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A little Model Theory of Groups: Formulas & Sentences

Definition

• Quantifier-free formula ϕ(x̄), with free variables x̄ ,

ϕ(x̄) :=
∨

1≤i≤n

(
∧

1≤j≤pi

wij(x̄) = 1
∧

1≤j≤qi

vij(x̄) 6= 1),

wij and vij are words on {x1, . . . , xn}±1.

• Formula φ(z̄), with free variables z̄ ,

φ(z̄) := ∀x1∃y1 . . . ∀xn∃ynϕ(x1, y1, . . . , xn, yn, z̄),

where ϕ(x̄ , ȳ , z̄) is a quantifier-free formula.

• ḡ ∈ G =⇒ φ(ḡ) is a formula with parameters from G .

• Sentences := formulas without free variables.

• G |= φ⇔ G satisfies φ.
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A little Model Theory of Groups: Formulas & Sentences

Examples:

• φ(z) = ∀x(x−1z−1xz = 1),

G |= φ(g)⇔ g ∈ Z (G )

• φ = ∀x∀y(x−1y−1xy = 1),

G |= φ⇔ G is abelian

• φn = ∀x(xn = 1⇒ x = 1), n ≥ 1,

G |= φn for any n ≥ 1⇔ G is torsion-free
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A little Model Theory of Groups: Elementary
equivalence

• First order theory:= set of sentences.

Examples:

• G is a group,

Th(G ) = {φ a sentence |G |= φ},

Th(G ) is the complete elementary theory of G .
It is complete; that is for any sentence φ either φ ∈ Th(G ) or
¬φ ∈ Th(G ).

• Γ =
⋂

G∈TFH

Th(G ),

TFH:= class of torsion-free hyperbolic groups.

Γ is a first order theory but it is not complete.
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A little Model Theory of Groups: Elementary
equivalence

• H and G are elementary equivalent ⇔ Th(G ) = Th(H).

A stronger property:

• If H ≤ G , H is an elementary subgroup of G , H ≺ G , if for
any formula φ(z̄), for any tuple h̄ in H,

G |= φ(h̄)⇒ H |= φ(h̄).

• (Tarski-Vaught Test)

If H ≤ G , then

H ≺ G ⇔
{

for any formula φ(x ; z̄), for any h̄ ∈ H,
∃c ∈ G ,G |= φ(c ; h̄)⇒ ∃c ∈ H,G |= φ(c , h̄)
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A little Model Theory of Groups: Elementary
equivalence

Roughly speaking:

Th(H) = Th(G )

m

H and G are indiscernible in the first order logic

and
H ≺ G

m

H is ”algebraically closed” in G
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Tarski’s Problem

FX the free group on X , |X | the cardinal of X .

Around 1945, Tarski asks:

Pb1 (Following Vaught): Is it true that Th(FX ) = Th(FY ), for
|X |, |Y | ≥ 2 ?

Pb2: Is it true that Th(FX ) decidable ?
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Tarski’s Problem

Theorem 1 (Vaught, 1955)

If X ⊆ Y , X is infinite, then FX is an elementary subgroup of FY .

Proof. We use Tarski-Vaught test.
The problem is reduced to show:

FY |= φ(ḡ ; b)⇒ ∃b′ ∈ FX ,FY |= φ(ḡ ; b′).
FY |= φ(ḡ ; b)⇒ ḡ ∈ 〈X0〉, b ∈ 〈X0,Y0〉, with X0 ⊆ X ,Y0 ⊆ Y
and X0 ∩ Y0 = ∅.
Let X1 ⊆ X \ X0 with |X1| = |Y0|.
f : Y → Y , f (X \ X1) = X \ X1, f (Y0) = X1, f (X1) = f (Y0), and
leaves the rest unchanged, is an automorphism and f (ḡ) = ḡ .
Hence FY |= φ(ḡ ; f (b)), f (b) ∈ FX .
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FY |= φ(ḡ ; b)⇒ ḡ ∈ 〈X0〉, b ∈ 〈X0,Y0〉, with X0 ⊆ X ,Y0 ⊆ Y
and X0 ∩ Y0 = ∅.
Let X1 ⊆ X \ X0 with |X1| = |Y0|.
f : Y → Y , f (X \ X1) = X \ X1, f (Y0) = X1, f (X1) = f (Y0), and
leaves the rest unchanged, is an automorphism and f (ḡ) = ḡ .
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Tarski’s Problem

What about free ”object” in other varieties ?

• Zn := the free abelian group of rank n.

Th(Zn)=Th(Zm) if and only if n = m.

Th(Zn) is decidable (Szmielew, 1955).

• Nc
n := the free nilpotent group of class c and rank n.

Th(Nn
c )=Th(Nn′

c ′ ) if and only if n = n′ and c = c ′.

for c ≥ 2, n ≥ 2, Th(Nn
c ) is undecidable (Mal’cev, 1960).

• Sc
n := the free soluble group of class c and rank n.

Th(Sc
n )=Th(Sc

n′) if and only if n = n′ and c = c ′.

for c , n ≥ 2, Th(Sc
n ) is undecidable (Mal’cev, 1960).
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Remark. Theorem 1 is still true for free object of varieties. In
particular we have:

Nc
X :=the free nilpotent group of class c , on X

X ⊆ Y ,X infinite ⇒ Nc
X ≺ Nc

Y ,

Sc
X :=the free soluble group of class c , on X

X ⊆ Y ,X infinite ⇒ Sc
X ≺ Sc
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Tarski’s Problem: Universal theory & Equations

Definition

• an universal formula φ(z̄), with free variables z̄ ,

∀x̄ϕ(x̄ , z̄),

where ϕ(x̄ , z̄) is a quantifier-free formula.

• universal sentence:= universal formula without free variables.

• Let G be a group.

The universal theory of G ,

Th∀(G ):= the set of universal sentences true in G .
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Tarski’s Problem: Universal theory & Equations

|X | = ω, FX is embeddable in F2.
Indeed: F2 = 〈a, b|〉, the subgroup 〈a−nban; i ∈ N〉 is isomorphic to
Fω.
Consequence (combining with Theorem 1):
Th∀(FX ) = Th∀(FY ), for |X |, |Y | ≥ 2.

=⇒ nonabelian free groups have the same universal theory.
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Tarski’s Problem: Universal theory & Equations

Vaught made the (unpublished) test problem:

Is it true that FX |= ∀x∀y∀z(x2y2z2 = 1⇒ xy = yx)?

Theorem 2 (Lyndon, 1959)

The answer is yes.

Consequence: the surface group with presentation

〈x , y , z |x2y2z2 = 1〉

does not satisfy the universal theory of nonabelian free groups.
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Tarski’s Problem: Universal theory & Equations

Lemma 3 (Mal’cev, 1962)

Let F be a free group and a, b ∈ F such that [a, b] 6= 1. Then

F |= ∀x∀y(x2ax2a−1(ybyb−1)−2 = 1⇔ x = 1 ∧ y = 1).

Consequence: A finite system of equations in a nonabelian free
group is (effectively) equivalent to a single equation.

Remark. Lemma 3 holds also in nonabelian models of the univeral
theory of nonabelian free groups (Kharlampovich and Myasnikov,
1998).
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Lemma 4 (Guervich)

Let F be a free group and a, b ∈ F such that [a, b] 6= 1. Then

F |= ∀x∀y([x , ya] = 1∧ [x , yb] = 1∧ [x , yab] = 1⇔ x = 1∨y = 1).

Consequence: The disjunction of equations in a nonabelian free
group is (effectively) equivalent to a finite system of equations.

Remark. Lemma 4 holds also in nonabelian models of the
universal theory of nonabelian free groups (Kharlampovich and
Myasnikov, 1998).
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Conclusion:
Let G be a nonabelian model of the universal theory of nonabelian
free groups.

• A quantifier-free formula ϕ(x̄) is (effectivelly) equivalent to a
formula of the form∨

1≤i≤n

(wi (x̄ , a, b) = 1 ∧ vi (x̄ , a, b) 6= 1)

Definition

A positive formula φ(z̄), with free variables z̄ , is a formula

φ(z̄) := ∀x1∃y1 . . . ∀xn∃yn

∨
1≤i≤n

(
∧

1≤j≤pi

wij(x̄ , ȳ , z̄) = 1)
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wij(x̄ , ȳ , z̄) = 1)



Tarski’s Problem: Universal theory & Equations

Conclusion:
Let G be a nonabelian model of the universal theory of nonabelian
free groups.

• A quantifier-free formula ϕ(x̄) is (effectivelly) equivalent to a
formula of the form∨

1≤i≤n

(wi (x̄ , a, b) = 1 ∧ vi (x̄ , a, b) 6= 1)

Definition

A positive formula φ(z̄), with free variables z̄ , is a formula

φ(z̄) := ∀x1∃y1 . . . ∀xn∃yn

∨
1≤i≤n

(
∧

1≤j≤pi
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• A positive formula ϕ(x̄) is (effectivelly) equivalent to a
formula of the form

∀x1∃y1 . . . ∀xn∃yn(w(x̄ , ȳ , z̄ ; a, b) = 1)



Tarski’s Problem: Universal theory & Equations

Theorem 5 (Following Kharlampovich&Myasnikov, Merzljakov’s
Theorem, 1966)

Let F be a nonabelian free group. If

F |= ∀x1∃y1 . . . ∀xn∃yn w(x1, y1, . . . , xn, yn; ā) = 1,

then, there exist words, with parameters from F ,
v1(x1), v2(x1, x2), . . . , vn(x1, x2, . . . , xn), such that

F [x1, . . . , xn] |= w
(
x1, v1(x1), . . . , xn, v(x1, . . . , xn); ā

)
= 1.

Here F [x1, . . . , xn] = F ∗ 〈x1, . . . , xn|〉.
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Tarski’s Problem: Universal theory & Equations

What about decidability ?

Theorem 6 (Makanin)

(1) There is a an algorithm for recognizing the solvability of an
arbitrary equation in a free group (1982).
(2) The universal and the positive theory of a nonabelian free
group is decidable (1985).

Remark. The decidability of the positive theory follows easilly
from (1) and Merzljakov’s Theorem.
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Tarski’s Problem: Universal theory & Equations

The first step to understand the elementary theory of a free group
is to understand the set of solutions of equations.

Theorem 7 (Lorents 1963, Appel 1968, Chiswell &
Remeslennikov 2000)

The set of solutions of a system of equations, with one variable, in
a free group, is a finite union of cosets of centralizers.

Remark. Lorents has anounced the theorem without proof and the
proof of Appel contains a gap.
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The set of solutions of a system of equations, with one variable, in
a torsion-free hyperbolic group, is a finite union of cosets of
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Tarski’s Problem: Equations & Sela’s approach

Summary of Sela’s approach:
Let w(x̄) = 1 be an equation (to simplify without parameters). Let
Hw = 〈x̄ |w(x̄) = 1〉. Let G be a group.

• If ḡ ∈ G such that G |= w(ḡ) = 1, then there exists a
homomorphism f : Hw → G such that f (x̄) = ḡ .

• Conversely, if f : Hw → G is an homomorphism, then f (x̄) is
a solution of w(x̄) = 1.

=⇒ correspondance between solutions of w(x̄) = 1 and
Hom(Hw ,G ).
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• If ḡ ∈ G such that G |= w(ḡ) = 1, then there exists a
homomorphism f : Hw → G such that f (x̄) = ḡ .
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Tarski’s Problem: Equations & Sela’s approach

If G has a ”good” action on a ”good” space (like free groups and
torsion-free hyperbolic groups), then one can understand set of
solutions of equations.
Let F be a free group and fn : H → F be a ”good” sequence of
homomorphisms.
=⇒ we get a sequence of actions of H on the Cayley graph of F .
=⇒ one can extracts a subsequence converging in the

Gromov-Hausdorff topology to an action on a reel tree.
=⇒ a ”good” action of H on a reel tree.
=⇒ a beautiful structure of H(modulo the kernel of the action)

and Hom(H,F ).
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Tarski’s Problem: Equations & Sela’s approach

Recall that:

Definition
Let F be a free group and G a group.

• A sequence of homomorphisms fn : G → F is convergent if for
any g ∈ G , one of the following sets is finite

S1(g) = {n|fn(g) = 1}, S2(g) = {n|fn(g) 6= 1}.

• ker∞(fn) = {g ∈ G |S2(g) is finite}.
• H is a limit group, if H = G/ker∞(fn) for some group G and

a convergent sequence fn : G → F .
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Tarski’s Problem: Quantifier elimination

Definition
Let T be a theory and S a set of formulas.
T has quantifier elimination down to S if for any formula φ(x̄),
there exists a boolean combination of formulas from S , ϕ(x̄), such
that T |= ∀x̄(φ(x̄)⇔ ϕ(x̄)).

T |= φ means M |= T ⇒ M |= φ.
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Th(Fn) is decidable for n ≥ 2.

Consequence:
FX ≺ FY for X ⊆ Y , |X | ≥ 2.
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More Model Theory: Stability

Definition
• Let T be a theory and φ(x̄ , ȳ) a formula.

φ(x̄) has the order property, if for any n ∈ N, there exists a
model M |= T and a sequence (āi , b̄i ), 0 ≤ i ≤ n, in M such
that:

M |= φ(āi , b̄j)⇔ i < j .

• T is stable, if whenever φ(x̄ , ȳ) is a formula such that
T ∪ {∃x̄∃ȳφ(x̄ , ȳ)} has a model, φ(x̄ , ȳ) is without the order
property.
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property.



More Model Theory: Stability

Definition
• Let T be a theory and φ(x̄ , ȳ) a formula.
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More Model Theory: Stability

Examples:

• Algebraic groups over algerbraically closed fields are of finite
Morley rank, Q has a finite Morley rank.

• Free groups of infinite rank in the variety of nilpotent groups
of class c of exponent pn, p is a prime > c , are ω-stable with
infinite Morley rank (Baudisch).

• Abelian-by-finite groups are stable, Z is superstable but not
ω-stable.

• Nonabelian free groups are not superstable (Gibone, Poizat).

More generally a superstable model of the universal theory of
nonabelian free groups is abelian (Mustafin-Poizat,
independently Ould Houcine).

• Non-cyclic torsion-free hyperbolic groups are not superstable
(Ould Houcine).

• A group acting nontrivially and without inversions on a
simplicial tree is not ω-stable (Ould Houcine).
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• A group acting nontrivially and without inversions on a
simplicial tree is not ω-stable (Ould Houcine).
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Equivalent properties of stability.

Definition
Let M be a group and A a subset of M.

• A sequence (bi : i ∈ I ), is indiscernible over A ,

if for any
formula with parameters from A, φ(x1, . . . , xn), and i1, . . . , in,
j1, . . . , jn, we have

M |= φ(bi1 , . . . , bin)⇔ M |= φ(bj1 , . . . , bjn).

• A sequence (bi : i ∈ I ), I ordered, is order-indiscernible over
A ,

if for any formula with parameters from A, φ(x1, . . . , xn),
and i1 < i2 < · · · < in, j1 < · · · < jn, we have
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Let F be the free group on X = (xi |i ∈ N). Then (xi |i ∈ N) is
indiscernible in F (over ∅). Indeed any permutation of X unduce an
isomorphism, and isomorphisms preserve satisfaction of formulas.
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• T is stable,

• in any model of T , any order-indiscernible sequence is
indiscernible,

• there exists a notion of independence in models of T with
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Theorem 12 (Sela)

A trosion-free hyperbolic group is stable.

Consequence: existence of a good notion of independence in
groups elementary equivalent to a trosion-free hyperbolic group.
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Theorem 13
Let G be a group. Suppose that G is stable and G ≺ G ∗ Z. Then
G is connected and any positive formula is equivalent to an
existential positive one.
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