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Comparison triangle

I Let X be a proper geodesic metric space.

I For a geodesic triangle ∆(p,q, r) in X .
I There is a triangle ∆′(p′,q′, r ′) in E2 with the same side

lengths
I The triangle ∆ satisfies the CAT(0) condition if it is at least

as thin as ∆′

I That is for any a,b ∈ ∆ with comparison points a′,b′ ∈ ∆′,
we have d(a,b) ≤ d(a′,b′).
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Setting

I We say X is CAT(0) if all geodesic triangles in X satisfy
this property.

I For the duration we assume that X is a CAT(0) space and
G a group of isometries acting on X .
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Angles in CAT(0)

I We define the Euclidian comparison angle,
∠̄p(q, r) = ∠p′(q′, r ′)

I Notice that if a ∈ (p,q] and b ∈ (p, r ] then
∠̄p(a,b) ≤ ∠̄p(q, r)

I Let α, β be unit speed geodesics from p with
α(0) = β(0) = p.

I Notice that f (s, t) = ∠̄p(α(s), β(t)) is an increasing function
of s and t (so all limits exist)

I When α and β run through q and r resp. then we define

∠p(q, r) = lim
s,t→0

∠̄p(α(s), β(t))
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Boundary of X

The ∂X consists of equivalence classes of geodesic rays. Two
unit speed geodesic rays R,S : [0,∞)→ X are equivalent if the
function d(R(t),S(t)) is bounded.

R

S

For any ray R and any point p, there is a ray from p equivalent
to R obtained thusly:



Choosing a base point
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Two rays based at the same point are close if they remain close
for a long time. This gives a topology on X̄ = X ∪ ∂X under
which ∂X is compact metrizable and finite dimensional provided
X/G is compact. Also G acts on ∂X by homeomorphisms
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Comparison angle on X̄

I Let p ∈ X and q, r ∈ X̄ , and α : [0, c]→ X̄ and
β : [0,d ]→ X̄ unit speed geodesics from p to q and r resp.,
where c,d ∈ (0,∞] (Warning: Abuse of notation alert).

I We can now define

∠̄p(q, r) := lim
s→c, t→d

∠̄p(α(s), β(t))

I For any q, r ∈ ∂X , we define ∠(q, r) = ∠̄p(q, r)
(independent of p)
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Angle metric on ∂X

I This ∠ gives us a new (finer) metric called the angle metric
on ∂X .

I The path metric associated to the angle metric is called the
Tits metric dT .

I If q, r ∈ ∂X with ∠(q, r) < π, then dT (q, r) = ∠(q, r).
I If X is δ-hyperbolic, then dT (q, r) =∞ for q 6= r .
I When X is not δ-hyperbolic then "generically"

dT ((∂X )2) = [0,∞]
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π-Convergence
For (gi) ⊂ G is a π-convergence sequence if ∃p,n ∈ ∂X such
that for any θ ∈ [0, π] and for any compact C ⊂ X − B(n, θ),
gi(C)→ B(p, π − θ) (Closed Tits balls).

B(n,θ) B(p,π−θ)

C 

B(n,θ) B(p,π−θ)

C 

B(n,θ) B(p,π−θ)g (C) 
1 
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g (C) 
2 

B(n,θ) B(p,π−θ)

g (C) 
3 

B(n,θ) B(p,π−θ)

g (C) 
i 

If G is a discrete group of isometries of X , then every sequence
of distinct elements of G has a π-convergence subsequence.
(S, Π. Παπαζoγλoυ)
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Ballmann’s Conjecture

We now restrict to the setting where G acts cocompactly and
discretely on the CAT(0) space X .

Conjecture
The Tits diameter of ∂X is π or∞.

Theorem (Ballmann and Buylao)
If I is a proper closed minimal G-invariant subset of ∂X, then for
any a ∈ I, ∂X ⊂ B(a, π).

Corollary
If the Tits diameter of ∂X is more than 2π then it is∞.
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Theroem (S, Π. Παπαζoγλoυ) If the Tits diameter of
∂X is more than 3π

2 then it is infinite

I Proof: We may assume that G fixes no point of ∂X ..

I Let I ⊂ ∂X be proper closed minimal and G-invariant.
I Let p ∈ ∂X and choose a π-convergence sequence (gi)

with p and some n ∈ ∂X .
I Since G fixes no point, then I 6⊂ B(n, π2 − δ), so take

i ∈ I − B(n, π2 − δ).
I Passing to a subsequence gn(i)→ j ∈ B(p, π2 + δ)

I Thus dT (p, I) ≤ π
2 , so ∂X ⊂ B(p, 3π

2 )
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What else does π-convergence make look way too
easy?

I Theorem (Ballmann): If g is hyperbolic and dT (g+,g−) > π
then dT ({g±}, ∂X − {g±}) =∞

I Theorem (S): If G has no infinite torsion subgroup then ∂X
has no cut point.

I In fact we have Theorem (S, Π. Παπαζoγλoυ): ∂X has no
cut point.

I If H < G is not virtually cyclic and diamT (ΛH) > 2π then
F2 < H

(in particular H is not torsion)

.
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I Notice that θi → θ := ∠̄y (z, c) and limφi ≥ φ := ∠̄u(v , ĉ)
whenever gi(c)→ ĉ.

I If φi + θi ≤ π, then φ+ θ ≤ π.
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θ

c
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^

We can choose y ,u so that ∠(n, c) ∼= θ and ∠(p, ĉ) ∼= φ. Thus
∠(n, c) + ∠(p, ĉ) ≤ π or π-convergence.
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Showing φi + θi ≤ π

I By monotonicity of comparison angles, it suffices to show
that the comparison angle sum of an ideal triangle is at
most π.

I Let a,b ∈ X and c ∈ ∂X and θ = ∠̄a(b, c) and φ = ∠̄b(a, c).
I If θ + φ > π, then ∃a′ ∈ [a, c), b′ ∈ [b, c) such that

∠̄a(b,a′) + ∠̄b(a,b′) > π and d(a,a′) = d(b,b′).
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Comparing the quadrilateral a′abb′ to a Euclidian
quaduadrilateral we see that d(a,b) < d(a′,b′) contradicting
convexity of the metric on X .
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This completes the proof of
π-convergence


