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Langage of groups: ·, −1, 1.

Group equations with variables x

Finite sentences: And, Or, Not, ∀, ∃.

No free variables: sentences

Free variables: − > definable sets
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Definable sets

Fix a group G (·, −1, 1).

The truth of a sentence is naturally defined.

ϕ(x , a)

Definition

The set of tuples g of G such that ϕ(g , a) is true is definable.
(by the formula ϕ(x , a) with parameters a)

Quantifier elimination?
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Exemples of sentences.

Axioms of groups.

Commutativity.

Bounded simplicity.

Exemples of definable sets.

Center. Commutators (but not derived subgroups).

Squares, cubes, etc...

C (a), aG , translates, etc...
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Definition

For Φ a set of sentences (or an elementary theory T), the
Φ-elementary class is the set of groups satisfying all ϕ in Φ.

Φ consistent: The Φ-elementary class is not empty (cptness).

Groups in the Φ-elementary class: Models of Φ.

Φ complete: Consistent + Maximal.

Elementary equivalence: Same complete theory.

Tarski Problem: Are Fn, Fm elementary equivalent for n, m ≥ 2?
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Quantifier elimination

Definition

A theory T has quantifier elimination if every formula ϕ(x) is
equivalent modulo T to a quantifier-free formula.

Fact (Tarski - Chevalley)

Algebraically closed fields have quantifier elimination.

Fact

Abelian groups eliminate up to boolean combination of cosets.
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CSA-groups

Definition (CSA-groups)

Maximal abelien subgroups are malnormal.

Fact

{CSA} = {Centralizers are abelian and selfnormalizing}

In particular: CSA is an elementary class (universal axioms).

{Free gps} ⊆ {torsion-free hyperbolic gps} ⊆ {CSA-gps}

cyclic centralizers
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More elementary properties

Universal axioms: For p prime, no elementary abelian p-group of
order pn+1.

Fact

The class of CSA-groups with fixed rank of maximal abelian
p-subgroup and without involutions is closed under:

Free products with 1-malnormal amalgamated subgroup.

HNN-extensions on malnormal separated subgroups.

Corollary (Ould Houcine)

Existentially closed CSA-group with fixed rank of maximal abelian
p-subgroup and without involutions are divisible, wih conjugate
maximal abelian subgroups, and boundedly simple.
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Definitions

G1 ≤ G2: G1 is a subgroup of G2.

Example

F2 ' 〈a, b || 〉 ≤ 〈a, b, r || rn = a〉 ' F2

F2 ' 〈a, b || 〉 ≤ 〈a, b, t || at = b〉 ' F2

The most favorable case:

Definition

G1 � G2 is an elementary extension if G1 ≤ G2 and for every
formula ϕ(x) and g1 in G1, ϕ(g1) true in G1 implies ϕ(g1) true in
G2.
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Chains

Fact (Tarski’s test)

G1 � G2 iff for every formula ϕ(x , y) (y 1-uple) and g1 in G1, if G2

satisfies ∃yϕ(g1, y) then ϕ(g1, γ) for some γ in G1.

Fact (Union of chains)

Let (Gi )i<γ s.t. Gi � Gj whenever i ≤ j . Then Gi �
⋃

i<γ Gi .

Universal case.

Existential case.

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

First order
Elementary classes
Extensions

Chains

Fact (Tarski’s test)

G1 � G2 iff for every formula ϕ(x , y) (y 1-uple) and g1 in G1, if G2

satisfies ∃yϕ(g1, y) then ϕ(g1, γ) for some γ in G1.

Fact (Union of chains)

Let (Gi )i<γ s.t. Gi � Gj whenever i ≤ j . Then Gi �
⋃

i<γ Gi .

Universal case.

Existential case.

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

First order
Elementary classes
Extensions

Chains

Fact (Tarski’s test)

G1 � G2 iff for every formula ϕ(x , y) (y 1-uple) and g1 in G1, if G2

satisfies ∃yϕ(g1, y) then ϕ(g1, γ) for some γ in G1.

Fact (Union of chains)

Let (Gi )i<γ s.t. Gi � Gj whenever i ≤ j . Then Gi �
⋃

i<γ Gi .

Universal case.

Existential case.

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

First order
Elementary classes
Extensions

Chains

Fact (Tarski’s test)

G1 � G2 iff for every formula ϕ(x , y) (y 1-uple) and g1 in G1, if G2

satisfies ∃yϕ(g1, y) then ϕ(g1, γ) for some γ in G1.

Fact (Union of chains)

Let (Gi )i<γ s.t. Gi � Gj whenever i ≤ j . Then Gi �
⋃

i<γ Gi .

Universal case.

Existential case.

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

Small cancellations
Order, Independence

Generators and relations

A group G is always given by generators A and relations R.

G = 〈A || R〉

Fact (Gromov)

An arbitrarily chosen finitely presented group is hyperbolic with
probability almost one.
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Possible relations

Γ a (possibly oriented) irreflexive graph on n vertices

Theorem (Muranov Neman)

For most group words w(x , y), the group

〈a1, · · · , an || w(ai , aj); Γ(ai , aj)〉

is torsion-free hyperbolic and w(ai , aj) = 1 iff Γ(ai , aj).

Proof: C ′(1/6), hyperbolicity, asphericity. �

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

Small cancellations
Order, Independence

Possible relations

Γ a (possibly oriented) irreflexive graph on n vertices

Theorem (Muranov Neman)

For most group words w(x , y), the group

〈a1, · · · , an || w(ai , aj); Γ(ai , aj)〉

is torsion-free hyperbolic and w(ai , aj) = 1 iff Γ(ai , aj).

Proof: C ′(1/6), hyperbolicity, asphericity. �

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

Small cancellations
Order, Independence

Possible relations

Γ a (possibly oriented) irreflexive graph on n vertices

Theorem (Muranov Neman)

For most group words w(x , y), the group

〈a1, · · · , an || w(ai , aj); Γ(ai , aj)〉

is torsion-free hyperbolic and w(ai , aj) = 1 iff Γ(ai , aj).

Proof: C ′(1/6), hyperbolicity, asphericity. �

Eric Jaligot Around Model Theory Around Free Groups



Logic
Combinatorics

Stability

Small cancellations
Order, Independence

Complexity

Corollary

Fix an arbitrary group word w(x , y). Then for every infinite set of
finite graphs Γk , there exists a torsion-free hyperbolic group Gk

with elements a1, ..., ak s.t.

w(ai , aj) = 1 iff Γ(ai , aj)

Maximal local complexity of {t.f. hyperbolic groups}.
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Simon Thomas:
“Combinatorics! It is too difficult. It is not for humans. One has
to do something simpler.”
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Shelah

Approach by model-theoretic complexity of definable sets.
(usually for an elementary class).

Independence graphs: Finite bipartite graphs Γn on n + 2n elements
coding the powerset of a set of n elements (Vapnik-Chervonenkis).

Definition

A formula ϕ(x , y) has the Independence Property relative to a
class G of groups (not nec. elem.) if for each n there exists Gn in
G such that in Gn the definable set defined by ϕ(x , y) induces an
independence graph Γn.

Ex: [x , y ] = 1 in the group of permutations of finite support of an
infinite set (Zilber - Belegradek - Baldwin-Saxl).
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Order Property

Order graphs: Finite bipartite graphs Γn on n + n elements coding
a maximal chain in the powerset of a set of n-elements.

Definition

A formula ϕ(x , y) has the Order Property relative to a class G of
groups (not nec. elem.) if for each n there exists Gn in G such that
in Gn the definable set defined by ϕ(x , y) induces an order graph
Γn.

Ex: Any infinite linear order, with x ≤ y .

IP =⇒ OP

(NOP =⇒ NIP)
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Back to {t.f. hyperbolic groups}

Most group words have the IP relative to the class of
torsion-free hyperbolic groups (countably many groups).

Tranfers to existentially closed CSA-groups (2⊥).
Phenomenon antipodal to algebraically closed fields.

What if finitely many t.f. hyperbolic groups? One?

∃x1 · · · xn, y1, · · · y2n ϕ(x , y) codes the indep. graph Γn

∃x1 · · · xn, y1, · · · yn ϕ(x , y) codes the order graph Γn

Elementary classes
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Definitions

Φ-elementary class (usually Φ complete theory).

Definition

ϕ(x , y) defines a stable set if ϕ(x , y) does not have the OP
relative to the Φ-elementary class.

It means: there is a uniform bound n for which ϕ(x , y) encodes
order graphs Γn. − > stability index of ϕ.

∀x1 · · · xn+1, y1 · · · yn+1 boolean combination of ϕ(xi , yj)

Stable sets are closed under boolean combinations and adjunctions
of parameters.
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Stable groups

Definition

A group is stable is every definable set ϕ(x , y) is stable.

Remark

The stability index of each definable set ϕ is witnessed by a “∀ϕ”
formula in the elementary theory of G.
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Sela

Theorem (Sela)

Any torsion-free hyperbolic group is stable.

Quantifier elimination up to ∀∃ sets
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Quotients!

Example (Folklore)

Stable groups may have unstable quotients (for ex. plenty of
unstable quotients of free groups).

Example (Meirembekov)

〈(xi ), z || x3
i ; z3; [xi , z ]; [xi , xj ] = z , i < j ; [xi , xj ] = z2, j > i〉

Z (G ) = 〈z〉 cyclic of order 3

G/Z (G ) elementary abelian of order 3 (ℵ1-categorical)

[xi , xj ] = z iff i < j !
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Conjectures

Question (Famous in model theory!)

Build new stable groups.

Question

Is the free product of two stable groups still stable?
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Corredor’s construction

Start with a free group F2.

Conjugate maximal abelian subgroups by successive
HNN-extensions, and take the union.

Repeat countably many times, and take the union.

CSA-group with conjugate maximal abelian subgroups.

Similar if one wants to force divisibility.
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Modifications

Lemma

For each n, any t.f. CSA-group G1 with cyclic centralizers embeds
in such a group G2 in such a way that maximal abelian subgroups
of G1 are conjugate and elements of G1 has n-th roots.

Proof
HNN-extensions. Then add the n-th root. �

Start with G1 a free group (stable).
G1 ≤ G2 ≤ · · · ≤ Gn ≤ · · · where Gn−1 ≤ Gn as in the lemma.
In the union maximal abelian subgroups are conjugate and divisible.
What sets are stable?
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Generic sets

G stable group.

Definition

X ⊆def G is left generic if finitely many left translates cover G.

Fact

Left-genericity is equivalent to right-genericity.

If X ∪ Y is generic, then one of X or Y is generic.
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Connectivity

Definition

G is connected if all definable subgroups of finite index are G.

Fact

G is connected iff no partition into two definable generic subsets.

Remark (Poizat)

If X is a definable generic subset of F = 〈en || 〉, then all but
finitely many en are in X .

F = g1X ∪ · · · ∪ gsX , e1, ..., er all generators involved. er+1... ∈ X .

F is connected
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