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Comparison triangle
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Let X be a proper geodesic metric space.

For a geodesic triangle A(p, g, r) in X.

There is a triangle A'(p/, @', r') in E? with the same side
lengths

The triangle A satisfies the CAT(0) condition if it is at least
as thin as A’

That is for any a, b € A with comparison points &,b" € A/,
we have d(a, b) < d(d,b').
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Setting

» We say X is CAT(0) if all geodesic triangles in X satisfy
this property.



Setting

» We say X is CAT(0) if all geodesic triangles in X satisfy
this property.

» For the duration we assume that X is a CAT(0) space and
G a group of isometries acting on X.
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Angles in CAT(0)
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We define the Euclidian comparison angle,

Zp(q.r) = Zp(d', 1)

Notice that if a € (p, g] and b € (p, r] then

Zp(a7 b) < ZP(qa f')

Let a, 8 be unit speed geodesics from p with

a(0) = 5(0) = p.

Notice that f(s, t) = Zp(a(s), 3(t)) is an increasing function

of s and t (so all limits exist)

When « and $ run through g and r resp. then we define
Zp(q,r) = lim Zp(a(s), B(1))

s,t—0



Boundary of X

The 90X consists of equivalence classes of geodesic rays. Two
unit speed geodesic rays R, S : [0,00) — X are equivalent if the
function d(R(t), S(t)) is bounded.

R

S

For any ray R and any point p, there is a ray from p equivalent
to R obtained thusly:
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Choosing a base point

p

Two rays based at the same point are close if they remain close
for a long time.
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Choosing a base point

Two rays based at the same point are close if they remain close
for a long time. This gives a topology on X = X U X under
which 90X is compact metrizable and finite dimensional provided
X /G is compact. Also G acts on 90X by homeomorphisms

WV



Comparison angle on X

» Letpe Xandg,r € X,and a : [0,c] — X and
3 :]0,d] — X unit speed geodesics from p to q and r resp.,
where ¢, d € (0, oo] (Warning: Abuse of notation alert).
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Comparison angle on X

» Letpe Xandg,re X,and a : [0,c] — X and
£ :[0,d] — X unit speed geodesics from p to g and r resp.,
where ¢, d € (0, o] (

» We can now define

Zp(g,r):= _lim Zp(a(s), 5(1))

s—c, t—d

» Forany q,r € 90X, we define £(q,r) = Zp(q, )
(independent of p)
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Angle metric on 0X

» This Z gives us a new (finer) metric called the angle metric
on 0X.

» The path metric associated to the angle metric is called the
Tits metric dr.

» If g,r € 90X with Z(q,r) < =, then dr(q,r) = Z(q,r).
» If X is d-hyperbolic, then dr(q,r) = oo for g # r.

» When X is not §-hyperbolic then "generically”
dr((9X)?) = [0, od]



m-Convergence

For (g;) € G is a m-convergence sequence if 3p,n € 90X such
that for any 6 € [0, =] and for any compact C C X — B(n, 0),
gi(C) — B(p, ™ — 0) (Closed Tits balls).
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For (g;) € G is a m-convergence sequence if 3p,n € 90X such
that for any 6 € [0, =] and for any compact C C X — B(n, 0),
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m-Convergence

For (g;) € G is a m-convergence sequence if 3p,n € 90X such
that for any 6 € [0, =] and for any compact C C X — B(n, 0),
gi(C) — B(p,m — 0) (Closed Tits balls).

g.(Q)

O B(n,@) GB(pln_e)

If G is a discrete group of isometries of X, then every sequence
of distinct elements of G has a w-convergence subsequence.
(S, M. Naraoyiov)
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Ballmann’s Conjecture

We now restrict to the setting where G acts cocompactly and
discretely on the CAT(0) space X.

Conjecture

The Tits diameter of X is & or cc.

Theorem (Ballmann and Buylao)

If I is a proper closed minimal G-invariant subset of 90X, then for
anyac l,0X C B(a,r).

Corollary

If the Tits diameter of 0X is more than 2w then it is cc.
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Theroem (S, M. NaraCoyAov) If the Tits diameter of
9X is more than 22 then it is infinite
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Proof: We may assume that G fixes no point of 0.X..
Let / € 0X be proper closed minimal and G-invariant.

Let p € X and choose a w-convergence sequence (gj)
with p and some n € 0X.

v
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» Since G fixes no point, then I ¢ B(n, 5 — J), so take
iel—B(n7%—09).
» Passing to a subsequence gn(/) — j € B(p, 5 + J)



Theroem (S, M. NaraCoyAov) If the Tits diameter of
9X is more than 22 then it is infinite

v

Proof: We may assume that G fixes no point of 0.X..
Let / € 0X be proper closed minimal and G-invariant.

Let p € X and choose a w-convergence sequence (gj)
with p and some n € 0X.

Since G fixes no point, then / ¢ B(n, 5 — J), so take
iel—B(n7%—09).

Passing to a subsequence gn(i) — j € B(p, 5 + 9)
Thus dr(p, ) < §, s0 0X C B(p, %)

v
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What else does m-convergence make look way too
easy?

» Theorem (Ballmann): If g is hyperbolic and dr(g*,g7) > =
then dr({g*},0X — {g*}) = oo

» Theorem (S): If G has no infinite torsion subgroup then 60X
has no cut point.

» In fact we have Theorem (S, IN. NaradoyAov): 9X has no
cut point.

» If H < Gis not virtually cyclic and diamy(AH) > 27 then
Fo> < H (in particular H is not torsion).
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> Let (g7) € G, x € X, and ¢ € 9X with g7 ' (x) — n€ aX
and gj(x) — p € 9X. Assume that i >> 0.

» Lety € [x,n) and z € [y, n) with d(y,z) = 1, and let y;, z;
be the projections of y, z resp. onto [x, g‘1( x)]

> Let 6 = Zy,(z;, ¢) apply gi s0 0; = Zgy,(gi(2), 9i(c))

» Letu € [x,p), v € [u, p) with d(u, v) = 1,and let u;, v; be
the projections of u, v resp. onto [x, g;(x)].

> Let ¢ = Zu,-(Vi,Qi(C))-

AG)



Let (9/) € G, x € X, and ¢ € dX with g7 ' (x) — n€ aX
and gj(x) — p € 9X. Assume that i >> 0.

Lety € [x,n) and z € [y, n) with d(y,z) = 1, and let y;, z;
be the projections of y, z resp. onto [x, g‘1( x)]

Let 0; = Zy,(z;, ¢) apply g; 0 0; = Zgy,(9i(2i), 9i(C))

» Letu e [x,p), v € [u, p) with d(u, v) = 1,and let u;, v; be
the projections of u, v resp. onto [x, g;(x)].

Let ¢; = Zu.(v, gi(c)).  We will show that ¢; + 6; < .
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» Notice that §; — 0 := Z,(z,¢) and lim¢; > ¢ := Zy(v, ¢)
whenever g;(c) — C.
> If ¢ + 6; < 7, then ¢+ 6 < .

We can choose y, u so that Z/(n,c) = 6 and Z(p, C) = ¢. Thus
Z(n,c) + Z(p, ¢) < w or m-convergence.
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Showing ¢; +0; < 7

» By monotonicity of comparison angles, it suffices to show
that the comparison angle sum of an ideal triangle is at
most .

» Leta,bec Xandcc oXandf = Za(b,c)and ¢ = Zp(a, c).

> 10+ ¢ >, then 38 € [a,¢), b € [b, ¢) such that
Za(b, @)+ Zp(a,b’) > mand d(a,&) = d(b, V).

1

a a

bl



Comparing the quadrilateral & abb’ to a Euclidian
quaduadrilateral we see that d(a, b) < d(&, b’) contradicting
convexity of the metric on X.

a a'

bl
This completes the proof of
mw-convergence
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