Splitting Theorems and the JSJ: A survey

E. Swenson

June 9, 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Take something you don't understand.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Take something you don't understand.
- Break it up into (a finite number of) simpler pieces.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Take something you don't understand.
- Break it up into (a finite number of) simpler pieces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solve the problem for the pieces.

- Take something you don't understand.
- Break it up into (a finite number of) simpler pieces.
- Solve the problem for the pieces.
- Analyse how the pieces fit together to solve the original problem.

Definition A Graph of groups Δ is a connected graph with:

Definition

A Graph of groups Δ is a connected graph with:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• A Group G_v assigned to each vertex v

Definition

A Graph of groups Δ is a connected graph with:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- A Group G_v assigned to each vertex v
- ► A Group *G_e* assigned to each edge *e*.

Definition

A Graph of groups Δ is a connected graph with:

- A Group G_v assigned to each vertex v
- ► A Group *G_e* assigned to each edge *e*.
- For each end of an edge *e* determining a vertex *v*, there is a monomorphism *i* : G_e → G_v.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

To a graph of groups Δ we associate a graph of spaces K_{Δ} as follows:

To a graph of groups Δ we associate a graph of spaces K_{Δ} as follows:

For each edge or vertex u, we construct a complex K_u with $\pi_1(K_u) = G_u$.

To a graph of groups Δ we associate a graph of spaces K_{Δ} as follows:

For each edge or vertex u, we construct a complex K_u with $\pi_1(K_u) = G_u$.

(ロ) (同) (三) (三) (三) (○) (○)

► For each end of an edge *e* determining a vertex *v*, (abusing notation) choose a map $i : K_e \to K_v$ realizing $i : G_e \to G_v$.

To a graph of groups Δ we associate a graph of spaces K_{Δ} as follows:

- For each edge or vertex u, we construct a complex K_u with $\pi_1(K_u) = G_u$.
- For each end of an edge *e* determining a vertex *v*, (abusing notation) choose a map *i* : K_e → K_v realizing *i* : G_e → G_v.

Now

$$\mathcal{K}_{\Delta} = \left[igcup_{m{v} \in \Delta^{(0)}} \mathcal{K}_{m{v}}
ight] igcup_{m{e} \in \Delta^{(1)}} m{e} imes \mathcal{K}_{m{e}}
ight] / \sim$$

(ロ) (同) (三) (三) (三) (○) (○)

To a graph of groups Δ we associate a graph of spaces K_{Δ} as follows:

- For each edge or vertex u, we construct a complex K_u with $\pi_1(K_u) = G_u$.
- ▶ For each end of an edge *e* determining a vertex *v*, (abusing notation) choose a map $i : K_e \to K_v$ realizing $i : G_e \to G_v$.

Now

$$\mathcal{K}_{\Delta} = \left[igcup_{\mathbf{v}\in\Delta^{(0)}}\mathcal{K}_{\mathbf{v}}
ight] igcup_{\mathbf{e}\in\Delta^{(1)}} \mathbf{e} imes \mathcal{K}_{\mathbf{e}}
ight] / \sim$$

Where for a vertex v ∈ e, "{v} × K_e" is identified by ~ to i(K_e) ⊂ K_v

Let Δ be a graph of groups and K_{Δ} the corresponding complex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let Δ be a graph of groups and K_{Δ} the corresponding complex.

• We define the fundamental group of Δ , $\pi_1(\Delta) = \pi_1(K_\Delta)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let Δ be a graph of groups and K_{Δ} the corresponding complex.

- We define the fundamental group of Δ , $\pi_1(\Delta) = \pi_1(K_{\Delta})$.
- Given a group G, a graph of groups decomposition of G is a graph of groups Δ with π₁(Δ) ≅ G.

Let Δ be a graph of groups and K_{Δ} the corresponding complex.

- We define the fundamental group of Δ , $\pi_1(\Delta) = \pi_1(K_{\Delta})$.
- Given a group G, a graph of groups decomposition of G is a graph of groups Δ with π₁(Δ) ≅ G.
- A graph of groups decomposition △ of the group G is trivial if K_△ deformation retracts to a vertex space K_v.

Let Δ be a graph of groups and K_{Δ} the corresponding complex.

- We define the fundamental group of Δ , $\pi_1(\Delta) = \pi_1(K_{\Delta})$.
- Given a group G, a graph of groups decomposition of G is a graph of groups Δ with π₁(Δ) ≅ G.
- A graph of groups decomposition △ of the group G is trivial if K_△ deformation retracts to a vertex space K_v.

(日) (日) (日) (日) (日) (日) (日)

We say G splits over a subgroup H < G if there is a non-trivial graph of groups decomposition of G with one edge, whose group is H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

• Thus $\pi_1(\Delta) \cong F_5$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Consider the universal cover \tilde{K}_{Δ} .

- Consider the universal cover \tilde{K}_{Δ} .
- For each u, edge or vertex of △, we identify each copy K̃_u of the univeral cover of K_u to a point, then we obtain a tree T as a quotient of K̃_△.

- Consider the universal cover \tilde{K}_{Δ} .
- For each u, edge or vertex of Δ , we identify each copy \tilde{K}_u of the univeral cover of K_u to a point, then we obtain a tree T as a quotient of \tilde{K}_{Δ} .
- The action of G = π₁(K_Δ) on K̃_Δ extends to an action of G on T.

(日) (日) (日) (日) (日) (日) (日)

- Consider the universal cover \tilde{K}_{Δ} .
- For each u, edge or vertex of Δ , we identify each copy \tilde{K}_u of the univeral cover of K_u to a point, then we obtain a tree T as a quotient of \tilde{K}_{Δ} .
- The action of G = π₁(K_Δ) on K̃_Δ extends to an action of G on T.

(日) (日) (日) (日) (日) (日) (日)

• The quotient T/G is the graph Δ .

- Consider the universal cover \tilde{K}_{Δ} .
- For each u, edge or vertex of Δ , we identify each copy \tilde{K}_u of the univeral cover of K_u to a point, then we obtain a tree T as a quotient of \tilde{K}_{Δ} .
- The action of G = π₁(K_Δ) on K̃_Δ extends to an action of G on T.
- The quotient T/G is the graph Δ .
- The stabilizer of a vertex or edge over u ∈ Δ is a conjugate of G_u.

(日) (日) (日) (日) (日) (日) (日)

- Consider the universal cover \tilde{K}_{Δ} .
- For each u, edge or vertex of Δ , we identify each copy \tilde{K}_u of the univeral cover of K_u to a point, then we obtain a tree T as a quotient of \tilde{K}_{Δ} .
- The action of G = π₁(K_Δ) on K̃_Δ extends to an action of G on T.
- The quotient T/G is the graph Δ .
- The stabilizer of a vertex or edge over u ∈ Δ is a conjugate of G_u.

(日) (日) (日) (日) (日) (日) (日)

This process is reversible.

► Take a group G.

► Take a group *G*.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

► Take a group G.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Possible definitions of the word nice (Graded by Hirsh length).

▶ Take a group *G*.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

- Possible definitions of the word nice (Graded by Hirsh length).
 - Trivial

Take a group G.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

- Possible definitions of the word nice (Graded by Hirsh length).
 - Trivial
 - Finite

Take a group G.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

- Possible definitions of the word nice (Graded by Hirsh length).
 - Trivial
 - Finite
 - ▶ Virtually Z

Take a group G.

Find a (finite) non-trivial graph of groups decomposition for G with the "nicest" possible edge groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Possible definitions of the word nice (Graded by Hirsh length).
 - Trivial
 - Finite
 - ▶ Virtually Z
 - Virtually polycyclic
The two fundamental questions about a group G

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Does G split over a nice subgroup.

The two fundamental questions about a group G

- Does G split over a nice subgroup.
- Can we understand all splittings of G over nice subgroups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The two fundamental questions about a group G

- Does G split over a nice subgroup.
- Can we understand all splittings of G over nice subgroups
- We want to know that there is at least one splitting, but we don't want there to be too many splittings.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 If the fg torsion-free group G has more than one end then G splits over the trivial group (Stallings)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

When nice = trivial

If the fg torsion-free group G has more than one end then G splits over the trivial group (Stallings)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

If G is fg then G ≅ H₁ ★ ... H_n ★ F where the H_i are one-ended and F is free (Grushko).

When nice = trivial

- If the fg torsion-free group G has more than one end then G splits over the trivial group (Stallings)
- If G is fg then G ≅ H₁ ★ ... H_n ★ F where the H_i are one-ended and F is free (Grushko).
- The Grushko decomposition is "unique" (at least up to the *H_i* and the rank of *F*)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.

(日) (日) (日) (日) (日) (日) (日)

In K_∆, replace K_v with the graph of spaces for the decomposition of G_v.

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.

- In K_∆, replace K_v with the graph of spaces for the decomposition of G_v.
- ► This refines K_∆ by adding new edge-spaces and new vertex-spaces.

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.
- In K_∆, replace K_v with the graph of spaces for the decomposition of G_v.
- ► This refines K_∆ by adding new edge-spaces and new vertex-spaces.
- ► This process works whenever each edge-group of ∆ fixes a vertex in its action on T'.

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.
- In K_∆, replace K_v with the graph of spaces for the decomposition of G_v.
- ► This refines K_∆ by adding new edge-spaces and new vertex-spaces.
- ► This process works whenever each edge-group of ∆ fixes a vertex in its action on T'. (always true when the edge groups are finite)

- Look at two graph of groups decompositions △ and △' of G. Take the corresponding G-trees T a T'.
- If one of the vertex groups G_v of ∆ acts without fixed points on T'. Then we can decompose G_v as a graph of groups.
- In K_∆, replace K_v with the graph of spaces for the decomposition of G_v.
- ► This refines K_∆ by adding new edge-spaces and new vertex-spaces.
- ► This process works whenever each edge-group of ∆ fixes a vertex in its action on T'. (always true when the edge groups are finite)
- This process stops since rank A * B = rank A + rank B. (number of vertices is at most the rank).

When nice = finite

 If the fg group G has more than one end then G splits over a finite group(Stallings)

When nice = finite

- If the fg group G has more than one end then G splits over a finite group(Stallings)
- Every fp group G has a "unique" maximal graph of groups decomposition with finite edge groups (Dunwoody).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

When nice = finite

- If the fg group G has more than one end then G splits over a finite group(Stallings)
- Every fp group G has a "unique" maximal graph of groups decomposition with finite edge groups (Dunwoody).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

This is false if the p in fp is changed to a g (Dunwoody).

Dictionary from manifolds to graphs of groups

▶ Let *M* be a compact *n*-manifold.

Dictionary from manifolds to graphs of groups

- Let *M* be a compact *n*-manifold.
- ► A splitting of π₁(M) corresponds to an essential embedded surface of M.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► Let *M* a compact irreducible 3-manifold.

- ► Let *M* a compact irreducible 3-manifold.
- There exists a submanifold C ⊂ M (where C is a disjoint union of *I*-bundles and Seifert fibred manifolds).

- ▶ Let *M* a compact irreducible 3-manifold.
- ► There exists a submanifold C ⊂ M (where C is a disjoint union of *I*-bundles and Seifert fibred manifolds).
- Every essential map of a torus or annulus into *M* can be homotoped into *C*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► Let *M* a compact irreducible 3-manifold.
- ► There exists a submanifold C ⊂ M (where C is a disjoint union of *I*-bundles and Seifert fibred manifolds).
- Every essential map of a torus or annulus into *M* can be homotoped into *C*.
- Notice that the JSJ for 3-manifolds solves both questions at once:

(日) (日) (日) (日) (日) (日) (日)

- ► Let *M* a compact irreducible 3-manifold.
- ► There exists a submanifold C ⊂ M (where C is a disjoint union of *I*-bundles and Seifert fibred manifolds).
- Every essential map of a torus or annulus into *M* can be homotoped into *C*.
- Notice that the JSJ for 3-manifolds solves both questions at once:
 - If there is an essential map of a torus or annulus into M then C is not empty.

- ► Let *M* a compact irreducible 3-manifold.
- ► There exists a submanifold C ⊂ M (where C is a disjoint union of *I*-bundles and Seifert fibred manifolds).
- Every essential map of a torus or annulus into *M* can be homotoped into *C*.
- Notice that the JSJ for 3-manifolds solves both questions at once:
 - If there is an essential map of a torus or annulus into M then C is not empty.

(ロ) (同) (三) (三) (三) (三) (○) (○)

• Classifies the splittings of $\pi_1(M)$ over \mathbb{Z} or \mathbb{Z}^2 .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

► Let *M* be a compact three manifold.

- Let *M* be a compact three manifold.
- If *f* : S² → M is essential then there exists an essential embedding of S² into M. (Sphere theorem)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Let *M* be a compact three manifold.
- If *f* : S² → M is essential then there exists an essential embedding of S² into M. (Sphere theorem)
- Let A be an annulus. If f : A → M is proper and essential then there exists (up to "triangle groups don't split" etc.) an essential proper embedding of embedding of A into M (Annulus theorem).

(日) (日) (日) (日) (日) (日) (日)

- Let *M* be a compact three manifold.
- ▶ If $f : S^2 \to M$ is essential then there exists an essential embedding of S^2 into M. (Sphere theorem)
- Let A be an annulus. If f : A → M is proper and essential then there exists (up to "triangle groups don't split" etc.) an essential proper embedding of embedding of A into M (Annulus theorem).
- Let *T* be a torus and *f* : *T* → *M* essential, then there exists (which part of "triangle groups don't split" didn't you understand) an essential embedding of *T* into *M* (Torus Theorem).

- Let *M* be a compact three manifold.
- ▶ If $f : S^2 \to M$ is essential then there exists an essential embedding of S^2 into M. (Sphere theorem)
- Let A be an annulus. If f : A → M is proper and essential then there exists (up to "triangle groups don't split" etc.) an essential proper embedding of embedding of A into M (Annulus theorem).
- Let *T* be a torus and *f* : *T* → *M* essential, then there exists (which part of "triangle groups don't split" didn't you understand) an essential embedding of *T* into *M* (Torus Theorem).

Why are these theorems true?

- Let *M* be a compact three manifold.
- If f : S² → M is essential then there exists an essential embedding of S² into M. (Sphere theorem)
- Let A be an annulus. If f : A → M is proper and essential then there exists (up to "triangle groups don't split" etc.) an essential proper embedding of embedding of A into M (Annulus theorem).
- ► Let *T* be a torus and $f : T \to M$ essential, then there exists (which part of "triangle groups don't split" didn't you understand) an essential embedding of *T* into *M* (Torus Theorem).
- Why are these theorems true?
- Because π₁(M) is finitely generated and π₁ of S², A and T are virtually polycyclic (Dunwoody, S).

1. If ∂G is cut by a pair of points then *G* "splits" (TGDS) over a virtually \mathbb{Z} subgroup:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. If ∂G is cut by a pair of points then *G* "splits" (TGDS) over a virtually \mathbb{Z} subgroup:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1.1 Bowditch (for word hyperbolic)

 If ∂G is cut by a pair of points then G "splits" (TGDS) over a virtually Z subgroup:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1.1 Bowditch (for word hyperbolic)
- 1.2 Π. Π α π α ζoγ λ ov, S. (for CAT(0))

- If ∂G is cut by a pair of points then G "splits" (TGDS) over a virtually Z subgroup:
 - 1.1 Bowditch (for word hyperbolic)
 - 1.2 Π. Π α π α ζoγ λ ov, S. (for CAT(0))
- 2. If a locally finite Cayley graph of a fp group *G* is separated by a quasi-line then *G* "splits" (TCDS) over a virtually \mathbb{Z} subgroup ($\Pi \alpha \pi \alpha \zeta o \gamma \lambda o \upsilon$).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- If ∂G is cut by a pair of points then G "splits" (TGDS) over a virtually Z subgroup:
 - 1.1 Bowditch (for word hyperbolic)
 - 1.2 Π. Π α π α ζoγ λ ov, S. (for CAT(0))
- 2. If a locally finite Cayley graph of a fp group *G* is separated by a quasi-line then *G* "splits" (TCDS) over a virtually \mathbb{Z} subgroup ($\Pi \alpha \pi \alpha \zeta o \gamma \lambda o v$).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3. Notice that 2 implies 1.1 but not 1.2

Classifying splittings over less nice subgroups: JSJ

► In a surface, each non-trivial homotopy class of scc gives a different splitting over Z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで
Classifying splittings over less nice subgroups: JSJ

- ► In a surface, each non-trivial homotopy class of scc gives a different splitting over Z.
- However, we think we understand homotopy classes of scc on surfaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classifying splittings over less nice subgroups: JSJ

- ► In a surface, each non-trivial homotopy class of scc gives a different splitting over Z.
- However, we think we understand homotopy classes of scc on surfaces.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 We deal with this difficulty by introducing Quadratically Hanging vertex groups

Quadratically hanging vertex groups

(Torsion free case) A vertex v, of a graph of groups Δ (with \mathbb{Z} edge groups) is called Quadratically hanging if:

Quadratically hanging vertex groups

(Torsion free case) A vertex v, of a graph of groups Δ (with \mathbb{Z} edge groups) is called Quadratically hanging if:

There is a corresponding graph of spaces with K_v a hyperbolic surface with boundary such that:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Quadratically hanging vertex groups

(Torsion free case) A vertex v, of a graph of groups Δ (with \mathbb{Z} edge groups) is called Quadratically hanging if:

- There is a corresponding graph of spaces with K_v a hyperbolic surface with boundary such that:
 - Each boundary circle of K_v is identified to exactly one end of an edge cylinder of the form e × K_e

JSJ when nice= virtually \mathbb{Z}

▶ (Sela) Let *G* be a one-ended finitely presented group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- (Sela) Let G be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition △ of G satisfying

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- (Sela) Let G be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition ∆ of G satisfying

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• The edge groups are virtually \mathbb{Z} .

- ► (Sela) Let *G* be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition ∆ of G satisfying
 - The edge groups are virtually \mathbb{Z} .
 - ► The black vertices are quadratically hanging or virtually ℤ subgroups over which *G* splits

- ► (Sela) Let *G* be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition △ of G satisfying
 - The edge groups are virtually \mathbb{Z} .
 - ► The black vertices are quadratically hanging or virtually ℤ subgroups over which *G* splits

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• If G splits as over C as $A \star_C B$ or $A \star_C$ then:

- ► (Sela) Let *G* be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition △ of G satisfying
 - The edge groups are virtually \mathbb{Z} .
 - ► The black vertices are quadratically hanging or virtually ℤ subgroups over which *G* splits
 - If G splits as over C as $A \star_C B$ or $A \star_C$ then:
 - Every white vertex group of Δ is conjugate into A or B.

- ► (Sela) Let *G* be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition △ of G satisfying
 - The edge groups are virtually \mathbb{Z} .
 - ► The black vertices are quadratically hanging or virtually ℤ subgroups over which *G* splits
 - If G splits as over C as $A \star_C B$ or $A \star_C$ then:
 - Every white vertex group of Δ is conjugate into A or B.

(日) (日) (日) (日) (日) (日) (日)

• C is virtually conjugate into a black vertex group.

- ► (Sela) Let *G* be a one-ended finitely presented group.
- There is a bipartite (black and white) graph of groups decomposition △ of G satisfying
 - The edge groups are virtually \mathbb{Z} .
 - ► The black vertices are quadratically hanging or virtually ℤ subgroups over which G splits
 - If G splits as over C as $A \star_C B$ or $A \star_C$ then:
 - Every white vertex group of Δ is conjugate into A or B.
 - C is virtually conjugate into a black vertex group.
- ► Version for when nice = VPC (slender) (Dunwoody-Sageev, Fujiwara- $\Pi \alpha \pi \alpha \zeta o \gamma \lambda o v$, Scot-Swarup (MOA JSJ))

Given △, our putative JSJ decomposition with tree T, and C, virtually Z, over which G splits with tree T'.

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.

(ロ) (同) (三) (三) (三) (○) (○)

Either C fixes a vertex in its action on T

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.
- Either C fixes a vertex in its action on T
 - A white vertex group G_v of ∆ will act non-trivially on the tree T'.

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.
- Either C fixes a vertex in its action on T
 - A white vertex group G_v of ∆ will act non-trivially on the tree T'.
 - So G_v splits over a subgroup of C and we can replace the vertex space K_v with a graph of spaces (increasing the number of vertices)

(ロ) (同) (三) (三) (三) (○) (○)

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.
- Either C fixes a vertex in its action on T
 - A white vertex group G_v of ∆ will act non-trivially on the tree T'.
 - So G_v splits over a subgroup of C and we can replace the vertex space K_v with a graph of spaces (increasing the number of vertices)

(ロ) (同) (三) (三) (三) (○) (○)

► Or C acts hyperbolically on T and some edge group E of ∆ acts hyperbolically on T'

- Given △, our putative JSJ decomposition with tree T, and C, virtually Z, over which G splits with tree T'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.
- Either C fixes a vertex in its action on T
 - A white vertex group G_v of ∆ will act non-trivially on the tree T'.
 - So G_v splits over a subgroup of C and we can replace the vertex space K_v with a graph of spaces (increasing the number of vertices)
- ► Or C acts hyperbolically on T and some edge group E of ∆ acts hyperbolically on T'
 - We can refine K_∆ such that C and E are represented as centerlines of properly embedded annuli which cross in K_∆.

- ► Given △, our putative JSJ decomposition with tree *T*, and *C*, virtually Z, over which *G* splits with tree *T*'.
- Suppose C is not virtually conjugate into an black vertex group of Δ.
- Either C fixes a vertex in its action on T
 - A white vertex group G_v of ∆ will act non-trivially on the tree T'.
 - So G_v splits over a subgroup of C and we can replace the vertex space K_v with a graph of spaces (increasing the number of vertices)
- ► Or C acts hyperbolically on T and some edge group E of ∆ acts hyperbolically on T'
 - We can refine K_△ such that C and E are represented as centerlines of properly embedded annuli which cross in K_△.
 - ► This gives a surface with boundary as a subset of K_Δ which gives (or enlarges) a quadratically hanging vertex space.

Endgame: When does it end?

 (Bestvina-Feighn)There is bound on the "complexity" of a graph of group decomposition for fp *G* with small edge groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Endgame: When does it end?

- (Bestvina-Feighn)There is bound on the "complexity" of a graph of group decomposition for fp *G* with small edge groups.
- ► (Sela, Weidmann) There is a bound on the number of vertices in a k-acylindrical graph of groups decomposition of a non-cyclic freely indecomposible fg group (= 1 + 2k(rank(G) - 1))

Endgame: When does it end?

- (Bestvina-Feighn)There is bound on the "complexity" of a graph of group decomposition for fp *G* with small edge groups.
- (Sela, Weidmann) There is a bound on the number of vertices in a *k*-acylindrical graph of groups decomposition of a non-cyclic freely indecomposible fg group (= 1 + 2k(rank(G) − 1))
- The action of a group on a tree is k-acylindrical if the diameter of a fixed point set is at most k (non-trivial group element)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

On can construct a JSJ decomposition from the
 ∂G (if it has one)

Boundary JSJ

- On can construct a JSJ decomposition from the
 ∂G (if it has one)
- (Bowditch) Word hyperbolic (this gives a quasi-isometry invariant JSJ)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Boundary JSJ

- On can construct a JSJ decomposition from the
 ∂G (if it has one)
- (Bowditch) Word hyperbolic (this gives a quasi-isometry invariant JSJ)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► (Π, S) CAT(0)

Boundary JSJ

- On can construct a JSJ decomposition from the
 ∂G (if it has one)
- (Bowditch) Word hyperbolic (this gives a quasi-isometry invariant JSJ)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► (Π, S) CAT(0)
- The idea is to analyse the cut pair structure of ∂G

For a metric continuum Z without cut points, there is an \mathbb{R} -tree T which encodes all cut-pair (pair $\{a, b\}$ such that $Z - \{a, b\}$ is not conneted) separation information of Z

For a metric continuum Z without cut points, there is an \mathbb{R} -tree T which encodes all cut-pair (pair $\{a, b\}$ such that $Z - \{a, b\}$ is not conneted) separation information of Z

A subset A ⊂ Z (|A| > 1) is call *inseparable* if there is no cut pair in Z which separates points of A.

For a metric continuum Z without cut points, there is an \mathbb{R} -tree T which encodes all cut-pair (pair $\{a, b\}$ such that $Z - \{a, b\}$ is not conneted) separation information of Z

- A subset A ⊂ Z (|A| > 1) is call *inseparable* if there is no cut pair in Z which separates points of A.
- A subset B ⊂ Z is call a cyclic subset of Z if we have the following picture:

For a metric continuum Z without cut points, there is an \mathbb{R} -tree T which encodes all cut-pair (pair $\{a, b\}$ such that $Z - \{a, b\}$ is not conneted) separation information of Z

- A subset A ⊂ Z (|A| > 1) is call *inseparable* if there is no cut pair in Z which separates points of A.
- A subset B ⊂ Z is call a cyclic subset of Z if we have the following picture:

For a metric continuum Z without cut points, there is an \mathbb{R} -tree T which encodes all cut-pair (pair $\{a, b\}$ such that $Z - \{a, b\}$ is not conneted) separation information of Z

- A subset A ⊂ Z (|A| > 1) is call *inseparable* if there is no cut pair in Z which separates points of A.
- A subset B ⊂ Z is call a cyclic subset of Z if we have the following picture:

(日) (日) (日) (日) (日) (日) (日)

A necklace is a maximal cyclic subset

The pretree \mathcal{R}

The elements of \mathcal{R} are:

The necklaces

The pretree \mathcal{R}

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The pretree \mathcal{R}

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The inseparable cut pairs.
The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For any $x, y, z \in \mathcal{R}$,

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For any $x, y, z \in \mathcal{R}$,

•
$$[x, z] \subset [x, y] \cup [y, z]$$

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For any $x, y, z \in \mathcal{R}$,

$$\blacktriangleright [x,z] \subset [x,y] \cup [y,z]$$

• if $z \in (x, y)$ then $x \notin (y, z)$

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- For any $x, y, z \in \mathcal{R}$,
 - $[x, z] \subset [x, y] \cup [y, z]$
 - if $z \in (x, y)$ then $x \notin (y, z)$
- Thus R is a pretree.

The elements of \mathcal{R} are:

- The necklaces
- The maximal inseparable sets
- The inseparable cut pairs.

For $x, y, z \in \mathcal{R}$, we say $y \in (x, z)$ if y "separates" x from z.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- For any $x, y, z \in \mathcal{R}$,
 - $[x, z] \subset [x, y] \cup [y, z]$
 - if $z \in (x, y)$ then $x \notin (y, z)$
- Thus R is a pretree.
- ▶ $x, y \in \mathcal{R}$ are called adjacent if $(x, y) = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

▶ Two elements of *R* are adjacent if:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▶ Two elements of *R* are adjacent if:

 One of them is an inseparable cut pair contained as a proper subset of the other.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Two elements of R are adjacent if:
 - One of them is an inseparable cut pair contained as a proper subset of the other.
 - One of them, x, is a necklace and the other, y, is maximal inseparable with [x̄ − x] ∩ y ≠ Ø. (Doesn't happen when Z is locally connected)

(日) (日) (日) (日) (日) (日) (日)

- Two elements of R are adjacent if:
 - One of them is an inseparable cut pair contained as a proper subset of the other.
 - One of them, x, is a necklace and the other, y, is maximal inseparable with [x̄ − x] ∩ y ≠ Ø. (Doesn't happen when Z is locally connected)

(日) (日) (日) (日) (日) (日) (日)

• Every interval in \mathcal{R} has the supreme property.

 Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Every closed interval of T is an arc.

- Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*
- Every closed interval of T is an arc.
- On can put a topology on *T* which preserves the interval structure, such that *T* is homeomorphic to an ℝ-tree.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*
- Every closed interval of T is an arc.
- On can put a topology on *T* which preserves the interval structure, such that *T* is homeomorphic to an ℝ-tree.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ When Z is locally connected:

- Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*
- Every closed interval of T is an arc.
- On can put a topology on *T* which preserves the interval structure, such that *T* is homeomorphic to an ℝ-tree.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ▶ When Z is locally connected:
 - T is a simplical tree with vertex set \mathcal{R} .

- Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*
- Every closed interval of T is an arc.
- On can put a topology on *T* which preserves the interval structure, such that *T* is homeomorphic to an ℝ-tree.
- When Z is locally connected:
 - T is a simplical tree with vertex set \mathcal{R} .
 - ► We color the inseparable pair vertices black and the other vertices white, and *T* is bipartite.

(日) (日) (日) (日) (日) (日) (日)

- Gluing copies of the unit interval between adjacent points of *R*, we obtain a pretree *T*
- Every closed interval of T is an arc.
- On can put a topology on *T* which preserves the interval structure, such that *T* is homeomorphic to an ℝ-tree.
- ▶ When Z is locally connected:
 - T is a simplical tree with vertex set \mathcal{R} .
 - ► We color the inseparable pair vertices black and the other vertices white, and *T* is bipartite.

(日) (日) (日) (日) (日) (日) (日)

The black vertices of T have finite valence

Word hyperbolic example

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

The boundary JSJ

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Consider the CAT(0) graph of spaces X consisting of three tori glued along simple closed curves.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Consider the CAT(0) graph of spaces X consisting of three tori glued along simple closed curves.

There are three vertex groups (all \mathbb{Z}^2) and two \mathbb{Z} edge groups.

・ コット (雪) (小田) (コット 日)

Consider the CAT(0) graph of spaces X consisting of three tori glued along simple closed curves.

There are three vertex groups (all \mathbb{Z}^2) and two \mathbb{Z} edge groups. If we throw out the blue vertex, we are left with $F_2 \times \mathbb{Z}$ whose boundary is the suspension of a Cantor set.

Consider the CAT(0) graph of spaces X consisting of three tori glued along simple closed curves.

There are three vertex groups (all \mathbb{Z}^2) and two \mathbb{Z} edge groups. If we throw out the blue vertex, we are left with $F_2 \times \mathbb{Z}$ whose boundary is the suspension of a Cantor set. Consider a single green circle in ∂X and all circles which intersect it.

There are no necklaces!!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The maximal inseparable sets are:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- The maximal inseparable sets are:
 - The green circles

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
► The inseparable cut pairs are either pink or blue.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices

► The inseparable cut pairs are either pink or blue.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs

- ► The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs
- This gives us a graph of groups decomposition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ► The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs

This gives us a graph of groups decomposition

 $[F_2\times\mathbb{Z}]*_{\mathbb{Z}^2}\mathbb{Z}^2*_{\mathbb{Z}^2}[F_2\times\mathbb{Z}]$

(日) (日) (日) (日) (日) (日) (日)

- The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs
- This gives us a graph of groups decomposition

$$[F_2 imes \mathbb{Z}] *_{\mathbb{Z}^2} \mathbb{Z}^2 *_{\mathbb{Z}^2} [F_2 imes \mathbb{Z}]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• The \mathbb{Z}^2 vertex corresponds to a green circle.

- The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs
- This gives us a graph of groups decomposition

$$[F_2 \times \mathbb{Z}] *_{\mathbb{Z}^2} \mathbb{Z}^2 *_{\mathbb{Z}^2} [F_2 \times \mathbb{Z}]$$

- The \mathbb{Z}^2 vertex corresponds to a green circle.
- One of the $F_2 \times \mathbb{Z}$ corresponds to a pink inseparable pair.

(日) (日) (日) (日) (日) (日) (日)

- ► The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs
- This gives us a graph of groups decomposition

$$[F_2 \times \mathbb{Z}] *_{\mathbb{Z}^2} \mathbb{Z}^2 *_{\mathbb{Z}^2} [F_2 \times \mathbb{Z}]$$

- The \mathbb{Z}^2 vertex corresponds to a green circle.
- One of the $F_2 \times \mathbb{Z}$ corresponds to a pink inseparable pair.
- The other $F_2 \times \mathbb{Z}$ corresponds to a blue inseparable pair.
- ▶ Whoops, weren't the edge groups supposed to be ℤ?

- ► The inseparable cut pairs are either pink or blue.
- The maximal inseparable sets are:
 - The green circles
 - Blue arcs joining blue cut pairs
 - Pink arcs joining pink vertices
 - Limit arcs
- This gives us a graph of groups decomposition

$$[F_2\times\mathbb{Z}]*_{\mathbb{Z}^2}\mathbb{Z}^2*_{\mathbb{Z}^2}[F_2\times\mathbb{Z}]$$

- The \mathbb{Z}^2 vertex corresponds to a green circle.
- One of the $F_2 \times \mathbb{Z}$ corresponds to a pink inseparable pair.
- The other $F_2 \times \mathbb{Z}$ corresponds to a blue inseparable pair.
- ▶ Whoops, weren't the edge groups supposed to be ℤ?
- Well, yes but we can deform it by pushing a ℤ from each F₂ into the central vertex.