8. Κυκλικές ομάδες

 

Δυνάμεις στοιχείων ομάδας . Προσθετικός συμβολισμός. Ιδιότητες : (1) xn xm = xn+m, (2) (xn)m = xnm, " n, m Z.

 

Θεώρημα 8.1. Για κάθε στoιχείο a ομάδας G, το σύνολο <a> όλων των δυνάμεων του a αποτελεί αβελιανή υποομάδα της G.

 

σημαίνει το πλήθος των μελών συνόλου Χ, το οποίο είναι ένας φυσικός αριθμός ή . Η τάξη ομάδας G είναι το πλήθος των στοιχείων της, δηλ. το . Η τάξη στοιχείου a ομάδας G είναι η τάξη της υποομάδας <a>. Μια ομάδα G λέγεται κυκλική αν G = <a> για κάποιο στοιχείο a, το οποίο a καλείται (ένας) γεννήτορας της G.

 

Θεώρημα 8.2. Κάθε υποομάδα κυκλικής ομάδας είναι κυκλική.

 

Θεώρημα 8.3. Τ.α.ε.ι. για μέλος a ομάδας G.

(1) Το a είναι πεπερασμένης τάξης.

(2) $ m N τ.ω. am = e.

 

Θεώρημα 8.4. Εστω a στοιχείο ομάδας πεπερασμένης τάξης.

(1) Το a είναι πεπερασμένης τάξης.

(2) <a> = { e, a, a2, , ak-1 }, όπου k είναι ο πρώτος φυσικός αριθμός που ικανοποιεί ak = e, και = k.

(3) Αν an = e, τότε ο τάξη του a διαιρεί τον n .

 

Aσκήσεις

 

8.1. Βρείτε την υποομάδα <2> της Ζ.

Λύση

8.2. Βρείτε την υποομάδα <n> της Ζ.

Λύση

8.3. Βρείτε τις υποομάδες <1>, <-1> και <2> της R*.

Λύση

8.4. Δώστε όλα τα στοιχεία των U2 και U4. (Βλέπε άσκηση 7.4.)

Λύση

8.5. Δείξτε ότι η Un είναι κυκλική ομάδα.

Λύση

8.6. Kάθε κυκλική υποομάδα της < C*, .> είναι της μορφής Un.

Λύση

8.7. Ποιες από τις ομάδες nZ, Ζ, Q, R, C, Q*, Q+, R*, R+, C*, C+ είναι κυκλικές;

Λύση

8.8. Δείξτε ότι κάθε υποομάδα της Z είναι της μορφής nZ.

Λύση

8.9. Εξετάστε αν η ομάδα του Klein είναι κυκλική.

Λύση

8.10. Δείξτε ότι = για κάθε μέλος a μιας ομάδας.

Λύση

8.11. Εστω a στοιχείo ομάδας, b = an και m = .Δείξτε ότι <a> = <b> ανν μκδ(m, n) = 1.

Λύση

8.12. Εστω a, b στοιχεία ομάδας τ. ω. ab = ba. Δείξτε ότι

(1) a-1b-1 = b-1a-1

Λύση

(2) a.bn = bn.a για κάθε n Ν.

Λύση

(3) am.bn = bn.am για κάθε m, n Ν.

Λύση

(4) am .bn = bn.am για κάθε m, n Z.

Λύση

8.13. Εστω a, b στοιχεία ομάδας τ. ω. μκδ( , ) = 1 και ab = ba. Δείξτε ότι =  .

Λύση

8.14. Σε αβελιανή ομάδα, αν παραλειφθεί η συνθήκη μκδ( , ) = 1, ισχύει ότι  = ; Σημείωση: Βλέπε επίσης ασκήσεις 11.8. και 11.9.

Λύση

8.15. Για μέλη a, b ομάδας, δείξτε ότι = .

Λύση

8.16. Για όλα τα μέλη a, b μιας ομάδας G ισχύει (ab)2 = a2b2. Δείξτε ότι η G είναι αβελιανή.

Λύση

 

Επιστροφή στα περιεχόμενα