Introduction to Tarski's problem and Model Theory

Abderezak Ould Houcine

Camille Jordan Institute, University Lyon 1, France

Non Positive Curvature and the Elementary Theory of Free Groups, Anogia, June 10, 2008

Definition

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}) := igvee_{1 \leq i \leq n} igvee_{1 \leq j \leq p_i} w_{ij}(ar{x}) = 1 igwedge_{1 \leq j \leq q_i} v_{ij}(ar{x})
eq 1),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}):=igvee_{1\leq i\leq n}igvee_{1\leq j\leq p_i}w_{ij}(ar{x})=1igwee_{1\leq j\leq q_i}v_{ij}(ar{x})
eq 1),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

• Formula $\phi(\bar{z})$, with free variables \bar{z} ,

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}):=igvee_{1\leq i\leq n}igvee_{1\leq j\leq p_i}w_{ij}(ar{x})=1igwee_{1\leq j\leq q_i}v_{ij}(ar{x})
eq 1),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

• Formula $\phi(\bar{z})$, with free variables \bar{z} ,

$$\phi(\bar{z}) := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \varphi(x_1, y_1, \dots, x_n, y_n, \bar{z}),$$

where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}) := igvee_{1 \leq i \leq n} igl(igwedge_{1 \leq j \leq p_i} w_{ij}(ar{x}) = 1 igwedge_{1 \leq j \leq q_i} v_{ij}(ar{x})
eq 1),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

• Formula $\phi(\bar{z})$, with free variables \bar{z} ,

$$\phi(\bar{z}) := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \varphi(x_1, y_1, \dots, x_n, y_n, \bar{z}),$$

where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

• $\bar{g} \in G \implies \phi(\bar{g})$ is a formula with parameters from G.

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}) := igvee_{1 \leq i \leq n} igl(igwedge_{1 \leq j \leq p_i} w_{ij}(ar{x}) = 1 igwedge_{1 \leq j \leq q_i} v_{ij}(ar{x})
eq 1 igr),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

• Formula $\phi(\bar{z})$, with free variables \bar{z} ,

$$\phi(\bar{z}) := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \varphi(x_1, y_1, \dots, x_n, y_n, \bar{z}),$$

where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

- $\bar{g} \in G \implies \phi(\bar{g})$ is a formula with parameters from G.
- Sentences := formulas without free variables.

Definition

• Quantifier-free formula $\varphi(\bar{x})$, with free variables \bar{x} ,

$$arphi(ar{x}):=igvee_{1\leq i\leq n}igvee_{1\leq j\leq p_i}w_{ij}(ar{x})=1igwee_{1\leq j\leq q_i}v_{ij}(ar{x})
eq 1),$$

 w_{ij} and v_{ij} are words on $\{x_1, \ldots, x_n\}^{\pm 1}$.

• Formula $\phi(\bar{z})$, with free variables \bar{z} ,

$$\phi(\bar{z}) := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \varphi(x_1, y_1, \dots, x_n, y_n, \bar{z}),$$

where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

- $ar{g} \in G \implies \phi(ar{g})$ is a formula with parameters from G.
- Sentences := formulas without free variables.
- $G \models \phi \Leftrightarrow G$ satisfies ϕ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Examples:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

$$G \models \phi(g) \Leftrightarrow g \in Z(G)$$

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

$$G \models \phi(g) \Leftrightarrow g \in Z(G)$$

•
$$\phi = \forall x \forall y (x^{-1}y^{-1}xy = 1),$$

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

$$G \models \phi(g) \Leftrightarrow g \in Z(G)$$

•
$$\phi = \forall x \forall y (x^{-1}y^{-1}xy = 1),$$

 $G \models \phi \Leftrightarrow G$ is abelian

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

$$G \models \phi(g) \Leftrightarrow g \in Z(G)$$

•
$$\phi = \forall x \forall y (x^{-1}y^{-1}xy = 1),$$

 $G \models \phi \Leftrightarrow G$ is abelian

•
$$\phi_n = \forall x (x^n = 1 \Rightarrow x = 1), n \ge 1,$$

Examples:

•
$$\phi(z) = \forall x(x^{-1}z^{-1}xz = 1),$$

$$G \models \phi(g) \Leftrightarrow g \in Z(G)$$

•
$$\phi = \forall x \forall y (x^{-1}y^{-1}xy = 1),$$

 $G \models \phi \Leftrightarrow G$ is abelian

•
$$\phi_n = \forall x (x^n = 1 \Rightarrow x = 1), n \ge 1,$$

 $G \models \phi_n \text{ for any } n \ge 1 \Leftrightarrow G \text{ is torsion-free}$

• First order theory:= set of sentences.

• First order theory:= set of sentences.

Examples:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• First order theory:= set of sentences.

Examples:

• G is a group,

• First order theory:= set of sentences.

Examples:

• G is a group,

$$Th(G) = \{ \phi \text{ a sentence } | G \models \phi \},\$$

(日) (四) (문) (문) (문)

Th(G) is the complete elementary theory of G.

• First order theory:= set of sentences.

Examples:

• G is a group,

$$Th(G) = \{ \phi \text{ a sentence } | G \models \phi \},\$$

Th(G) is the *complete elementary theory* of G. It is complete; that is for any sentence ϕ either $\phi \in Th(G)$ or $\neg \phi \in Th(G)$.

(日) (四) (코) (코) (코) (코)

• First order theory:= set of sentences.

Examples:

• G is a group,

$$Th(G) = \{ \phi \text{ a sentence } | G \models \phi \},\$$

Th(G) is the complete elementary theory of G. It is complete; that is for any sentence ϕ either $\phi \in Th(G)$ or $\neg \phi \in Th(G)$.

• $\Gamma = \bigcap_{G \in TFH} Th(G)$, TFH:= class of torsion-free hyperbolic groups.

• First order theory:= set of sentences.

Examples:

• G is a group,

$$Th(G) = \{ \phi \text{ a sentence } | G \models \phi \},\$$

Th(G) is the *complete elementary theory* of G. It is complete; that is for any sentence ϕ either $\phi \in Th(G)$ or $\neg \phi \in Th(G)$.

• $\Gamma = \bigcap_{G \in TFH} Th(G)$, TFH:= class of torsion-free hyperbolic groups. Γ is a first order theory but it is not complete.

• *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).

A stronger property:

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

$$G \models \phi(\bar{h}) \Rightarrow H \models \phi(\bar{h}).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

$$G \models \phi(\bar{h}) \Rightarrow H \models \phi(\bar{h}).$$

• (Tarski-Vaught Test)

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

$$G \models \phi(\bar{h}) \Rightarrow H \models \phi(\bar{h}).$$

(日) (四) (문) (문) (문)

• (Tarski-Vaught Test) If $H \leq G$, then

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

$$G \models \phi(\bar{h}) \Rightarrow H \models \phi(\bar{h}).$$

• (Tarski-Vaught Test) If $H \leq G$, then

 $H \prec G$

- *H* and *G* are elementary equivalent \Leftrightarrow Th(G) = Th(H).
- A stronger property:
 - If H ≤ G, H is an elementary subgroup of G, H ≺ G, if for any formula φ(z̄), for any tuple h̄ in H,

$$G \models \phi(\bar{h}) \Rightarrow H \models \phi(\bar{h}).$$

• (Tarski-Vaught Test) If $H \leq G$, then

$$H \prec G \Leftrightarrow \left\{ \begin{array}{c} \text{for any formula } \phi(x; \bar{z}), \text{ for any } \bar{h} \in H, \\ \exists c \in G, G \models \phi(c; \bar{h}) \Rightarrow \exists c \in H, G \models \phi(c, \bar{h}) \end{array} \right.$$

(日) (四) (문) (문) (문)

Roughly speaking:

Roughly speaking:

$$Th(H) = Th(G)$$

$$\updownarrow$$

H and G are indiscernible in the first order logic

A little Model Theory of Groups: Elementary equivalence

Roughly speaking:

$$Th(H) = Th(G)$$

$$\updownarrow$$

${\boldsymbol{H}}$ and ${\boldsymbol{G}}$ are indiscernible in the first order logic

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

and

A little Model Theory of Groups: Elementary equivalence

Roughly speaking:

$$Th(H) = Th(G)$$

$$\updownarrow$$

H and G are indiscernible in the first order logic

and

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

F_X the free group on X, |X| the cardinal of X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

F_X the free group on X, |X| the cardinal of X. Around 1945, Tarski asks:

F_X the free group on X, |X| the cardinal of X. Around 1945, Tarski asks:

Pb1 (Following Vaught): Is it true that $Th(F_X) = Th(F_Y)$, for $|X|, |Y| \ge 2$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 F_X the free group on X, |X| the cardinal of X. Around 1945, Tarski asks:

Pb1 (Following Vaught): Is it true that $Th(F_X) = Th(F_Y)$, for $|X|, |Y| \ge 2$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pb2: Is it true that $Th(F_X)$ decidable ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof.

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof. We use Tarski-Vaught test.

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $\Gamma = \frac{1}{2} \frac{1}$

$$F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$$

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$ and $X_0 \cap Y_0 = \emptyset$.

(日) (四) (코) (코) (코) (코)

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$ and $X_0 \cap Y_0 = \emptyset$. Let $X_1 \subseteq X \setminus X_0$ with $|X_1| = |Y_0|$.

(日) (四) (코) (코) (코) (코)

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$ and $X_0 \cap Y_0 = \emptyset$.

Let $X_1 \subseteq X \setminus X_0$ with $|X_1| = |Y_0|$. $f: Y \to Y, f(X \setminus X_1) = X \setminus X_1, f(Y_0) = X_1, f(X_1) = f(Y_0)$, and leaves the rest unchanged, is an automorphism and $f(\bar{g}) = \bar{g}$.

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$ and $X_0 \cap Y_0 = \emptyset$.

Let $X_1 \subseteq X \setminus X_0$ with $|X_1| = |Y_0|$. $f: Y \to Y, f(X \setminus X_1) = X \setminus X_1, f(Y_0) = X_1, f(X_1) = f(Y_0)$, and leaves the rest unchanged, is an automorphism and $f(\bar{g}) = \bar{g}$.

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$ and $X_0 \cap Y_0 = \emptyset$.

Let $X_1 \subseteq X \setminus X_0$ with $|X_1| = |Y_0|$. $f: Y \to Y, f(X \setminus X_1) = X \setminus X_1, f(Y_0) = X_1, f(X_1) = f(Y_0)$, and leaves the rest unchanged, is an automorphism and $f(\bar{g}) = \bar{g}$.

Theorem 1 (Vaught, 1955)

If $X \subseteq Y$, X is infinite, then F_X is an elementary subgroup of F_Y .

Proof. We use Tarski-Vaught test. The problem is reduced to show: $F_Y \models \phi(\bar{g}; b) \Rightarrow \exists b' \in F_X, F_Y \models \phi(\bar{g}; b').$ $F_Y \models \phi(\bar{g}; b) \Rightarrow \bar{g} \in \langle X_0 \rangle, b \in \langle X_0, Y_0 \rangle, \text{ with } X_0 \subseteq X, Y_0 \subseteq Y$

and $X_0 \cap Y_0 = \emptyset$. Let $X_1 \subseteq X \setminus X_0$ with $|X_1| = |Y_0|$. $f: Y \to Y, f(X \setminus X_1) = X \setminus X_1, f(Y_0) = X_1, f(X_1) = f(Y_0)$, and leaves the rest unchanged, is an automorphism and $f(\bar{g}) = \bar{g}$. Hence $F_Y \models \phi(\bar{g}; f(b)), f(b) \in F_X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about free "object" in other varieties ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about free "object" in other varieties ?

• $\mathbb{Z}_n :=$ the free abelian group of rank n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about free "object" in other varieties ?

• $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n)=Th(\mathbb{Z}_m)$ if and only if n=m.

(日) (四) (문) (문) (문)

What about free "object" in other varieties ?

 Z_n := the free abelian group of rank n. Th(Z_n)=Th(Z_m) if and only if n = m. Th(Z_n) is decidable (Szmielew, 1955).

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- N_n^c := the free nilpotent group of class c and rank n.

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank *n*. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- $N_n^c :=$ the free nilpotent group of class c and rank n. $Th(N_c^n) = Th(N_{c'}^{n'})$ if and only if n = n' and c = c'.

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- $N_n^c :=$ the free nilpotent group of class c and rank n. $Th(N_c^n) = Th(N_{c'}^{n'})$ if and only if n = n' and c = c'. for $c \ge 2, n \ge 2$, $Th(N_c^n)$ is undecidable (Mal'cev, 1960).

▲□▶ ▲舂▶ ▲理▶ ▲理▶ ― 理 ―

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- $N_n^c :=$ the free nilpotent group of class c and rank n. $Th(N_c^n) = Th(N_{c'}^{n'})$ if and only if n = n' and c = c'. for $c \ge 2$, $n \ge 2$, $Th(N_c^n)$ is undecidable (Mal'cev, 1960).

▲口> ▲圖> ▲理> ▲理> 三理 ---

• S_n^c := the free soluble group of class *c* and rank *n*.

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- $N_n^c :=$ the free nilpotent group of class c and rank n. $Th(N_c^n) = Th(N_{c'}^{n'})$ if and only if n = n' and c = c'. for $c \ge 2$, $n \ge 2$, $Th(N_c^n)$ is undecidable (Mal'cev, 1960).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• S_n^c := the free soluble group of class c and rank n. $Th(S_n^c) = Th(S_{n'}^c)$ if and only if n = n' and c = c'.

What about free "object" in other varieties ?

- $\mathbb{Z}_n :=$ the free abelian group of rank n. $Th(\mathbb{Z}_n) = Th(\mathbb{Z}_m)$ if and only if n = m. $Th(\mathbb{Z}_n)$ is decidable (Szmielew, 1955).
- $N_n^c :=$ the free nilpotent group of class c and rank n. $Th(N_c^n) = Th(N_{c'}^{n'})$ if and only if n = n' and c = c'. for $c \ge 2$, $n \ge 2$, $Th(N_c^n)$ is undecidable (Mal'cev, 1960).
- S_n^c := the free soluble group of class c and rank n. $Th(S_n^c) = Th(S_{n'}^c)$ if and only if n = n' and c = c'. for $c, n \ge 2$, $Th(S_n^c)$ is undecidable (Mal'cev, 1960).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remark. Theorem 1 is still true for free object of varieties.

Remark. Theorem 1 is still true for free object of varieties. In particular we have:

 $N_X^c :=$ the free nilpotent group of class c, on X $X \subseteq Y, X$ infinite $\Rightarrow N_X^c \prec N_Y^c$, $S_X^c :=$ the free soluble group of class c, on X $X \subseteq Y, X$ infinite $\Rightarrow S_X^c \prec S_Y^c$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tarski's Problem: Universal theory & Equations

Definition

Tarski's Problem: Universal theory & Equations

Definition

• an universal formula $\phi(\bar{z})$, with free variables \bar{z} ,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Tarski's Problem: Universal theory & Equations

Definition

• an universal formula $\phi(\bar{z})$, with free variables \bar{z} ,

 $\forall \bar{x} \varphi(\bar{x}, \bar{z}),$

where $\varphi(\bar{x}, \bar{z})$ is a quantifier-free formula.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Definition

• an universal formula $\phi(\bar{z})$, with free variables \bar{z} ,

 $\forall \bar{x} \varphi(\bar{x}, \bar{z}),$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\varphi(\bar{x}, \bar{z})$ is a quantifier-free formula.

• universal sentence:= universal formula without free variables.

Definition

• an universal formula $\phi(\bar{z})$, with free variables \bar{z} ,

 $\forall \bar{x} \varphi(\bar{x}, \bar{z}),$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\varphi(\bar{x}, \bar{z})$ is a quantifier-free formula.

- universal sentence:= universal formula without free variables.
- Let G be a group.

Definition

• an universal formula $\phi(\bar{z})$, with free variables \bar{z} ,

 $\forall \bar{x} \varphi(\bar{x}, \bar{z}),$

where $\varphi(\bar{x}, \bar{z})$ is a quantifier-free formula.

- universal sentence:= universal formula without free variables.
- Let G be a group. The universal theory of G,

 $Th_{\forall}(G)$:= the set of universal sentences true in G.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $|X| = \omega$, F_X is embeddable in F_2 .

 $|X| = \omega$, F_X is embeddable in F_2 . Indeed: $F_2 = \langle a, b | \rangle$, the subgroup $\langle a^{-n}ba^n; i \in \mathbb{N} \rangle$ is isomorphic to F_{ω} .

 $|X| = \omega$, F_X is embeddable in F_2 . Indeed: $F_2 = \langle a, b | \rangle$, the subgroup $\langle a^{-n}ba^n; i \in \mathbb{N} \rangle$ is isomorphic to F_{ω} .

Consequence (combining with Theorem 1):

 $|X| = \omega$, F_X is embeddable in F_2 . Indeed: $F_2 = \langle a, b | \rangle$, the subgroup $\langle a^{-n}ba^n; i \in \mathbb{N} \rangle$ is isomorphic to F_{ω} . **Consequence** (combining with Theorem 1):

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $Th_{\forall}(F_X) = Th_{\forall}(F_Y)$, for $|X|, |Y| \ge 2$.

 $|X| = \omega$, F_X is embeddable in F_2 . Indeed: $F_2 = \langle a, b | \rangle$, the subgroup $\langle a^{-n}ba^n; i \in \mathbb{N} \rangle$ is isomorphic to F_{ω} . **Consequence** (combining with Theorem 1): $Th_{\forall}(F_X) = Th_{\forall}(F_Y)$, for $|X|, |Y| \ge 2$.

 \implies nonabelian free groups have the same universal theory.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Vaught made the (unpublished) test problem:

Vaught made the (unpublished) test problem:

Is it true that
$$F_X \models \forall x \forall y \forall z (x^2 y^2 z^2 = 1 \Rightarrow xy = yx)$$
?

Theorem 2 (Lyndon, 1959)

The answer is yes.

Vaught made the (unpublished) test problem:

Is it true that
$$F_X \models \forall x \forall y \forall z (x^2 y^2 z^2 = 1 \Rightarrow xy = yx)?$$

Theorem 2 (Lyndon, 1959)

The answer is yes.

Consequence: the surface group with presentation

$$\langle x, y, z | x^2 y^2 z^2 = 1 \rangle$$

< □ > < @ > < 注 > < 注 > ... 注

does not satisfy the universal theory of nonabelian free groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lemma 3 (Mal'cev, 1962)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma 3 (Mal'cev, 1962)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$.

Lemma 3 (Mal'cev, 1962)

Let F be a free group and a, $b \in F$ such that $[a, b] \neq 1$. Then

$$F \models orall x orall y (x^2 a x^2 a^{-1} (y b y b^{-1})^{-2} = 1 \Leftrightarrow x = 1 \land y = 1).$$

(日) (四) (문) (문) (문)

Lemma 3 (Mal'cev, 1962)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$. Then

$$F \models orall x orall y (x^2 a x^2 a^{-1} (y b y b^{-1})^{-2} = 1 \Leftrightarrow x = 1 \land y = 1).$$

Consequence: A finite system of equations in a nonabelian free group is (effectively) equivalent to a single equation.

< □ > < @ > < 注 > < 注 > ... 注

Lemma 3 (Mal'cev, 1962)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$. Then

$$F \models orall x orall y (x^2 a x^2 a^{-1} (y b y b^{-1})^{-2} = 1 \Leftrightarrow x = 1 \land y = 1).$$

Consequence: A finite system of equations in a nonabelian free group is (effectively) equivalent to a single equation.

Remark. Lemma 3 holds also in nonabelian models of the univeral theory of nonabelian free groups (Kharlampovich and Myasnikov, 1998).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lemma 4 (Guervich)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(日) (四) (코) (코) (코) (코)

Lemma 4 (Guervich)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$.

Lemma 4 (Guervich)

Let F be a free group and a, $b \in F$ such that $[a, b] \neq 1$. Then

$$F \models \forall x \forall y ([x, y^a] = 1 \land [x, y^b] = 1 \land [x, y^{ab}] = 1 \Leftrightarrow x = 1 \lor y = 1).$$

Lemma 4 (Guervich)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$. Then

$$F \models \forall x \forall y ([x, y^a] = 1 \land [x, y^b] = 1 \land [x, y^{ab}] = 1 \Leftrightarrow x = 1 \lor y = 1).$$

Consequence: The disjunction of equations in a nonabelian free group is (effectively) equivalent to a finite system of equations.

< □ > < @ > < 注 > < 注 > ... 注

Lemma 4 (Guervich)

Let F be a free group and $a, b \in F$ such that $[a, b] \neq 1$. Then

$$F \models \forall x \forall y ([x, y^a] = 1 \land [x, y^b] = 1 \land [x, y^{ab}] = 1 \Leftrightarrow x = 1 \lor y = 1).$$

Consequence: The disjunction of equations in a nonabelian free group is (effectively) equivalent to a finite system of equations.

Remark. Lemma 4 holds also in nonabelian models of the universal theory of nonabelian free groups (Kharlampovich and Myasnikov, 1998).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion:

Let G be a nonabelian model of the universal theory of nonabelian free groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion:

Let G be a nonabelian model of the universal theory of nonabelian free groups.

• A quantifier-free formula $\varphi(\bar{x})$ is (effectivelly) equivalent to a formula of the form

$$\bigvee_{1 \leq i \leq n} (w_i(\bar{x}, a, b) = 1 \land v_i(\bar{x}, a, b) \neq 1)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Conclusion:

Let G be a nonabelian model of the universal theory of nonabelian free groups.

• A quantifier-free formula $\varphi(\bar{x})$ is (effectivelly) equivalent to a formula of the form

$$\bigvee_{1\leq i\leq n}(w_i(ar{x}, a, b)=1 \wedge v_i(ar{x}, a, b)
eq 1)$$

Definition

A positive formula $\phi(\bar{z})$, with free variables \bar{z} , is a formula

Conclusion:

Let G be a nonabelian model of the universal theory of nonabelian free groups.

• A quantifier-free formula $\varphi(\bar{x})$ is (effectivelly) equivalent to a formula of the form

$$\bigvee_{1 \leq i \leq n} (w_i(\bar{x}, a, b) = 1 \land v_i(\bar{x}, a, b) \neq 1)$$

Definition

A positive formula $\phi(\bar{z})$, with free variables \bar{z} , is a formula

$$\phi(\bar{z}) := \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \bigvee_{1 \le i \le n} (\bigwedge_{1 \le j \le p_i} w_{ij}(\bar{x}, \bar{y}, \bar{z}) = 1)$$

A positive formula φ(x̄) is (effectivelly) equivalent to a formula of the form

$$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n (w(\bar{x}, \bar{y}, \bar{z}; a, b) = 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 5 (Following Kharlampovich^𝔅Myasnikov, Merzljakov's Theorem, 1966)

Theorem 5 (Following Kharlampovich&Myasnikov, Merzljakov's Theorem, 1966)

Let F be a nonabelian free group.

Theorem 5 (Following Kharlampovich&Myasnikov, Merzljakov's Theorem, 1966)

Let F be a nonabelian free group. If

$$F \models \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \ w(x_1, y_1, \dots, x_n, y_n; \bar{a}) = 1,$$

< □ > < @ > < 注 > < 注 > ... 注

Theorem 5 (Following Kharlampovich&Myasnikov, Merzljakov's Theorem, 1966)

Let F be a nonabelian free group. If

$$F \models \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \ w(x_1, y_1, \dots, x_n, y_n; \bar{a}) = 1,$$

then, there exist words, with parameters from F, $v_1(x_1), v_2(x_1, x_2), \ldots, v_n(x_1, x_2, \ldots, x_n)$, such that

Theorem 5 (Following Kharlampovich&Myasnikov, Merzljakov's Theorem, 1966)

Let F be a nonabelian free group. If

$$F \models \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \ w(x_1, y_1, \dots, x_n, y_n; \bar{a}) = 1,$$

then, there exist words, with parameters from F, $v_1(x_1), v_2(x_1, x_2), \ldots, v_n(x_1, x_2, \ldots, x_n)$, such that

$$F[x_1, \ldots, x_n] \models w(x_1, v_1(x_1), \ldots, x_n, v(x_1, \ldots, x_n); \bar{a}) = 1.$$

Here $F[x_1, \ldots, x_n] = F * \langle x_1, \ldots, x_n | \rangle.$

< □ > < @ > < 注 > < 注 > ... 注

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What about decidability ?

(中) (종) (종) (종) (종) (종)

What about decidability ?

Theorem 6 (Makanin)

What about decidability ?

Theorem 6 (Makanin)

(1) There is a an algorithm for recognizing the solvability of an arbitrary equation in a free group (1982).

< □ > < @ > < 注 > < 注 > ... 注

What about decidability ?

Theorem 6 (Makanin)

There is a an algorithm for recognizing the solvability of an arbitrary equation in a free group (1982).
 The universal and the positive theory of a nonabelian free group is decidable (1985).

What about decidability ?

Theorem 6 (Makanin)

There is a an algorithm for recognizing the solvability of an arbitrary equation in a free group (1982).
 The universal and the positive theory of a nonabelian free group is decidable (1985).

Remark. The decidability of the positive theory follows easily from (1) and Merzljakov's Theorem.

< □ > < @ > < 注 > < 注 > ... 注

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The first step to understand the elementary theory of a free group is to understand the set of solutions of equations.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The first step to understand the elementary theory of a free group is to understand the set of solutions of equations.

Theorem 7 (Lorents 1963, Appel 1968, Chiswell ජ Remeslennikov 2000)

The set of solutions of a system of equations, with **one** variable, in a free group, is a finite union of cosets of centralizers. \Box

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

The first step to understand the elementary theory of a free group is to understand the set of solutions of equations.

Theorem 7 (Lorents 1963, Appel 1968, Chiswell ජ Remeslennikov 2000)

The set of solutions of a system of equations, with **one** variable, in a free group, is a finite union of cosets of centralizers. \Box

Remark. Lorents has anounced the theorem without proof and the proof of Appel contains a gap.

< □ > < @ > < 注 > < 注 > ... 注

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 8 (Consequence of Sela's work)

Theorem 8 (Consequence of Sela's work)

The set of solutions of a system of equations, with **one** variable, in a torsion-free hyperbolic group, is a finite union of cosets of centralizers.

< □ > < @ > < 注 > < 注 > ... 注

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Summary of Sela's approach:

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters). Let $H_w = \langle \bar{x} | w(\bar{x}) = 1 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters). Let $H_w = \langle \bar{x} | w(\bar{x}) = 1 \rangle$. Let G be a group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters). Let $H_w = \langle \bar{x} | w(\bar{x}) = 1 \rangle$. Let G be a group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• If $\bar{g} \in G$ such that $G \models w(\bar{g}) = 1$, then there exists a homomorphism $f : H_w \to G$ such that $f(\bar{x}) = \bar{g}$.

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters). Let $H_w = \langle \bar{x} | w(\bar{x}) = 1 \rangle$. Let G be a group.

- If $\bar{g} \in G$ such that $G \models w(\bar{g}) = 1$, then there exists a homomorphism $f : H_w \to G$ such that $f(\bar{x}) = \bar{g}$.
- Conversely, if $f: H_w \to G$ is an homomorphism, then $f(\bar{x})$ is a solution of $w(\bar{x}) = 1$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Summary of Sela's approach:

Let $w(\bar{x}) = 1$ be an equation (to simplify without parameters). Let $H_w = \langle \bar{x} | w(\bar{x}) = 1 \rangle$. Let G be a group.

- If $\bar{g} \in G$ such that $G \models w(\bar{g}) = 1$, then there exists a homomorphism $f : H_w \to G$ such that $f(\bar{x}) = \bar{g}$.
- Conversely, if $f: H_w \to G$ is an homomorphism, then $f(\bar{x})$ is a solution of $w(\bar{x}) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \implies correspondance between solutions of $w(\bar{x}) = 1$ and $Hom(H_w, G)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If G has a "good" action on a "good" space (like free groups and torsion-free hyperbolic groups), then one can understand set of solutions of equations.

If G has a "good" action on a "good" space (like free groups and torsion-free hyperbolic groups), then one can understand set of solutions of equations.

Let F be a free group and $f_n : H \to F$ be a "good" sequence of homomorphisms.

Let F be a free group and $f_n : H \to F$ be a "good" sequence of homomorphisms.

 \implies we get a sequence of actions of *H* on the Cayley graph of *F*.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let F be a free group and $f_n : H \to F$ be a "good" sequence of homomorphisms.

 \implies we get a sequence of actions of H on the Cayley graph of F.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \implies one can extracts a subsequence converging in the

Gromov-Hausdorff topology to an action on a reel tree.

Let F be a free group and $f_n : H \to F$ be a "good" sequence of homomorphisms.

 \implies we get a sequence of actions of H on the Cayley graph of F.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \implies one can extracts a subsequence converging in the

Gromov-Hausdorff topology to an action on a reel tree.

 \implies a "good" action of H on a reel tree.

Let F be a free group and $f_n : H \to F$ be a "good" sequence of homomorphisms.

 \implies we get a sequence of actions of H on the Cayley graph of F.

 \implies one can extracts a subsequence converging in the

Gromov-Hausdorff topology to an action on a reel tree.

 \implies a "good" action of H on a reel tree.

 \implies a beautiful structure of H(modulo the kernel of the action) and Hom(H, F).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recall that:

Recall that:

Definition

Let F be a free group and G a group.

Recall that:

Definition

Let F be a free group and G a group.

 A sequence of homomorphisms f_n: G → F is convergent if for any g ∈ G, one of the following sets is finite

$$S_1(g) = \{n|f_n(g) = 1\}, \quad S_2(g) = \{n|f_n(g) \neq 1\}.$$

< □ > < @ > < 注 > < 注 > ... 注

Recall that:

Definition

Let F be a free group and G a group.

 A sequence of homomorphisms f_n: G → F is convergent if for any g ∈ G, one of the following sets is finite

$$S_1(g) = \{n|f_n(g) = 1\}, \quad S_2(g) = \{n|f_n(g) \neq 1\}.$$

< □ > < @ > < 注 > < 注 > ... 注

•
$$\ker_{\infty}(f_n) = \{g \in G | S_2(g) \text{ is finite} \}.$$

Recall that:

Definition

Let F be a free group and G a group.

 A sequence of homomorphisms f_n: G → F is convergent if for any g ∈ G, one of the following sets is finite

$$S_1(g) = \{n|f_n(g) = 1\}, \quad S_2(g) = \{n|f_n(g) \neq 1\}.$$

- $\ker_{\infty}(f_n) = \{g \in G | S_2(g) \text{ is finite} \}.$
- *H* is a *limit group*, if $H = G/ker_{\infty}(f_n)$ for some group *G* and a convergent sequence $f_n : G \to F$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Link with the universal theory:

Link with the universal theory: the following properties are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Link with the universal theory: the following properties are equivalent: (1) *H* is a limit group,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Link with the universal theory: the following properties are equivalent:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- (1) H is a limit group,
- (2) H is ω -residually free,

Link with the universal theory: the following properties are equivalent:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- (1) H is a limit group,
- (2) H is ω -residually free,
- (3) H is a model of the universal theory of a free group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Definition

Let T be a theory and S a set of formulas.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$,

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

$$T \models \phi$$
 means $M \models T \Rightarrow M \models \phi$.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

 $T \models \phi$ means $M \models T \Rightarrow M \models \phi$.

A formula $\phi(\bar{z})$ is $\forall \exists$ -formula if it is of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y}, \bar{z})$, where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

 $T \models \phi$ means $M \models T \Rightarrow M \models \phi$.

A formula $\phi(\bar{z})$ is $\forall \exists$ -formula if it is of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y}, \bar{z})$, where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Theorem 9 (Sela)

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

 $T \models \phi$ means $M \models T \Rightarrow M \models \phi$.

A formula $\phi(\bar{z})$ is $\forall \exists$ -formula if it is of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y}, \bar{z})$, where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Theorem 9 (Sela)

Let F be a nonabelian free group of finite rank.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

 $T \models \phi$ means $M \models T \Rightarrow M \models \phi$.

A formula $\phi(\bar{z})$ is $\forall \exists$ -formula if it is of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y}, \bar{z})$, where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Theorem 9 (Sela)

Let F be a nonabelian free group of finite rank. Then Th(F) has quantifier elimination down to $\forall \exists$ -formulas.

Definition

Let T be a theory and S a set of formulas.

T has quantifier elimination down to S if for any formula $\phi(\bar{x})$, there exists a boolean combination of formulas from S, $\varphi(\bar{x})$, such that $T \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$.

 $T \models \phi$ means $M \models T \Rightarrow M \models \phi$.

A formula $\phi(\bar{z})$ is $\forall \exists$ -formula if it is of the form $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y}, \bar{z})$, where $\varphi(\bar{x}, \bar{y}, \bar{z})$ is a quantifier-free formula.

Theorem 9 (Sela)

Let F be a nonabelian free group of finite rank. Then Th(F) has quantifier elimination down to $\forall \exists$ -formulas. Furtheremore, for any formula $\phi(\bar{x})$, there exists a boolean combination of $\forall \exists$ -formulas, $\varphi(\bar{x})$, such that: $F \models \forall x(\phi(\bar{x}) \Leftrightarrow \varphi(\bar{x}))$, for any free nonabelian group F.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem 10 (Kharlampovich&Myasnikov, Independently Sela)

<ロ> (四) (四) (王) (王) (王) (王)

 $F_n \prec F_m$ for $m \ge n \ge 2$.

Theorem 10 (Kharlampovich&Myasnikov, Independently Sela)

<ロト <四ト <注入 <注下 <注下 <

 $F_n \prec F_m$ for $m \ge n \ge 2$.

Theorem 11 (Kharlampovich&Myasnikov)

 $Th(F_n)$ is decidable for $n \ge 2$.

Theorem 10 (Kharlampovich&Myasnikov, Independently Sela)

<ロト <四ト <注入 <注下 <注下 <

 $F_n \prec F_m$ for $m \ge n \ge 2$.

Theorem 11 (Kharlampovich&Myasnikov)

 $Th(F_n)$ is decidable for $n \ge 2$.

Consequence: $F_X \prec F_Y$ for $X \subseteq Y, |X| \ge 2$. $Th(F_X)$ is decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Definition

• Let T be a theory and $\phi(\bar{x}, \bar{y})$ a formula.

Definition

• Let T be a theory and $\phi(\bar{x}, \bar{y})$ a formula. $\phi(\bar{x})$ has the *order property*,

Definition

Let T be a theory and φ(x̄, ȳ) a formula.
 φ(x̄) has the order property, if for any n ∈ N, there exists a model M ⊨ T and a sequence (ā_i, b̄_i), 0 ≤ i ≤ n, in M such that:

(日) (四) (문) (문) (문) (문)

Definition

Let T be a theory and φ(x̄, ȳ) a formula.
 φ(x̄) has the order property, if for any n ∈ N, there exists a model M ⊨ T and a sequence (ā_i, b̄_i), 0 ≤ i ≤ n, in M such that:

$$M \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i < j.$$

(日) (四) (문) (문) (문) (문)

Definition

Let T be a theory and φ(x̄, ȳ) a formula.
 φ(x̄) has the order property, if for any n ∈ N, there exists a model M ⊨ T and a sequence (ā_i, b̄_i), 0 ≤ i ≤ n, in M such that:

$$M \models \phi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i < j.$$

T is stable, if whenever φ(x̄, ȳ) is a formula such that
 T ∪ {∃x∃yφ(x̄, ȳ)} has a model, φ(x̄, ȳ) is without the order property.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Other notions of "stability":

Other notions of "stability":

Finite Morley rank $\subseteq \omega$ -stability \subseteq superstability \subseteq stability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Other notions of "stability":

Finite Morley rank $\subseteq \omega$ -stability \subseteq superstability \subseteq stability.

$$\left.\begin{array}{c} {\sf Finite\ Morley\ rank}\\ \omega\text{-}{\it stability}\\ {\it superstability}\end{array}\right\}\implies {\rm a\ good\ abstract\ notion\ of\ dimension.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Examples:

Examples:

• Algebraic groups over algerbraically closed fields are of finite Morley rank, \mathbb{Q} has a finite Morley rank.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).
- Abelian-by-finite groups are stable, $\mathbb Z$ is superstable but not $\omega\text{-stable}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).
- Abelian-by-finite groups are stable, $\mathbb Z$ is superstable but not $\omega\text{-stable}.$
- Nonabelian free groups are not superstable (Gibone, Poizat).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).
- Abelian-by-finite groups are stable, $\mathbb Z$ is superstable but not $\omega\text{-stable}.$
- Nonabelian free groups are not superstable (Gibone, Poizat). More generally a superstable model of the universal theory of nonabelian free groups is abelian (Mustafin-Poizat, independently Ould Houcine).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).
- Abelian-by-finite groups are stable, $\mathbb Z$ is superstable but not $\omega\text{-stable}.$
- Nonabelian free groups are not superstable (Gibone, Poizat). More generally a superstable model of the universal theory of nonabelian free groups is abelian (Mustafin-Poizat, independently Ould Houcine).
- Non-cyclic torsion-free hyperbolic groups are not superstable (Ould Houcine).

Examples:

- Algebraic groups over algerbraically closed fields are of finite Morley rank, $\mathbb Q$ has a finite Morley rank.
- Free groups of infinite rank in the variety of nilpotent groups of class c of exponent p^n , p is a prime > c, are ω -stable with infinite Morley rank (Baudisch).
- Abelian-by-finite groups are stable, $\mathbb Z$ is superstable but not $\omega\text{-stable}.$
- Nonabelian free groups are not superstable (Gibone, Poizat). More generally a superstable model of the universal theory of nonabelian free groups is abelian (Mustafin-Poizat, independently Ould Houcine).
- Non-cyclic torsion-free hyperbolic groups are not superstable (Ould Houcine).

◆□▶ ◆舂▶ ◆注≯ ◆注≯ 注 のへで

 A group acting nontrivially and without inversions on a simplicial tree is not ω-stable (Ould Houcine).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Equivalent properties of stability.

(ロ) (御) (注) (注) 三言。

996

Equivalent properties of stability.

Definition

Let M be a group and A a subset of M.

< 由 > (四 > (四 > (因 > (因 >))) 문 ·

200

Equivalent properties of stability.

Definition

Let M be a group and A a subset of M.

• A sequence $(b_i : i \in I)$, is indiscernible over A,

Equivalent properties of stability.

Definition

Let M be a group and A a subset of M.

A sequence (b_i : i ∈ I), is indiscernible over A, if for any formula with parameters from A, φ(x₁,...,x_n), and i₁,..., i_n, j₁,..., j_n, we have

$$M \models \phi(b_{i_1},\ldots,b_{i_n}) \Leftrightarrow M \models \phi(b_{j_1},\ldots,b_{j_n}).$$

• A sequence $(b_i : i \in I)$, I ordered, is order-indiscernible over A,

(미) (종) (종) (종) (종)

Equivalent properties of stability.

Definition

Let M be a group and A a subset of M.

A sequence (b_i : i ∈ I), is indiscernible over A, if for any formula with parameters from A, φ(x₁,...,x_n), and i₁,..., i_n, j₁,..., j_n, we have

$$M \models \phi(b_{i_1},\ldots,b_{i_n}) \Leftrightarrow M \models \phi(b_{j_1},\ldots,b_{j_n}).$$

• A sequence $(b_i : i \in I)$, I ordered, *is order-indiscernible over* A, if for any formula with parameters from A, $\phi(x_1, \ldots, x_n)$, and $i_1 < i_2 < \cdots < i_n$, $j_1 < \cdots < j_n$, we have

Equivalent properties of stability.

Definition

Let M be a group and A a subset of M.

A sequence (b_i : i ∈ I), is indiscernible over A, if for any formula with parameters from A, φ(x₁,...,x_n), and i₁,..., i_n, j₁,..., j_n, we have

$$M \models \phi(b_{i_1},\ldots,b_{i_n}) \Leftrightarrow M \models \phi(b_{j_1},\ldots,b_{j_n}).$$

• A sequence $(b_i : i \in I)$, I ordered, *is order-indiscernible over* A, if for any formula with parameters from A, $\phi(x_1, \ldots, x_n)$, and $i_1 < i_2 < \cdots < i_n$, $j_1 < \cdots < j_n$, we have

$$M \models \phi(b_{i_1},\ldots,b_{i_n}) \Leftrightarrow M \models \phi(b_{j_1},\ldots,b_{j_n}).$$

(미) (종) (종) (종) (종)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example: Let *F* be the free group on $X = (x_i | i \in \mathbb{N})$.

Example:

Let F be the free group on $X = (x_i | i \in \mathbb{N})$. Then $(x_i | i \in \mathbb{N})$ is indiscernible in $F(\text{over } \emptyset)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Example:

Let *F* be the free group on $X = (x_i | i \in \mathbb{N})$. Then $(x_i | i \in \mathbb{N})$ is indiscernible in *F*(over \emptyset). Indeed any permutation of *X* unduce an isomorphism, and isomorphisms preserve satisfaction of formulas.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The following properties are equivallent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The following properties are equivallent:

• T is stable,

The following properties are equivallent:

- T is stable,
- in any model of *T*, any order-indiscernible sequence is indiscernible,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The following properties are equivallent:

- T is stable,
- in any model of *T*, any order-indiscernible sequence is indiscernible,
- there exists a notion of independence in models of *T* with good properties.

(日) (四) (문) (문) (문)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(日) (四) (문) (문) (문)

Theorem 12 (Sela)

A trosion-free hyperbolic group is stable.

Theorem 12 (Sela)

A trosion-free hyperbolic group is stable.

Consequence: existence of a good notion of independence in groups elementary equivalent to a trosion-free hyperbolic group.

<ロト <四ト <注入 <注下 <注下 <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem 13

Let G be a group. Suppose that G is stable and $G \prec G * \mathbb{Z}$. Then G is connected and any positive formula is equivalent to an existential positive one.

Theorem 13

Let G be a group. Suppose that G is stable and $G \prec G * \mathbb{Z}$. Then G is connected and any positive formula is equivalent to an existential positive one.

THE END

< □ > < @ > < 注 > < 注 > ... 注