invariant Lijk .



Summary of the proof of the projective Lichnerowicz
conjecture

Theorem (Lichnerowicz conjecture). Let (M, g) be a compact Riemannian manifold such that the
sectional curvature is not constant positive. Then, any projective vector field is a Killing vector field.

◮ We assumed in addition that dim (Sol([Γ])) = 2 and justified this
assumption by certain fact we did not prove.

◮ Then, we used the invariance of the metrization equation and
obtained that the evolution of the solutions along the flow of the
projective vector field is given by one of the three cases:

[
Φ∗

t σ = eλtσ

Φ∗

t σ̄ = eµt σ̄

]

,

[

Φ∗

t σ = eλt cos(µt)σ +eλt sin(µt)σ̄

Φ∗

t σ̄ = −eλt sin(µt)σ +eλt cos(µt)σ̄

]

,

[

Φ∗

t σ = eλtσ +teλt σ̄

Φ∗

t σ̄ = eλt σ̄

]

.

◮ In all three cases some geometrically constructed (and therefore
continuous ) function is unbounded which can not happen on a

closed manifold: in the blue and black cases it det(g)
det(Φ∗

1 g)
. In the red

case the function is f = (|W |g )2 = W i
jkℓgii ′g

jj′gkk′

g ℓℓ′W i ′

j′k′ℓ′ . It is
unbounded unless W ≡ 0. In the proof we have used that W is
projectively invariant, and that W = 0 implies constant curvature.



A bit of philosophy

Felix Klein, 1873, Vergleichende Betrachtungen über
neuere geometrische Forschungen
Problem I: Es ist eine Mannigfaltigkeit und in derselben eine Trans-
formationsgruppe gegeben. Man entwickle die auf die Gruppe be-
zugliche Invariantentheorie.

English Translation. Given a manifoldness and a group of
transformations of the same; to develop the theory of invariants relating
to that group.

In our case we had a manifold, a group of projective transformations, a
projective invariants for them, and used them to prove Lichnerowicz
conjecture.

In the previous lecture we also had projectively invariants objects, and
they were extremely effective.

Wait for new projectively-invariant objects in the 5th lecture!



Lecture 5

Plan

◮ Nice result for today (Weyl-Ehlers problem and
dim(Sol [Γ]) ≤ 2 for compact manifolds)

◮ Petrov’s solution of the simplest (Riemannian) version of the
Weyl-Ehlers problem

◮ Conification and its application:
◮ first metric projectively equivalent objects
◮ proofs of the results announced above.

Sorry, this time one important statement comes as
“black boxe” (=no proof), I will still try to explain
the effects and give the precise references.



Suppose we would like to understand the structure of the
space-time (i.e., a 4-dimensional metric of Lorenz signature) in a
certain part of the universe.

We live here 

Photo of Pulsar by NASA and ESA

We would like 
to know what 
happends here

huge distance 

We assume that this part is far enough so the we can use only
telescopes (in particular we can not send a space ship there).

We still assume that the telescopes can see sufficiently many
objects in this part of universe.

Then, if the relativistic effects are not negligible (that happens for
example is the objects in this part of space time are sufficiently fast
or if this region of the universe is big enough),
we obtain as a rule the world lines of the objects as
unparameterized curves.



In many cases, we do can get unparameterized geodesics
with the help of astronomic observations

One can obtain  unparameterized geodesics by observation:

We take 2 freely falling observers  that  
measure two angular coordinates of   the  visible objects   

Information

 and send this information to one place. This place will have  
4 functions  angle(t) for every visible object 
 which are in the  generic case 4 coordinates  of the object.       

This place has 
4=2+2 coordinates of 
any visiable object 

Telsecope N1

Telsecope N2

Information



In many cases, the only thing one can get by observations
are unparametrised geodesics

If one can not register a periodic process on the observed body, one can
not get the own time of the body

T h i s  s i t u a t i o n  i s  e x t r e m e l y   r a r e   



Problem 1. How to reconstruct a metric by its
unparameterized geodesics?

The mathematical setting: We are given a projective structure given
as in inefficient definition from Lecture 1, as a family γ(t;α) in U ⊆ R

4;
we assume that the family is sufficiently big in the sense that ∀x0 ∈ U

Ωx0 := {ξ ∈ Tx0U | ∃α and ∃t0 with d
dt
γ(t;α)|t=t0 is proportional to ξ}

contains an open subset of Tx0U.
We need to find a metric g such that all γ(t;α) are reparameterized
geodesics.

The problem was explicitly stated by the famous physists

Jürgen Ehlers 1972, who said that “We reject clocks as ba-
sic tools for setting up the space-time geometry and propose
... freely falling particles instead. We wish to show how the
full space-time geometry can be synthesized ... . Not only the
measurement of length but also that of time then appears as a
derived operation.”



Problem 1 can be naturally divided in two subproblems

Subproblem 1.1. Given a family of curves γ(t; a), how to understand
whether these curves are reparameterised geodesics of a certain affine
connection? How to reconstruct this connection effectively?

In Lecture 1, we considered a two-dimensional analog of this problem,
and have seen that 4 geodesics at any points allows us to construct by
linear algebraic manipulations the coefficients of an affine connection in
the projective class.

Now we do the same in any dimension using the same ideas

Subproblem 1.2. Given an affine connection Γ = Γijk , how to
understand whether there exists a metric g in the projective class of Γ?
How to reconstruct this metric effectively?

We know that the existence of the metric is equivalent to the existence
of a nondegenerate solution of the metrization equation; the input of this
lecture is few tricks that help.



Problem 2 (implicitely, Weyl). In what situations
interesting for physics the reconstruction of a metric by the
unparameterised geodesics is unique (up to the
multiplication of the metric by a constant)?

In other words, what metrics ’interesting’ for relativity allow nontrivial
projective equivalence?

We already have seen (Lagrange example) that constant curvature
metrics have many projectively equivalent metrics (all having constant
curvature). Let us construct one more example interesting for physics.



Example. The so-called Friedman-Lemaitre-Robertson-Walker metric

g = −dt2 + R(t)2
dx2 + dy2 + dz2

1 + κ
4 (x

2 + y2 + z2)
; κ = +1; 0;−1,

is not projectively rigid.

Indeed, ∀c the metric

ḡ =
−1

(R(t)2 + c)2
dt2 +

R(t)2

c(R(t)2 + c)

dx2 + dy2 + dz2

1 + κ
4 (x

2 + y2 + z2)

is geodesically equivalent to g (essentially Levi-Civita 1896; repeated by
many relativists (Nurowski, Gibbons et al, Hall) later).

One can of course check that the metrics are projectively equivalent by
direct calculations.



Goals: physically interesting projectively rigid examples

Theorem (Petrov 1961). Let g and ḡ be two projectively equivalent
Ricci-flat 4 dim metrics (of arbitrary siganture). Then, they are flat or
proportional.

I will give a proof of this results in the Riemannian case, this will be easy
and requires no theory. All other results will need some additional results
which I will introduce as black boxes (=without proofs).

Theorem (Kiosak-M∼ 2009). Let g and ḡ be projectively equivalent
4 dim metrics of arbitrary signature. Assume g is Einstein (i.e.,
Ricc = Scal

4 g). Then, Levi-Civita connections of g and ḡ coincide unless
metrics have constant curvature.

There exist counterexamples in higher dimensions. By the next theorem,
counterexamples are local.

Theorem (Kiosak-M∼ 2012 + Mounoud-M∼ 2013). Let g and ḡ
be projectively equivalent metrics of arbitrary signature on a compact
manifold of dimension ≥ 2. Assume g is Einstein. Then, Levi-Civita
connections of g and ḡ coincide unless metrics have constant curvature.



I will also explain the statement we have used in the proof
of the Lichnerowciz conjecture

Theorem (Kiosak - M∼ 2012+ M∼-Mounoud 2013)
(Riemannian case: M∼ 2003). On a closed manifold of arbitrary
curvature such that its sectional curvature is not constant,
dim (Sol([Γ])) ≤ 2.



Algorithm how to reconstruct Γ by sufficiently many
geodesics

Repeat: d2γa

dt2
+ Γabc

dγb

dt
dγc

dt
= f

(
dγ
dt

)
dγa

dt
. (∗)

Take a point x0; our goal it to reconstruct [Γ(x0)
i
jk ]. Take γ(t0;α) such

that γ(t0;α) = x0 and the first component
(

dγ1

dt

)

|t=t0
6= 0. For γ(t0;α),

we rewrite the equation (∗) at t = t0 in the following form:

f
(

dγ
dt

)

=
(
d2γ1

d2t
+ Γ1ab

dγa

dt
dγb

dt

)
/ dγ1

dt

dγ2

dt
Γ1ab

dγa

dt
dγb

dt
− dγ1

dt
Γ2ab

dγa

dt
dγb

dt
= d2γ2

d2t
dγ1

dt
− dγ2

dt
d2γ1

d2t
...

dγn

dt
Γ1ab

dγa

dt
dγb

dt
− dγ1

dt
Γnab

dγa

dt
dγb

dt
= d2γn

d2t
dγ1

dt
− dγn

dt
d2γ1

d2t
.

(3)

The first equation of (3) is equivalent to the equation (∗) for a = 1

solved with respect to f
(

dγ
dt

)

. We obtain the second, third, etc,

equations of (3) by substituting the first equation of (3) in the equations
(∗) with a = 2, 3, etc.



Note that the subsystem of (3) containing the the second, third, etc.
equations of (3) does not contain the function f and is therefore a linear
system on Γijk .

dγ2

dt
Γ1ab

dγa

dt
dγb

dt
− dγ1

dt
Γ2ab

dγa

dt
dγb

dt
= d2γ2

d2t
dγ1

dt
− dγ2

dt
d2γ1

d2t
...

dγn

dt
Γ1ab

dγa

dt
dγb

dt
− dγ1

dt
Γnab

dγa

dt
dγb

dt
= d2γn

d2t
dγ1

dt
− dγn

dt
d2γ1

d2t
.

(3′)

Then, for every ‘geodesic’ γ(t0, α) gives us n− 1 linear (inhomogeneous)
equations on the components Γ(x0)

i
jk . We take a sufficiently big number

N (if n = 4, it is sufficient to take N = 12) and substitute N generic
geodesics γ(t;α) passing through x0 in this subsystem.

At every point x0, we obtain an inhomogeneous linear system of

equations on n2(n+1)
2 unknowns Γ(x0)

i
jk .

In the case the solution of this system does not exist (at least at one

point x0), there exists no connection whose (reparameterized) geodesics

are γ(t;α). In the case it exists, the solution of the system above gives

us the projective class of the connection.



Proof of Petrov’s result for Riemannian metrics

Theorem (Petrov 1961). Let g and ḡ be two projectively equivalent
Riemannian 4 dim Ricci-flat metrics. Then, they are flat or proportional.

Proof. Consider the projective Weyl tensor

W
i
jkℓ := R

i
jkℓ − 1

n−1

(

δ
i
ℓ Rjk − δ

i
k Rjℓ

)

We know (Lecture 4) the the projective Weyl tensor does not depend of
the choice of metric within the projective class.
Now, from the formula for the Weyl tensor, we know that, if the
searched ḡ is Ricci-flat, projective Weyl tensor coincides with the
Riemann tensor R̄ i

jkℓ of ḡ . Thus, if we know the projective class of the
Ricci-flat metric ḡ , we know its Riemann tensor.



Then, the metric ḡ must satisfy the following system of equations due to
the symmetries of the Riemann tensor:

{
ḡiaW

a
jkm + ḡjaW

a
ikm = 0

ḡiaW
a
jkm − ḡkaW

a
mij = 0

(4)

The first portion of the equations is due to the symmetry
(R̄ijkm = −R̄jikm), and the second portion is due to the symmetry
(R̄kmij = R̄ijkm) of the curvature tensor of ḡ .

We see that for every point x0 ∈ U the system (4) is a system of linear
equations on ḡ(x0)ij . The number of equations (around 100) is much
bigger than the number of unknowns (which is 10). It is expected
therefore, that a generic projective Weyl tensor W i

jkl admits no more
than one-dimensional space of solutions (by assumtions, our W admits at
least one-dimensional space of solutions). The expectation is true, as the
following classical result shows

Theorem (Folklore – Petrov, Hall, Rendall, Mcintosh) Let W i
jkℓ

be a tensor in R
4 such that it is skew-symmetric with respect to k , ℓ and

such that its traces W a
akℓ and W a

jaℓ vanish. Then, if W 6= 0, two
positively definite solutions of the equations (4) are proportional.

By this theorem, the metrics g and ḡ are conformally equivalent which

by result of Weyl implies that they are proportional



The trick in proof of Petrov’s result simplifies the
reconstruction of the metric

We have seen that (in dim 4) given [Γ] which is not flat we can construct
W and in the Riemannian case or under additional mild assumptions on
W the conformal class of the metric g .

Then, the all (there are 20 of them) metrization equations are equations
on ONE unknown function and one can be solved by integration of an
explicitly given 1-form (M∼-Trautmann 2014).



Main tool in the proof of all others theorem: conification

Let M be a manifold and g =


 gij



 a Riemannian metric on

it. The cone over this manifold is a manifold R>0 ×M with the

metric dt2 + t2g =







1

t2gij







Geometric picture behind
the word “conification”

O

(M,g)

Think that the manifold Mn (or
arbitrary dimension n) is imbed-
ded in the sphere (of arbitrary
dimension N ≥ n) and carries
the induced metric g . Consider
the union of all rays connecting
the origin of the sphere with the
points of M. Then, this union
is a n + 1-dimensional manifold,
and the restriction of the standard
Euclidean metric to it is the cone
metric.



Metrization equations in the presence of metric

Recall that the solutions σij of the metrization equations are weighted
tensors.
In the case we work with the Levi-Civita connection of a metric, we can
choose Volg as the reference volume form. Then, weighted tensors can be
viewed as tensors. Since the volume form is parallel, the covariant
derivatives is the usual covariant derviative of tensor fields, and
metrization equations can be rewritten as below:

Theorem (Sinjukov 1962). Let g be a metric. The metrics ḡ that are
projectively equivalent to g are in one-to-one correspondence with the
solutions of the following system of PDE on the (0,2)-tensorfield a = aij
and (0,1)-tensorfield λi such that det(a) 6= 0 at all points:

aij,k = λigjk + λjgik . (∗)
The one-to-one correspondence is given by

ḡ −→



a =

(
det(ḡ)

det(g)

) 1
n+1

gḡ−1g , λ = 1
2dtraceg (a)



 .



Black-Box statement

Thm (Kiosak-M∼ 2011/2013). Let g be a metric on an
n ≥ 3-dimensional connected manifold such that dim Sol ≥ 3 or g is
Einstein.
Then, there exists a constant B such that for any solution (a, λ) of the
equations aij,k = λigjk + λjgik there exists a function µ such that in
addition the following two equations are fulfilled:

λi,j = µgij − Baij

µ,i = 2Bλi .

In the case g is Einstein B = Scal
n(n−1)

Remark. Proof is technically nontrivial, but standard: We went until
5th prolongation in the Cartan-Kähler prolongation procedure to prove it.

Remark. The constant B depends on the metric but is the same for all
solutions (a, λ). We assume B 6= 0, in this case one can make it 1 by
scaling the metric.



Projectively equivalent metrics as parallel (0,2)-tensors on
the cone.

What is explained on the previous slide. We assume that n =

dim(M) ≥ 3 and dim Sol ≥ 3 or g is Einstein. Then, metrics ḡ

that are projectively equivalent to g are in one-to-one correspondence

to the solutions (a, λ, µ) of the following system of equations

aij,k = λigjk + λjgik

λi,j = µgij − aij

µ,i = 2λi

Principal Observation. The solutions of these equations are in
one-to-one correspondence with the parallel symmetric (0, 2)-tensors on
the cone (M̂, ĝ) = (R>0 ×M, dt2 + t2g).

The one-to-one correspondence is given by

(a, λ, µ) 7→ A :=








µ −t · λ1 . . . −t · λn

−t · λ1 t2 · a11 . . . t2 · a1n
...

...
...

−t · λn t2 · an1 . . . t2 · ann








.

Proof is an easy exercise – write down the Levi-Civita connection of
the cone metric dt2 + t2g and see that the condition that A is parallel is
equivalent to the above equations on a, λ, µ.
I do not have any geometric explanation of this phenomenon.



Principal Observation. Under our assumptions, metrics projec-
tively equivalent to g are essentailly the same as parallel symmetric
(0,2)-tensors on (M̂, ĝ) = (R>0 ×M, dt2 + t2g).

Corollary. Levi-Civita connection of (M̂, ĝ) does not depend on the
choice of the metric g in the projective class.

This is metrically projecively invariant object! In order to construct
it, we need the metric, but it does not depend on the choice of the
metric in the projective class.
Corollary. The projection to M of the Riemannian curvature and of the
Ricci tensor to the manifold is projectively invariant.

On the manifold M, these projections looks as follows:

Z i
jkℓ := R i

jkℓ +
(
δi ℓgjk − δi kgjℓ

)
= R − K ,

where K is the ”algebraic constant curvature tensor”; and the projection
of Ricc is its trace. For Einstein metrics, this gives nothing new, since in
the Einstein case Z is the projective Weyl tensor, and its trace vanishes.
But in the case dim Sol ≥ 3 is does give new invariants.

These are again metric projective invariants!



Cones over compact manifolds do not have parallel
(0,2)-tensors

Theorem ( Tanno 1978, Obata 1978, M∼- Mounoud 2013).
Non flat cones over closed manifolds do not admit parallel
symmetric (0, 2) tensors nonproportional to the metrics.

This Theorem proves all announced above Theorems.
Proof in the Riemannian case. The existence of nontrivial
parallel tensor implies the existence of the local decomposition
ĝ = ĝ1 + ĝ2.

Since cone merics admit homotheties, the metrics ĝ1 and ĝ2 admit
homotheties. One can show the existence of a stable point which
by blow up argument of Gromov implies that they are flat


