Rank Rigidity in CAT(0)

E. Swenson

June 3, 2008

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

► Let *X* be a proper geodesic metric space.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

▶ Let *X* be a proper geodesic metric space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For a geodesic triangle $\Delta(p, q, r)$ in X.

- ▶ Let *X* be a proper geodesic metric space.
- For a geodesic triangle $\Delta(p, q, r)$ in X.
- There is a triangle ∆'(p', q', r') in ℝ² with the same side lengths

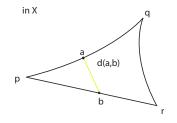
(ロ) (同) (三) (三) (三) (○) (○)

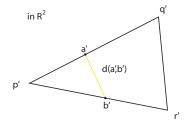
- ▶ Let *X* be a proper geodesic metric space.
- For a geodesic triangle $\Delta(p, q, r)$ in X.
- ► There is a triangle ∆'(p', q', r') in E² with the same side lengths
- The triangle ∆ satisfies the CAT(0) condition if it is at least as thin as ∆'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► Let *X* be a proper geodesic metric space.
- For a geodesic triangle $\Delta(p, q, r)$ in X.
- ► There is a triangle ∆'(p', q', r') in E² with the same side lengths
- The triangle Δ satisfies the CAT(0) condition if it is at least as thin as Δ'
- That is for any a, b ∈ Δ with comparison points a', b' ∈ Δ', we have d(a, b) ≤ d(a', b').

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>





4 日 > 4 日 > 4 目 > 4 目 > 1 日 - の Q (?)

Setting

We say X is CAT(0) if all geodesic triangles in X satisfy this property.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Setting

- We say X is CAT(0) if all geodesic triangles in X satisfy this property.
- ► For the duration we assume that X is a CAT(0) space and G a group of isometries acting on X.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• We define the Euclidian comparison angle, $\overline{\angle}_{p}(q,r) = \angle_{p'}(q',r')$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- We define the Euclidian comparison angle, $\overline{\angle}_{p}(q,r) = \angle_{p'}(q',r')$
- ▶ Notice that if $a \in (p, q]$ and $b \in (p, r]$ then $\overline{\angle}_p(a, b) \le \overline{\angle}_p(q, r)$

(ロ) (同) (三) (三) (三) (○) (○)

- We define the Euclidian comparison angle, $\bar{\angle}_{\rho}(q,r) = \angle_{\rho'}(q',r')$
- ▶ Notice that if $a \in (p, q]$ and $b \in (p, r]$ then $\overline{\angle}_p(a, b) \le \overline{\angle}_p(q, r)$
- Let α, β be unit speed geodesics from p with $\alpha(0) = \beta(0) = p$.

(日) (日) (日) (日) (日) (日) (日)

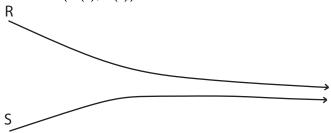
- We define the Euclidian comparison angle, $\overline{\angle}_{p}(q,r) = \angle_{p'}(q',r')$
- ▶ Notice that if $a \in (p, q]$ and $b \in (p, r]$ then $\overline{\angle}_{\rho}(a, b) \leq \overline{\angle}_{\rho}(q, r)$
- Let α, β be unit speed geodesics from p with $\alpha(0) = \beta(0) = p$.
- Notice that f(s, t) = ∠̄_p(α(s), β(t)) is an increasing function of s and t (so all limits exist)

- We define the Euclidian comparison angle, $\overline{\angle}_{p}(q,r) = \angle_{p'}(q',r')$
- ▶ Notice that if $a \in (p, q]$ and $b \in (p, r]$ then $\overline{\angle}_p(a, b) \le \overline{\angle}_p(q, r)$
- Let α, β be unit speed geodesics from p with $\alpha(0) = \beta(0) = p$.
- Notice that f(s, t) = ∠̄_p(α(s), β(t)) is an increasing function of s and t (so all limits exist)
- When α and β run through q and r resp. then we define

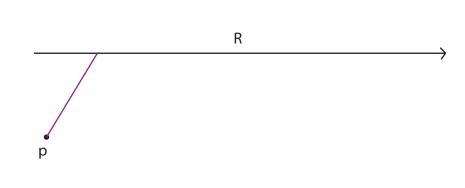
$$\angle_{p}(q,r) = \lim_{s,t\to 0} \overline{\angle}_{p}(\alpha(s),\beta(t))$$

Boundary of X

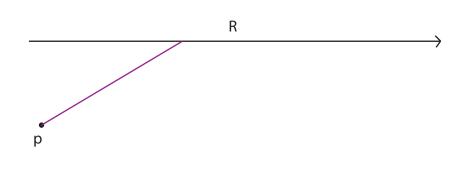
The ∂X consists of equivalence classes of geodesic rays. Two unit speed geodesic rays $R, S : [0, \infty) \to X$ are equivalent if the function d(R(t), S(t)) is bounded.

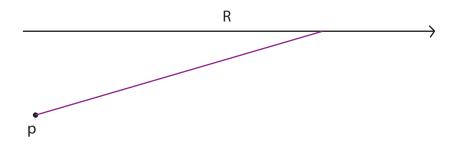


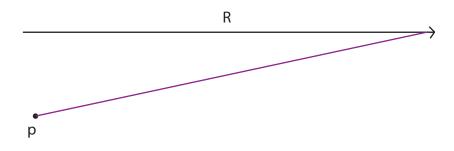
For any ray R and any point p, there is a ray from p equivalent to R obtained thusly:



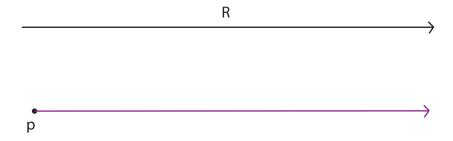
▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?







▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@



Two rays based at the same point are close if they remain close for a long time.

Two rays based at the same point are close if they remain close for a long time. This gives a topology on $\overline{X} = X \cup \partial X$ under which ∂X is compact metrizable and finite dimensional provided X/G is compact. Also *G* acts on ∂X by homeomorphisms

Comparison angle on \bar{X}

▶ Let $p \in X$ and $q, r \in \overline{X}$, and $\alpha : [0, c] \to \overline{X}$ and $\beta : [0, d] \to \overline{X}$ unit speed geodesics from *p* to *q* and *r* resp., where $c, d \in (0, \infty]$ (Warning: Abuse of notation alert).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Comparison angle on \bar{X}

▶ Let $p \in X$ and $q, r \in \overline{X}$, and $\alpha : [0, c] \to \overline{X}$ and $\beta : [0, d] \to \overline{X}$ unit speed geodesics from *p* to *q* and *r* resp., where $c, d \in (0, \infty]$ (Warning: Abuse of notation alert).

We can now define

$$\bar{\angle}_{p}(q,r) := \lim_{s \to c, t \to d} \bar{\angle}_{p}(\alpha(s),\beta(t))$$

(日) (日) (日) (日) (日) (日) (日)

Comparison angle on \bar{X}

- ▶ Let $p \in X$ and $q, r \in \overline{X}$, and $\alpha : [0, c] \to \overline{X}$ and $\beta : [0, d] \to \overline{X}$ unit speed geodesics from *p* to *q* and *r* resp., where $c, d \in (0, \infty]$ (Warning: Abuse of notation alert).
- We can now define

$$\bar{\angle}_{\rho}(q,r) := \lim_{s \to c, t \to d} \bar{\angle}_{\rho}(\alpha(s), \beta(t))$$

(日) (日) (日) (日) (日) (日) (日)

For any $q, r \in \partial X$, we define $\angle(q, r) = \overline{\angle}_p(q, r)$ (independent of p)

This ∠ gives us a new (finer) metric called the angle metric on ∂X.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- This ∠ gives us a new (finer) metric called the angle metric on ∂X.
- ► The path metric associated to the angle metric is called the Tits metric *d_T*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- This ∠ gives us a new (finer) metric called the angle metric on ∂X.
- ► The path metric associated to the angle metric is called the Tits metric *d_T*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ If $q, r \in \partial X$ with $\angle(q, r) < \pi$, then $d_T(q, r) = \angle(q, r)$.

- This ∠ gives us a new (finer) metric called the angle metric on ∂X.
- ► The path metric associated to the angle metric is called the Tits metric *d_T*.

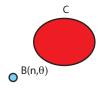
(ロ) (同) (三) (三) (三) (○) (○)

- ▶ If $q, r \in \partial X$ with $\angle(q, r) < \pi$, then $d_T(q, r) = \angle(q, r)$.
- ▶ If *X* is δ -hyperbolic, then $d_T(q, r) = \infty$ for $q \neq r$.

- This ∠ gives us a new (finer) metric called the angle metric on ∂X.
- ► The path metric associated to the angle metric is called the Tits metric *d_T*.

- ▶ If $q, r \in \partial X$ with $\angle(q, r) < \pi$, then $d_T(q, r) = \angle(q, r)$.
- ▶ If *X* is δ -hyperbolic, then $d_T(q, r) = \infty$ for $q \neq r$.
- When X is not δ-hyperbolic then "generically" d_T((∂X)²) = [0,∞]

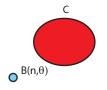
For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).



ο B(p,π-θ)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

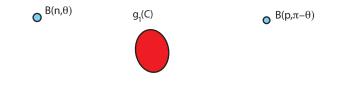
For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).



ο B(p,π-θ)

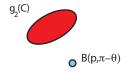
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).



For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $O^{B(n,\theta)}$

For $(g_i) \subset G$ is a π -convergence sequence if $\exists p, n \in \partial X$ such that for any $\theta \in [0, \pi]$ and for any compact $C \subset X - B(n, \theta)$, $g_i(C) \to B(p, \pi - \theta)$ (Closed Tits balls).

If *G* is a discrete group of isometries of *X*, then every sequence of distinct elements of *G* has a π -convergence subsequence. (S, Π . $\Pi \alpha \pi \alpha \zeta o \gamma \lambda o v$)

We now restrict to the setting where G acts cocompactly and discretely on the CAT(0) space X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We now restrict to the setting where G acts cocompactly and discretely on the CAT(0) space X.

Conjecture

The Tits diameter of ∂X is π or ∞ .

We now restrict to the setting where G acts cocompactly and discretely on the CAT(0) space X.

Conjecture

The Tits diameter of ∂X is π or ∞ .

Theorem (Ballmann and Buylao)

If I is a proper closed minimal G-invariant subset of ∂X , then for any $a \in I$, $\partial X \subset B(a, \pi)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We now restrict to the setting where G acts cocompactly and discretely on the CAT(0) space X.

Conjecture

The Tits diameter of ∂X is π or ∞ .

Theorem (Ballmann and Buylao)

If I is a proper closed minimal G-invariant subset of ∂X , then for any $a \in I$, $\partial X \subset B(a, \pi)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Corollary

If the Tits diameter of ∂X is more than 2π then it is ∞ .

Theroem (S, Π . $\Pi \alpha \pi \alpha \zeta o \gamma \lambda o \upsilon$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

▶ Proof: We may assume that *G* fixes no point of ∂X ..

Theroem (S, Π . $\Pi \alpha \pi \alpha \zeta o \gamma \lambda o \upsilon$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

- Proof: We may assume that G fixes no point of ∂X ..
- Let $I \subset \partial X$ be proper closed minimal and *G*-invariant.

(ロ) (同) (三) (三) (三) (○) (○)

Theroem (S, Π. Π $\alpha \pi \alpha \zeta o \gamma \lambda o v$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

- Proof: We may assume that G fixes no point of ∂X ..
- Let $I \subset \partial X$ be proper closed minimal and *G*-invariant.
- Let *p* ∈ ∂X and choose a π-convergence sequence (*g_i*) with *p* and some *n* ∈ ∂X.

(ロ) (同) (三) (三) (三) (○) (○)

Theroem (S, Π. Π $\alpha \pi \alpha \zeta o \gamma \lambda o v$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

- Proof: We may assume that *G* fixes no point of ∂X ..
- Let $I \subset \partial X$ be proper closed minimal and *G*-invariant.
- Let *p* ∈ ∂X and choose a π-convergence sequence (*g_i*) with *p* and some *n* ∈ ∂X.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Since *G* fixes no point, then $I \not\subset B(n, \frac{\pi}{2} - \delta)$, so take $i \in I - B(n, \frac{\pi}{2} - \delta)$.

Theroem (S, Π. Π $\alpha \pi \alpha \zeta o \gamma \lambda o v$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

- Proof: We may assume that *G* fixes no point of ∂X ..
- Let $I \subset \partial X$ be proper closed minimal and *G*-invariant.
- Let *p* ∈ ∂X and choose a π-convergence sequence (*g_i*) with *p* and some *n* ∈ ∂X.

- Since *G* fixes no point, then $I \not\subset B(n, \frac{\pi}{2} \delta)$, so take $i \in I B(n, \frac{\pi}{2} \delta)$.
- ▶ Passing to a subsequence $g_n(i) \rightarrow j \in B(p, \frac{\pi}{2} + \delta)$

Theroem (S, Π . $\Pi \alpha \pi \alpha \zeta o \gamma \lambda o \upsilon$) If the Tits diameter of ∂X is more than $\frac{3\pi}{2}$ then it is infinite

- Proof: We may assume that *G* fixes no point of ∂X ..
- Let $I \subset \partial X$ be proper closed minimal and *G*-invariant.
- Let *p* ∈ ∂X and choose a π-convergence sequence (*g_i*) with *p* and some *n* ∈ ∂X.

- Since *G* fixes no point, then $I \not\subset B(n, \frac{\pi}{2} \delta)$, so take $i \in I B(n, \frac{\pi}{2} \delta)$.
- ▶ Passing to a subsequence $g_n(i) \rightarrow j \in B(p, \frac{\pi}{2} + \delta)$
- Thus $d_T(p, l) \leq \frac{\pi}{2}$, so $\partial X \subset B(p, \frac{3\pi}{2})$

Theorem (Ballmann): If g is hyperbolic and d_T(g⁺, g⁻) > π then d_T({g[±]}, ∂X - {g[±]}) = ∞

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Theorem (Ballmann): If g is hyperbolic and d_T(g⁺, g[−]) > π then d_T({g[±]}, ∂X - {g[±]}) = ∞
- ► Theorem (S): If G has no infinite torsion subgroup then ∂X has no cut point.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Theorem (Ballmann): If g is hyperbolic and d_T(g⁺, g[−]) > π then d_T({g[±]}, ∂X - {g[±]}) = ∞
- ► Theorem (S): If G has no infinite torsion subgroup then ∂X has no cut point.
- In fact we have Theorem (S, Π. Παπαζογλου): ∂X has no cut point.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

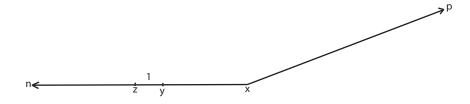
- Theorem (Ballmann): If g is hyperbolic and d_T(g⁺, g[−]) > π then d_T({g[±]}, ∂X - {g[±]}) = ∞
- ► Theorem (S): If G has no infinite torsion subgroup then ∂X has no cut point.
- In fact we have Theorem (S, Π. Παπαζογλου): ∂X has no cut point.
- If H < G is not virtually cyclic and diam_T(∧H) > 2π then F₂ < H</p>

- Theorem (Ballmann): If g is hyperbolic and d_T(g⁺, g[−]) > π then d_T({g[±]}, ∂X - {g[±]}) = ∞
- ► Theorem (S): If G has no infinite torsion subgroup then ∂X has no cut point.
- In fact we have Theorem (S, Π. Παπαζογλου): ∂X has no cut point.
- If H < G is not virtually cyclic and diam_T(ΛH) > 2π then F₂ < H (in particular H is not torsion).</p>

▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

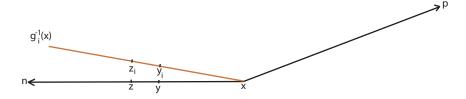
- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1,



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

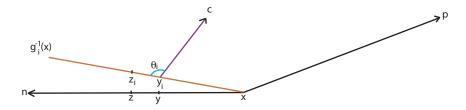
- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- ▶ Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto $[x, g_i^{-1}(x)]$



イロト 不良 とくほ とくほう 二日

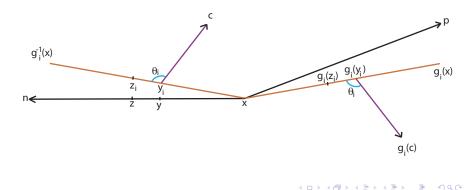
- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- Let y ∈ [x, n) and z ∈ [y, n) with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto [x, g_i⁻¹(x)]

• Let
$$\theta_i = \overline{\angle}_{y_i}(z_i, c)$$

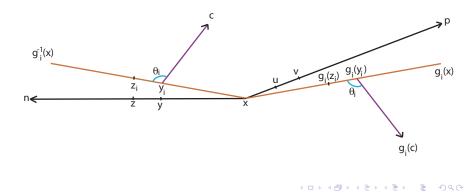


・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- ▶ Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto $[x, g_i^{-1}(x)]$
- ► Let $\theta_i = \overline{\angle}_{y_i}(z_i, c)$ apply g_i so $\theta_i = \overline{\angle}_{g_i(y_i)}(g_i(z_i), g_i(c))$

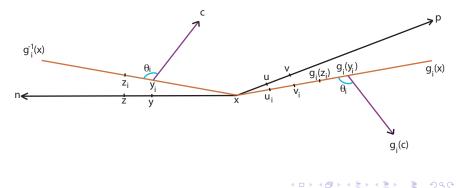


- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- ▶ Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto $[x, g_i^{-1}(x)]$
- ► Let $\theta_i = \overline{\angle}_{y_i}(z_i, c)$ apply g_i so $\theta_i = \overline{\angle}_{g_i(y_i)}(g_i(z_i), g_i(c))$
- Let *u* ∈ [*x*, *p*), *v* ∈ [*u*, *p*) with *d*(*u*, *v*) = 1,and let *u_i*, *v_i* be the projections of *u*, *v* resp. onto [*x*, *g_i*(*x*)].

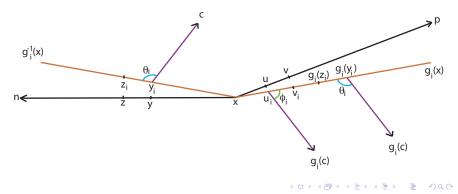


- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- ▶ Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto $[x, g_i^{-1}(x)]$
- ► Let $\theta_i = \overline{\angle}_{y_i}(z_i, c)$ apply g_i so $\theta_i = \overline{\angle}_{g_i(y_i)}(g_i(z_i), g_i(c))$
- Let *u* ∈ [*x*, *p*), *v* ∈ [*u*, *p*) with *d*(*u*, *v*) = 1,and let *u_i*, *v_i* be the projections of *u*, *v* resp. onto [*x*, *g_i*(*x*)].

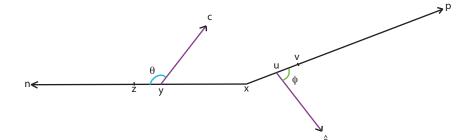
• Let
$$\phi_i = \overline{\angle}_{u_i}(v_i, g_i(c))$$
.



- ▶ Let $(g_i) \subset G$, $x \in X$, and $c \in \partial X$ with $g_i^{-1}(x) \to n \in \partial X$ and $g_i(x) \to p \in \partial X$. Assume that i >> 0.
- ▶ Let $y \in [x, n)$ and $z \in [y, n)$ with d(y, z) = 1, and let y_i, z_i be the projections of y, z resp. onto $[x, g_i^{-1}(x)]$
- ► Let $\theta_i = \overline{\angle}_{y_i}(z_i, c)$ apply g_i so $\theta_i = \overline{\angle}_{g_i(y_i)}(g_i(z_i), g_i(c))$
- Let *u* ∈ [*x*, *p*), *v* ∈ [*u*, *p*) with *d*(*u*, *v*) = 1,and let *u_i*, *v_i* be the projections of *u*, *v* resp. onto [*x*, *g_i*(*x*)].
- ► Let $\phi_i = \overline{\angle}_{u_i}(v_i, g_i(c))$. We will show that $\phi_i + \theta_i \leq \pi$.

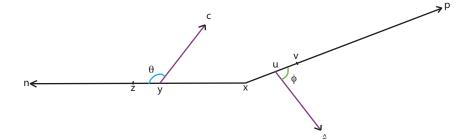


▶ Notice that $\theta_i \to \theta := \overline{Z}_y(z, c)$ and $\underline{\lim} \phi_i \ge \phi := \overline{Z}_u(v, \hat{c})$ whenever $g_i(c) \to \hat{c}$.



▶ Notice that $\theta_i \to \theta := \overline{Z}_y(z, c)$ and $\underline{\lim} \phi_i \ge \phi := \overline{Z}_u(v, \hat{c})$ whenever $g_i(c) \to \hat{c}$.

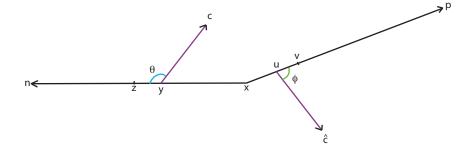
• If
$$\phi_i + \theta_i \leq \pi$$
, then $\phi + \theta \leq \pi$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▶ Notice that $\theta_i \to \theta := \overline{\angle}_y(z, c)$ and $\underline{\lim} \phi_i \ge \phi := \overline{\angle}_u(v, \hat{c})$ whenever $g_i(c) \to \hat{c}$.

• If
$$\phi_i + \theta_i \leq \pi$$
, then $\phi + \theta \leq \pi$.

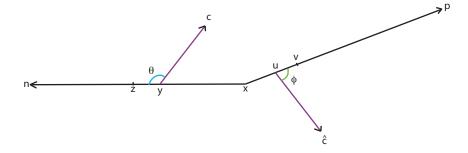


イロン 不得 とくほ とくほ とうほ

We can choose y, u so that $\angle(n, c) \cong \theta$ and $\angle(p, \hat{c}) \cong \phi$.

▶ Notice that $\theta_i \to \theta := \overline{\angle}_y(z, c)$ and $\underline{\lim} \phi_i \ge \phi := \overline{\angle}_u(v, \hat{c})$ whenever $g_i(c) \to \hat{c}$.

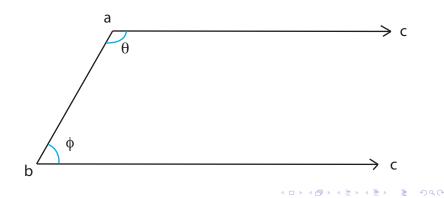
• If
$$\phi_i + \theta_i \leq \pi$$
, then $\phi + \theta \leq \pi$.



We can choose y, u so that $\angle(n, c) \cong \theta$ and $\angle(p, \hat{c}) \cong \phi$. Thus $\angle(n, c) + \angle(p, \hat{c}) \le \pi$ or π -convergence.

Showing $\phi_i + \theta_i \leq \pi$

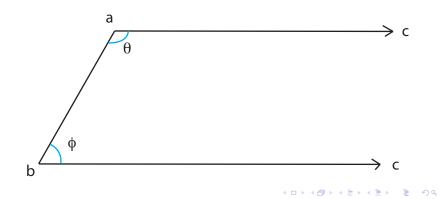
By monotonicity of comparison angles, it suffices to show that the comparison angle sum of an ideal triangle is at most π.



Showing $\phi_i + \theta_i \leq \pi$

By monotonicity of comparison angles, it suffices to show that the comparison angle sum of an ideal triangle is at most π.

▶ Let $a, b \in X$ and $c \in \partial X$ and $\theta = \overline{\angle}_a(b, c)$ and $\phi = \overline{\angle}_b(a, c)$.

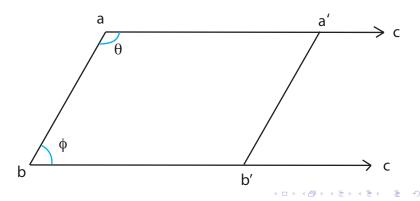


Showing $\phi_i + \theta_i \leq \pi$

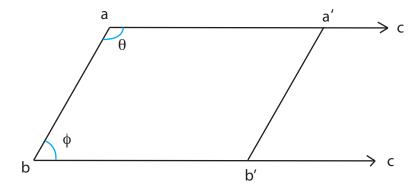
By monotonicity of comparison angles, it suffices to show that the comparison angle sum of an ideal triangle is at most π.

▶ Let $a, b \in X$ and $c \in \partial X$ and $\theta = \overline{\angle}_a(b, c)$ and $\phi = \overline{\angle}_b(a, c)$.

▶ If $\theta + \phi > \pi$, then $\exists a' \in [a, c), b' \in [b, c)$ such that $\overline{\angle}_a(b, a') + \overline{\angle}_b(a, b') > \pi$ and d(a, a') = d(b, b').



Comparing the quadrilateral a'abb' to a Euclidian quaduadrilateral we see that d(a, b) < d(a', b') contradicting convexity of the metric on *X*.



2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

This completes the proof of π -convergence