Around Model Theory Around Free Groups And Around That

Eric Jaligot

CNRS - Lyon

June 9, 2008

Eric Jaligot Around Model Theory Around Free Groups

∃ ▶ ∢

Contents

Logic

- First order
- Elementary classes
- Extensions

2 Combinatorics

- Small cancellations
- Order, Independence

3 Stability

- Stable sets
- Amalgames
- Genericity

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: - > definable sets

May allow parameters

・ 同 ト ・ ヨ ト ・ ヨ

First order Elementary classes Extensions

Formulae

• Langage of groups: \cdot , $^{-1}$, 1.

• Group equations with variables x

• Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: - > definable sets

May allow parameters

・ 同 ト ・ ヨ ト ・ ヨ

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: - > definable sets

May allow parameters

・ 同 ト ・ ヨ ト ・ ヨ

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: -> definable sets

May allow parameters

/□ ▶ < 글 ▶ < 글

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences

Free variables: - > definable sets

May allow parameters

/□ ▶ < 글 ▶ < 글

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: - > definable sets

May allow parameters

→ 3 → < 3</p>

First order Elementary classes Extensions

Formulae

- Langage of groups: \cdot , $^{-1}$, 1.
- Group equations with variables x
- Finite sentences: And, Or, Not, \forall , \exists .

No free variables: sentences Free variables: - > definable sets

May allow parameters

4 3 5 4

First order Elementary classes Extensions

Definable sets

Fix a group G $(\cdot, -1, 1)$.

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

/□ ▶ < □ ▶ < □

First order Elementary classes Extensions

Definable sets

Fix a group G (·, ⁻¹, 1).

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

/□ ▶ < □ ▶ < □

First order Elementary classes Extensions

Definable sets

Fix a group G (·, ⁻¹, 1).

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

First order Elementary classes Extensions

Definable sets

Fix a group G (·, ⁻¹, 1).

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

- 4 同 🕨 - 4 目 🕨 - 4 目

First order Elementary classes Extensions

Definable sets

Fix a group
$$G$$
 (·, ⁻¹, 1).

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

- 4 同 ト 4 ヨ ト 4 ヨ

First order Elementary classes Extensions

Definable sets

Fix a group
$$G$$
 (·, ⁻¹, 1).

The truth of a sentence is naturally defined.

 $\varphi(x,a)$

Definition

The set of tuples g of G such that $\varphi(g, a)$ is true is definable. (by the formula $\varphi(x, a)$ with parameters a)

Quantifier elimination?

/□ ▶ < 글 ▶ < 글

First order Elementary classes Extensions

Examples

- Exemples of sentences.
 - Axioms of groups.
 - Commutativity.
 - Bounded simplicity.
- Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^{G} , translates, etc...

同 ト イ ヨ ト イ ヨ

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups. Commutativity. Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^G , translates, etc...

▲ □ ▶ ▲ □ ▶ ▲

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity. Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^{G} , translates, etc...

▲ □ ▶ ▲ □ ▶ ▲

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^{G} , translates, etc...

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups. Commutativity. Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^G , translates, etc...

□ > < = > <

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^{G} , translates, etc...

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups).

Squares, cubes, etc... *C*(a), a^G, translates, etc...

▲ □ ▶ ▲ □ ▶ ▲

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc...

C(a), a^G , translates, etc...

□ > < = > <

First order Elementary classes Extensions

Examples

• Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

• Exemples of definable sets.

Center. Commutators (but not derived subgroups). Squares, cubes, etc... C(a), a^{G} , translates, etc...

4 3 5 4

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

First order Elementary classes Extensions

Definition

Definition

For Φ a set of sentences (or an elementary theory T), the Φ -elementary class is the set of groups satisfying all φ in Φ .

- Φ consistent: The Φ -elementary class is not empty (*cptness*).
- Groups in the Φ -elementary class: Models of Φ .
- Φ complete: Consistent + Maximal.
- Elementary equivalence: Same complete theory.

Tarski Problem: Are F_n , F_m elementary equivalent for $n, m \ge 2$?

・ロト ・同ト ・ヨト ・ヨト

First order Elementary classes Extensions

Quantifier elimination

Definition

A theory T has quantifier elimination if every formula $\varphi(x)$ is equivalent modulo T to a quantifier-free formula.

Fact (Tarski - Chevalley)

Algebraically closed fields have quantifier elimination.

Fact

Abelian groups eliminate up to boolean combination of cosets.

- 4 同 🕨 🖌 4 目 🖌 4 目

First order Elementary classes Extensions

Quantifier elimination

Definition

A theory T has quantifier elimination if every formula $\varphi(x)$ is equivalent modulo T to a quantifier-free formula.

Fact (Tarski - Chevalley)

Algebraically closed fields have quantifier elimination.

Fact

Abelian groups eliminate up to boolean combination of cosets.

(日) (同) (三) (三)

First order Elementary classes Extensions

Quantifier elimination

Definition

A theory T has quantifier elimination if every formula $\varphi(x)$ is equivalent modulo T to a quantifier-free formula.

Fact (Tarski - Chevalley)

Algebraically closed fields have quantifier elimination.

Fact

Abelian groups eliminate up to boolean combination of cosets.

(日) (同) (三) (三)

First order Elementary classes Extensions

Quantifier elimination

Definition

A theory T has quantifier elimination if every formula $\varphi(x)$ is equivalent modulo T to a quantifier-free formula.

Fact (Tarski - Chevalley)

Algebraically closed fields have quantifier elimination.

Fact

Abelian groups eliminate up to boolean combination of cosets.

(日) (同) (三) (三)

First order Elementary classes Extensions

CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

{CSA} = {Centralizers are abelian and selfnormalizing}

In particular: CSA is an elementary class (universal axioms).

 $\{Free gps\} \subseteq \{torsion-free hyperbolic gps\} \subseteq \{CSA-gps\}$ cvclic centralizers

First order Elementary classes Extensions

CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

{CSA} = {Centralizers are abelian and selfnormalizing}

In particular: CSA is an elementary class (universal axioms).

 $\{Free gps\} \subseteq \{torsion-free hyperbolic gps\} \subseteq \{CSA-gps\}$ cvclic centralizers
First order Elementary classes Extensions

CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

{*CSA*} = {*Centralizers are abelian and selfnormalizing*}

In particular: CSA is an elementary class (universal axioms).

 $\{Free gps\} \subseteq \{torsion-free hyperbolic gps\} \subseteq \{CSA-gps\}$

First order Elementary classes Extensions

CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

 $\{CSA\} = \{Centralizers are abelian and selfnormalizing\}$

In particular: CSA is an elementary class (universal axioms).

 $\{Free gps\} \subseteq \{torsion-free hyperbolic gps\} \subseteq \{CSA-gps\}$ cyclic centralizers

First order Elementary classes Extensions

CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

{*CSA*} = {*Centralizers are abelian and selfnormalizing*}

In particular: CSA is an elementary class (universal axioms).

 $\{Free gps\} \subseteq \{torsion-free hyperbolic gps\} \subseteq \{CSA-gps\}$ cyclic centralizers

First order Elementary classes Extensions

More elementary properties

Universal axioms: For p prime, no elementary abelian p-group of order p^{n+1} .

Fact

The class of CSA-groups with fixed rank of maximal abelian p-subgroup and without involutions is closed under:

- Free products with 1-malnormal amalgamated subgroup.
- HNN-extensions on malnormal separated subgroups.

Corollary (Ould Houcine)

Existentially closed CSA-group with fixed rank of maximal abelian p-subgroup and without involutions are divisible, wih conjugate maximal abelian subgroups, and boundedly simple.

< ロ > < 同 > < 三 > < 三

First order Elementary classes Extensions

More elementary properties

Universal axioms: For p prime, no elementary abelian p-group of order p^{n+1} .

Fact

The class of CSA-groups with fixed rank of maximal abelian p-subgroup and without involutions is closed under:

- Free products with 1-malnormal amalgamated subgroup.
- HNN-extensions on malnormal separated subgroups.

Corollary (Ould Houcine)

Existentially closed CSA-group with fixed rank of maximal abelian p-subgroup and without involutions are divisible, wih conjugate maximal abelian subgroups, and boundedly simple.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First order Elementary classes Extensions

More elementary properties

Universal axioms: For p prime, no elementary abelian p-group of order p^{n+1} .

Fact

The class of CSA-groups with fixed rank of maximal abelian *p*-subgroup and without involutions is closed under:

- Free products with 1-malnormal amalgamated subgroup.
- HNN-extensions on malnormal separated subgroups.

Corollary (Ould Houcine)

Existentially closed CSA-group with fixed rank of maximal abelian p-subgroup and without involutions are divisible, wih conjugate maximal abelian subgroups, and boundedly simple.

First order Elementary classes Extensions

More elementary properties

Universal axioms: For p prime, no elementary abelian p-group of order p^{n+1} .

Fact

The class of CSA-groups with fixed rank of maximal abelian *p*-subgroup and without involutions is closed under:

- Free products with 1-malnormal amalgamated subgroup.
- HNN-extensions on malnormal separated subgroups.

Corollary (Ould Houcine)

Existentially closed CSA-group with fixed rank of maximal abelian p-subgroup and without involutions are divisible, wih conjugate maximal abelian subgroups, and boundedly simple.

・ロト ・同ト ・ヨト ・ヨト

-

First order Elementary classes Extensions

Definitions

$G_1 \leq G_2$: G_1 is a subgroup of G_2 .

Example

- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, r \mid \mid r^n = a \rangle \simeq F_2$
- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, t \mid \mid a^t = b \rangle \simeq F_2$

The most favorable case:

Definition

 $G_1 \leq G_2$ is an elementary extension if $G_1 \leq G_2$ and for every formula $\varphi(x)$ and g_1 in G_1 , $\varphi(g_1)$ true in G_1 implies $\varphi(g_1)$ true in G_2 .

First order Elementary classes Extensions

Definitions

$G_1 \leq G_2$: G_1 is a subgroup of G_2 .

Example

- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, r \mid \mid r^n = a \rangle \simeq F_2$
- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, t \mid \mid a^t = b \rangle \simeq F_2$

The most favorable case:

Definition

 $G_1 \leq G_2$ is an elementary extension if $G_1 \leq G_2$ and for every formula $\varphi(x)$ and g_1 in G_1 , $\varphi(g_1)$ true in G_1 implies $\varphi(g_1)$ true in G_2 .

First order Elementary classes Extensions

Definitions

 $G_1 \leq G_2$: G_1 is a subgroup of G_2 .

Example

- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, r \mid \mid r^n = a \rangle \simeq F_2$
- $F_2 \simeq \langle a, b \mid \mid \rangle \leq \langle a, b, t \mid \mid a^t = b \rangle \simeq F_2$

The most favorable case:

Definition

 $G_1 \leq G_2$ is an elementary extension if $G_1 \leq G_2$ and for every formula $\varphi(x)$ and g_1 in G_1 , $\varphi(g_1)$ true in G_1 implies $\varphi(g_1)$ true in G_2 .

< ロ > < 同 > < 三 > < 三 > 、

First order Elementary classes Extensions

Definitions

 $G_1 \leq G_2$: G_1 is a subgroup of G_2 .

Example • $F_2 \simeq \langle a, b \mid | \rangle \le \langle a, b, r \mid | r^n = a \rangle \simeq F_2$ • $F_2 \simeq \langle a, b \mid | \rangle \le \langle a, b, t \mid | a^t = b \rangle \simeq F_2$

The most favorable case:

Definition

 $G_1 \leq G_2$ is an elementary extension if $G_1 \leq G_2$ and for every formula $\varphi(x)$ and g_1 in G_1 , $\varphi(g_1)$ true in G_1 implies $\varphi(g_1)$ true in G_2 .

(日) (同) (日) (日) (日)

-

First order Elementary classes Extensions

Chains

Fact (Tarski's test)

 $G_1 \leq G_2$ iff for every formula $\varphi(x, y)$ (y 1-uple) and g_1 in G_1 , if G_2 satisfies $\exists y \varphi(g_1, y)$ then $\varphi(g_1, \gamma)$ for some γ in G_1 .

Fact (Union of chains)

Let $(G_i)_{i < \gamma}$ s.t. $G_i \preceq G_j$ whenever $i \leq j$. Then $G_i \preceq \bigcup_{i < \gamma} G_i$.

- Universal case.
- Existential case.

First order Elementary classes Extensions

Chains

Fact (Tarski's test)

 $G_1 \leq G_2$ iff for every formula $\varphi(x, y)$ (y 1-uple) and g_1 in G_1 , if G_2 satisfies $\exists y \varphi(g_1, y)$ then $\varphi(g_1, \gamma)$ for some γ in G_1 .

Fact (Union of chains)

Let $(G_i)_{i < \gamma}$ s.t. $G_i \preceq G_j$ whenever $i \leq j$. Then $G_i \preceq \bigcup_{i < \gamma} G_i$.

- Universal case.
- Existential case.

First order Elementary classes Extensions

Chains

Fact (Tarski's test)

 $G_1 \leq G_2$ iff for every formula $\varphi(x, y)$ (y 1-uple) and g_1 in G_1 , if G_2 satisfies $\exists y \varphi(g_1, y)$ then $\varphi(g_1, \gamma)$ for some γ in G_1 .

Fact (Union of chains)

Let $(G_i)_{i < \gamma}$ s.t. $G_i \preceq G_j$ whenever $i \leq j$. Then $G_i \preceq \bigcup_{i < \gamma} G_i$.

- Universal case.
- Existential case.

First order Elementary classes Extensions

Chains

Fact (Tarski's test)

 $G_1 \leq G_2$ iff for every formula $\varphi(x, y)$ (y 1-uple) and g_1 in G_1 , if G_2 satisfies $\exists y \varphi(g_1, y)$ then $\varphi(g_1, \gamma)$ for some γ in G_1 .

Fact (Union of chains)

Let $(G_i)_{i < \gamma}$ s.t. $G_i \preceq G_j$ whenever $i \leq j$. Then $G_i \preceq \bigcup_{i < \gamma} G_i$.

- Universal case.
- Existential case.

Generators and relations

A group G is always given by generators A and relations R.

 $G = \langle A \mid \mid R \rangle$

Fact (Gromov)

An arbitrarily chosen finitely presented group is hyperbolic with probability almost one.

- 4 同 ト 4 ヨ ト 4 ヨ

Generators and relations

A group G is always given by generators A and relations R.

 $G = \langle A \mid \mid R \rangle$

Fact (Gromov)

An arbitrarily chosen finitely presented group is hyperbolic with probability almost one.

Generators and relations

A group G is always given by generators A and relations R.

 $G = \langle A \mid \mid R \rangle$

Fact (Gromov)

An arbitrarily chosen finitely presented group is hyperbolic with probability almost one.

- 4 同 6 4 日 6 4 日 6

Possible relations

Γ a (possibly oriented) irreflexive graph on *n* vertices

Theorem (Muranov Neman)

For most group words w(x, y), the group

$$\langle a_1, \cdots, a_n \mid | w(a_i, a_j); \Gamma(a_i, a_j) \rangle$$

is torsion-free hyperbolic and $w(a_i, a_j) = 1$ iff $\Gamma(a_i, a_j)$.

Proof: C'(1/6), hyperbolicity, asphericity.

・ 同 ト ・ ヨ ト ・ ヨ

Γ a (possibly oriented) irreflexive graph on *n* vertices

Theorem (Muranov Neman)

For most group words w(x, y), the group

$$\langle a_1, \cdots, a_n \mid \mid w(a_i, a_j); \ \Gamma(a_i, a_j) \rangle$$

is torsion-free hyperbolic and $w(a_i, a_j) = 1$ iff $\Gamma(a_i, a_j)$.

Proof: C'(1/6), hyperbolicity, asphericity.

- 4 同 6 4 日 6 4 日 6

Γ a (possibly oriented) irreflexive graph on *n* vertices

Theorem (Muranov Neman)

For most group words w(x, y), the group

$$\langle a_1, \cdots, a_n \mid \mid w(a_i, a_j); \ \Gamma(a_i, a_j) \rangle$$

is torsion-free hyperbolic and $w(a_i, a_j) = 1$ iff $\Gamma(a_i, a_j)$.

Proof: C'(1/6), hyperbolicity, asphericity.

Complexity

Corollary

Fix an arbitrary group word w(x, y). Then for every infinite set of finite graphs Γ_k , there exists a torsion-free hyperbolic group G_k with elements $a_1, ..., a_k$ s.t.

$$w(a_i, a_j) = 1$$
 iff $\Gamma(a_i, a_j)$

Maximal local complexity of {t.f. hyperbolic groups}.

Complexity

Corollary

Fix an arbitrary group word w(x, y). Then for every infinite set of finite graphs Γ_k , there exists a torsion-free hyperbolic group G_k with elements $a_1, ..., a_k$ s.t.

$$w(a_i, a_j) = 1$$
 iff $\Gamma(a_i, a_j)$

Maximal local complexity of {t.f. hyperbolic groups}.

Simon Thomas:

"Combinatorics! It is too difficult. It is not for humans. One has to do something simpler."

< ロ > < 同 > < 回 > < 回 >

-

Simon Thomas:

"Combinatorics! It is too difficult. It is not for humans. One has to do something simpler."

イロト イポト イヨト イヨト

Small cancellations Order, Independence

Shelah

Approach by model-theoretic complexity of definable sets. (usually for an elementary class).

Independence graphs: Finite *bipartite* graphs Γ_n on $n + 2^n$ elements coding the powerset of a set of *n* elements (Vapnik-Chervonenkis).

Definition

A formula $\varphi(x, y)$ has the Independence Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an independence graph Γ_n .

Ex: [x, y] = 1 in the group of permutations of finite support of an infinite set (Zilber - Belegradek - Baldwin-Saxl).

Small cancellations Order, Independence

Shelah

Approach by model-theoretic complexity of definable sets. (usually for an elementary class).

Independence graphs: Finite *bipartite* graphs Γ_n on $n + 2^n$ elements coding the powerset of a set of *n* elements (Vapnik-Chervonenkis).

Definition

A formula $\varphi(x, y)$ has the **Independence Property** relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an independence graph Γ_n .

Ex: [x, y] = 1 in the group of permutations of finite support of an infinite set (Zilber - Belegradek - Baldwin-Saxl).

< ロ > < 同 > < 回 > < 回 >

Small cancellations Order, Independence

Shelah

Approach by model-theoretic complexity of definable sets. (usually for an elementary class).

Independence graphs: Finite *bipartite* graphs Γ_n on $n + 2^n$ elements coding the powerset of a set of *n* elements (Vapnik-Chervonenkis).

Definition

A formula $\varphi(x, y)$ has the Independence Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an independence graph Γ_n .

Ex: [x, y] = 1 in the group of permutations of finite support of an infinite set (Zilber - Belegradek - Baldwin-Saxl).

< ロ > < 同 > < 回 > < 回 >

Small cancellations Order, Independence

Shelah

Approach by model-theoretic complexity of definable sets. (usually for an elementary class).

Independence graphs: Finite *bipartite* graphs Γ_n on $n + 2^n$ elements coding the powerset of a set of *n* elements (Vapnik-Chervonenkis).

Definition

A formula $\varphi(x, y)$ has the Independence Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an independence graph Γ_n .

Ex: [x, y] = 1 in the group of permutations of finite support of an infinite set (Zilber - Belegradek - Baldwin-Saxl).

・ロト ・同ト ・ヨト ・ヨト

Order graphs: Finite *bipartite* graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \le y$.

$$IP \implies OP$$

$$(NOP \implies NIP)$$

□ > < = > <

Order graphs: Finite bipartite graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \le y$.

$$\mathsf{IP} \implies \mathsf{OP}$$

$$(NOP \implies NIP)$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Order graphs: Finite bipartite graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \le y$.

$$IP \implies OP$$

$$(NOP \implies NIP)$$

同 ト イヨ ト イヨ

Order graphs: Finite bipartite graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \leq y$.

$$IP \implies OP$$

$$(NOP \implies NIP)$$

伺 ト イ ヨ ト イ ヨ

Order graphs: Finite bipartite graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \leq y$.

$$\mathsf{IP} \implies \mathsf{OP}$$

$$(NOP \implies NIP)$$

伺 ト イ ヨ ト イ ヨ

Order graphs: Finite bipartite graphs Γ_n on n + n elements coding a maximal chain in the powerset of a set of *n*-elements.

Definition

A formula $\varphi(x, y)$ has the Order Property relative to a class \mathcal{G} of groups (not nec. elem.) if for each n there exists G_n in \mathcal{G} such that in G_n the definable set defined by $\varphi(x, y)$ induces an order graph Γ_n .

Ex: Any infinite linear order, with $x \leq y$.

$$\mathsf{IP} \implies \mathsf{OP}$$

$$(NOP \implies NIP)$$

伺 ト イ ヨ ト イ ヨ

Back to {t.f. hyperbolic groups}

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed *CSA*-groups (2[⊥]).
 Phenomenon **antipodal** to algebraically closed fields.

What if *finitely* many t.f. hyperbolic groups? One?

 $\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y)$ codes the indep. graph Γ_n

 $\exists x_1 \cdots x_n, y_1, \cdots y_n \ \varphi(x, y)$ codes the order graph Γ_n

Elementary classes
Back to {t.f. hyperbolic groups}

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed *CSA*-groups (2[⊥]). Phenomenon **antipodal** to algebraically closed fields.

What if *finitely* many t.f. hyperbolic groups? One?

 $\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y)$ codes the indep. graph Γ_n

 $\exists x_1 \cdots x_n, y_1, \cdots y_n \ \varphi(x, y)$ codes the order graph Γ_n

Elementary classes

・ 同 ト ・ ヨ ト ・ ヨ ト

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed CSA-groups (2[⊥]).
 Phenomenon antipodal to algebraically closed fields.

What if *finitely* many t.f. hyperbolic groups? One?

 $\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y)$ codes the indep. graph Γ_n

 $\exists x_1 \cdots x_n, y_1, \cdots y_n \ \varphi(x, y)$ codes the order graph Γ_n

Elementary classes

・ 同 ト ・ ヨ ト ・ ヨ ト

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed CSA-groups (2[⊥]).
 Phenomenon antipodal to algebraically closed fields.

Stability

Order, Independence

What if *finitely* many t.f. hyperbolic groups? One?

 $\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y) \text{ codes the indep. graph } \Gamma_n$ $\exists x_1 \cdots x_n, y_1, \cdots y_n \varphi(x, y) \text{ codes the order graph } \Gamma_n$

Elementary classes

・ 同 ト ・ ヨ ト ・ ヨ ト

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed CSA-groups (2[⊥]).
 Phenomenon antipodal to algebraically closed fields.

Stability

Order, Independence

What if *finitely* many t.f. hyperbolic groups? One?

 $\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y)$ codes the indep. graph Γ_n

 $\exists x_1 \cdots x_n, y_1, \cdots y_n \ \varphi(x, y)$ codes the order graph Γ_n

Elementary classes

(4 同) (4 回) (4 \Pi) (4 \Pi)

- Most group words have the IP relative to the class of torsion-free hyperbolic groups (countably many groups).
- Tranfers to existentially closed CSA-groups (2[⊥]).
 Phenomenon antipodal to algebraically closed fields.

Stability

Order, Independence

What if *finitely* many t.f. hyperbolic groups? One?

$$\exists x_1 \cdots x_n, y_1, \cdots y_{2^n} \varphi(x, y)$$
 codes the indep. graph Γ_n

$$\exists x_1 \cdots x_n, y_1, \cdots y_n \ \varphi(x, y)$$
 codes the order graph Γ_n

Elementary classes

伺 ト イ ヨ ト イ ヨ ト

Logic Stable sets Combinatorics Amalgames Stability Genericity

Definitions

 Φ -elementary class (usually Φ complete theory).

Definition

 $\varphi(x, y)$ defines a stable set if $\varphi(x, y)$ does not have the OP relative to the Φ -elementary class.

It means: there is a uniform bound *n* for which $\varphi(x, y)$ encodes order graphs Γ_n . -> stability index of φ .

 $\forall x_1 \cdots x_{n+1}, y_1 \cdots y_{n+1}$ boolean combination of $\varphi(x_i, y_j)$

Stable sets are closed under boolean combinations and adjunctions of parameters.

<ロ> <同> <同> < 同> < 同>

Logic Stabl Combinatorics Amal Stability Gene

Stable sets Amalgames Genericity

Definitions

 Φ -elementary class (usually Φ complete theory).

Definition

 $\varphi(x, y)$ defines a stable set if $\varphi(x, y)$ does not have the OP relative to the Φ -elementary class.

It means: there is a uniform bound *n* for which $\varphi(x, y)$ encodes order graphs Γ_n . -> stability index of φ .

 $\forall x_1 \cdots x_{n+1}, y_1 \cdots y_{n+1}$ boolean combination of $\varphi(x_i, y_j)$

Stable sets are closed under boolean combinations and adjunctions of parameters.

<ロ> <同> <同> < 同> < 同>

Logic Stable sets Combinatorics Amalgames Stability Genericity

Definitions

 Φ -elementary class (usually Φ complete theory).

Definition

 $\varphi(x, y)$ defines a stable set if $\varphi(x, y)$ does not have the OP relative to the Φ -elementary class.

It means: there is a uniform bound *n* for which $\varphi(x, y)$ encodes order graphs $\Gamma_{n.} - >$ stability index of φ .

 $\forall x_1 \cdots x_{n+1}, y_1 \cdots y_{n+1}$ boolean combination of $\varphi(x_i, y_j)$

Stable sets are closed under boolean combinations and adjunctions of parameters.

Logic Stable sets Combinatorics Amalgames Stability Genericity

Definitions

 Φ -elementary class (usually Φ complete theory).

Definition

 $\varphi(x, y)$ defines a stable set if $\varphi(x, y)$ does not have the OP relative to the Φ -elementary class.

It means: there is a uniform bound *n* for which $\varphi(x, y)$ encodes order graphs $\Gamma_{n.} - >$ stability index of φ .

 $\forall x_1 \cdots x_{n+1}, y_1 \cdots y_{n+1}$ boolean combination of $\varphi(x_i, y_j)$

Stable sets are closed under boolean combinations and adjunctions of parameters.

Logic Combinatorics Stability Stable sets Amalgames Genericity

Stable groups

Definition

A group is stable is every definable set $\varphi(x, y)$ is stable.

Remark

The stability index of each definable set φ is witnessed by a " $\forall \varphi$ " formula in the elementary theory of G.

Logic Stable sets Combinatorics Amalgames Stability Genericity

Theorem (Sela)

Any torsion-free hyperbolic group is stable.

Quantifier elimination up to $\forall \exists$ sets

<ロ> <同> <同> < 回> < 回>

Logic Stable sets Combinatorics Amalgames Stability Genericity

Theorem (Sela)

Any torsion-free hyperbolic group is stable.

Quantifier elimination up to $\forall \exists$ sets

< ロ > < 同 > < 回 > < 回 >

з

Logic Sta Combinatorics Am Stability Ger

Stable sets Amalgames Genericity

Quotients!

Example (Folklore)

Stable groups may have unstable quotients (for ex. plenty of unstable quotients of free groups).

Example (Meirembekov)

$$\langle (x_i), z \mid \mid x_i^3; \ z^3; \ [x_i, z]; \ [x_i, x_j] = z, \ i < j; \ [x_i, x_j] = z^2, \ j > i \rangle$$

 $Z(G) = \langle z \rangle$ cyclic of order 3

G/Z(G) elementary abelian of order 3 (\aleph_1 -categorical)

 $[x_i, x_j] = z \text{ iff } i < j!$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Logic Sta Combinatorics Am Stability Ger

Stable sets Amalgames Genericity

Quotients!

Example (Folklore)

Stable groups may have unstable quotients (for ex. plenty of unstable quotients of free groups).

Example (Meirembekov)

$$\langle (x_i), z \mid \mid x_i^3; \ z^3; \ [x_i, z]; \ [x_i, x_j] = z, \ i < j; \ [x_i, x_j] = z^2, \ j > i \rangle$$

 $Z(G) = \langle z \rangle$ cyclic of order 3

G/Z(G) elementary abelian of order 3 (\aleph_1 -categorical)

 $[x_i, x_j] = z \text{ iff } i < j!$

Logic Combinatorics Stability

Stable sets

Quotients!

Example (Folklore)

Stable groups may have unstable quotients (for ex. plenty of unstable quotients of free groups).

Example (Meirembekov)

$$\langle (x_i), z \mid\mid x_i^3; z^3; [x_i, z]; [x_i, x_j] = z, i < j; [x_i, x_j] = z^2, j > i \rangle$$

 $Z(G) = \langle z \rangle$ cyclic of order 3

G/Z(G) elementary abelian of order 3 (\aleph_1 -categorical)

$$[x_i, x_j] = z \text{ iff } i < j!$$

イロト イポト イヨト イヨト

-

Question (Famous in model theory!)

Build new stable groups.

Question

Is the free product of two stable groups still stable?

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

• Start with a free group F_2 .

- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

A 3 3 4

Corredor's construction

- Start with a free group F_2 .
- Conjugate maximal abelian subgroups by successive *HNN*-extensions, and take the union.
- Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.

4 3 5 4

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof *HNN*-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Logic St Combinatorics Au Stability Go

Stable sets Amalgames Genericity

Modifications

Lemma

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof *HNN*-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 🕨 - 4 目 🕨 - 4 目

Logic St Combinatorics A Stability G

Stable sets Amalgames Genericity

Modifications

Lemma

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof *HNN*-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 🕨 - 4 目 🕨 - 4 目

Logic St Combinatorics A Stability G

Stable sets Amalgames Genericity

Modifications

Lemma

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof

HNN-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable).

 $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 🕨 - 4 目 🕨 - 4 目

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof

HNN-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 ト 4 ヨ ト 4 ヨ

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof

HNN-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 2 4 日 2 4 日

For each n, any t.f. CSA-group G_1 with cyclic centralizers embeds in such a group G_2 in such a way that maximal abelian subgroups of G_1 are conjugate and elements of G_1 has n-th roots.

Proof

HNN-extensions. Then add the *n*-th root.

Start with G_1 a free group (stable). $G_1 \leq G_2 \leq \cdots \leq G_n \leq \cdots$ where $G_{n-1} \leq G_n$ as in the lemma. In the union maximal abelian subgroups are conjugate and divisible. What sets are stable?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Logic Combinatorics Stability	Stable sets Amalgames Genericity	

G stable group.

Definition

 $X \subseteq_{\text{def}} G$ is left generic if finitely many left translates cover G.

Fact

- Left-genericity is equivalent to right-genericity.
- If $X \cup Y$ is generic, then one of X or Y is generic.

→ < Ξ → </p>

Logic Combinatorics Stability	Stable sets Amalgames Genericity	

G stable group.

Definition

 $X \subseteq_{\text{def}} G$ is left generic if finitely many left translates cover G.

Fact

- Left-genericity is equivalent to right-genericity.
- If $X \cup Y$ is generic, then one of X or Y is generic.

I ≥ ► I

Logic Combinatorics Stability	Stable sets Amalgames Genericity		

G stable group.

Definition

 $X \subseteq_{\text{def}} G$ is left generic if finitely many left translates cover G.

Fact

- Left-genericity is equivalent to right-genericity.
- If $X \cup Y$ is generic, then one of X or Y is generic.

Logic Combinatorics Stability	Stable sets Amalgames Genericity		

G stable group.

Definition

 $X \subseteq_{\text{def}} G$ is left generic if finitely many left translates cover G.

Fact

- Left-genericity is equivalent to right-genericity.
- If $X \cup Y$ is generic, then one of X or Y is generic.

-∢ ≣ ▶

ericity

Connectivity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} \dots \in X$.

F is connected
Logic	
Combinatorics	Amalgam
Stability	Genericity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} \dots \in X$.

F is connected

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Logic	Stable set
Combinatorics	Amalgam
Stability	Genericity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} \dots \in X$.

F is connected

Logic	Stable set
Combinatorics	Amalgam
Stability	Genericity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} \dots \in X$.

F is connected

・ロト ・同ト ・ヨト ・ヨト

Logic	Stable set
Combinatorics	Amalgam
Stability	Genericity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} ... \in X$.

F is connected

Logic	
Combinatorics	Amalgam
Stability	Genericity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of $F = \langle e_n || \rangle$, then all but finitely many e_n are in X.

 $F = g_1 X \cup \cdots \cup g_s X$, e_1 , ..., e_r all generators involved. $e_{r+1} ... \in X$.

F is connected