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Abstract. We provide a characterization of those log-concave distributions
in ℝ𝑛 that are contoured distributions, through the 𝐾𝑝-bodies of the distri-
bution, defined by K. Ball. Our method uses the logarithmic integral for the
solution of a Bernstein type approximation problem. In the second part of the
paper we state a question for contoured distributions that would provide an
alternative approach to the isotropic constant problem.

1. Introduction
In this article we provide a characterization of those log-concave distributions

in ℝ𝑛 that are contoured distributions. The crucial rôle in this characterization
is played by the bodies 𝐾𝑝(𝑓), for 𝑝 > 0, of a log-concave function 𝑓 on ℝ𝑛 with
finite positive integral, introduced by Keith Ball. These bodies are described in the
literature as “associated” to the log-concave distribution 𝑓 , but it is known to the
experts that if 𝑓 is induced by some convex body, in essence they “recover” the norm
and/or the original body. More precisely, if 𝑓 is of the form ℎ(‖𝑥‖𝐾) for a convex
body 𝐾, then 𝐾𝑝(𝑓) is a dilation of 𝐾 with the magnifying constant depending
on 𝑝 > 0 and ℎ (see Proposition 3.2 below). The first main result of this article
states that the converse also holds true, and so the following characterization for
log-concave densities is valid. A probability distribution in ℝ𝑛 is called contoured
if its probability density function has the form

𝑓𝐾,𝜙(𝑥) =
𝜔𝑛
|𝐾|𝜙(‖𝑥‖𝐾), 𝑥 ∈ ℝ𝑛,

where 𝐾 is a star-shaped set in ℝ𝑛 and 𝜙 ∶ [0,+∞) → [0,+∞) is an integrable
function such that 𝜙(|𝑥|) is a density in ℝ𝑛.
Theorem 1.1. Let 𝑓 ∶ ℝ𝑛 → [0,∞) be a log-concave probability density. Then, 𝑓
defines a contoured distribution if and only if there exist a convex body 𝐾 in ℝ𝑛

and a sequence (𝑐𝑝)𝑝∈ℕ of positive constants such that 𝐾𝑝(𝑓) = 𝑐𝑝𝐾 for all 𝑝 ∈ ℕ.

It can be seen that if 𝑓 is even then the bodies 𝐾𝑝(𝑓) are all equivalent up to
constants depending only on 𝑝 (see Proposition 2.4 below). This shows that in order
to provide an example of an even log-concave distribution that is not contoured we
need to find an even log-concave function 𝑓 for which the bodies 𝐾𝑝(𝑓) are not
multiples of each other although they are equivalent up to constants that do not
depend on the dimension.

The proof of Theorem 1.1 is based on an argument that establishes approxima-
tion of a function by polynomials in weighted 𝐿𝑝 spaces. Actually, following the
same arguments we can also prove that the bodies 𝐾𝑝 characterize a log-concave
distribution.
Theorem 1.2. Let 𝑓, 𝑔 be two log-concave densities on ℝ𝑛. Then, 𝐾𝑝(𝑓) = 𝐾𝑝(𝑔)
for all 𝑝 ∈ ℕ if and only if 𝑓 = 𝑔.
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Thus, knowing the bodies 𝐾𝑝(𝑓) for all 𝑝 ∈ ℕ we also know 𝑓 , since the mapping
𝑓 ↦ (𝐾𝑝(𝑓))𝑝∈ℕ is one-to-one.

In the second part of this article, we associate to any isotropic log-concave dis-
tribution a contoured one that distributes the mass isotropically on ℝ𝑛 and we
compare their isotropic constants. This shows that the isotropic constant can be
controlled by the isotropic constants for contoured distributions.

2. Preliminaries and Notation
We work in ℝ𝑛, equipped with a Euclidean structure ⟨⋅, ⋅⟩. We write | ⋅ | for

the corresponding Euclidean norm, and 𝐵𝑛
2 stands for the Euclidean unit ball, and

𝕊𝑛−1 for the Euclidean unit sphere. We write int(𝐴) and bd(𝐴) for the interior and
boundary of a set 𝐴 ⊆ ℝ𝑛 respectively, and |𝐴| for the volume of 𝐴 in ℝ𝑛, that
is its Lebesgue measure. We write 𝜔𝑛 for the volume of 𝐵𝑛

2 and 𝜎 = 𝜎𝑛 for the
rotationally invariant probability measure on 𝕊𝑛−1.

For any integrable function 𝑓 ∶ ℝ𝑛 → ℝ, we denote the Lebesgue integral of 𝑓
by ∫𝑓(𝑥) 𝑑𝑥. Integration in polar coordinates gives that

∫
ℝ𝑛

𝑓(𝑥) 𝑑𝑥 = ∫
𝕊𝑛−1

∫
∞

0
𝑓(𝑡𝜃) 𝑡𝑛−1𝑑𝑡 𝑑𝜃 = 𝑛𝜔𝑛 ∫

𝕊𝑛−1
∫

∞

0
𝑓(𝑡𝜃) 𝑡𝑛−1𝑑𝑡 𝑑𝜎(𝜃).

The letters 𝑐, 𝑐1, 𝑐2 etc, denote absolute positive constants whose value may
change from line to line. Whenever we write 𝑎 ≃ 𝑏, we mean that there exist
absolute constants 𝑐1, 𝑐2 > 0 such that 𝑐1𝑎 ≤ 𝑏 ≤ 𝑐2𝑎. Similarly, if 𝐴,𝐵 ⊆ ℝ𝑛

we write 𝐴 ≃ 𝐵 if there exist absolute constants 𝑐1, 𝑐2 > 0, independent of the
dimension 𝑛 and any defining parameter of 𝐴 and 𝐵, such that 𝑐1𝐴 ⊆ 𝐵 ⊆ 𝑐2𝐴.

A subset 𝐾 of ℝ𝑛 is called centered if its center of mass lies at the origin
i.e. ∫𝐾⟨𝑥, 𝜃⟩𝑑𝑥 = 0 for every 𝜃 ∈ 𝕊𝑛−1, and it is called symmetric if −𝑥 ∈ 𝐾
whenever 𝑥 ∈ 𝐾. Moreover, we say that 𝐾 is star shaped if 𝜆𝑥 ∈ 𝐾 whenever
𝑥 ∈ 𝐾 and 𝜆 ∈ [0, 1], and that 𝐾 is a convex body if it is convex and compact
in ℝ𝑛 with a non-empty interior. The Minkowski functional of a star shaped set
𝐾 ⊆ ℝ𝑛 is the function

‖𝑥‖𝐾 ∶= inf {𝜆 > 0 ∶ 𝑥 ∈ 𝜆𝐾}, 𝑥 ∈ ℝ𝑛.
Note that the Minkowski functional of a symmetric convex body 𝐾 in ℝ𝑛 is a norm
in ℝ𝑛, and accordingly any norm ‖ ⋅ ‖ in ℝ𝑛 defines a symmetric convex body 𝐾 in
ℝ𝑛 by 𝐾 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ≤ 1}.

A function 𝑢 ∶ ℝ𝑛 → (−∞,+∞] is convex if
𝑢((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝑢(𝑥) + 𝜆𝑢(𝑦)

for all 𝑥, 𝑦 ∈ ℝ𝑛 and all 𝜆 ∈ [0, 1]. It is elementary that every convex function 𝑢
can be altered on the boundary of the convex set

dom(𝑢) = {𝑥 ∈ ℝ𝑛 ∶ 𝑢(𝑥) < +∞}
so that its epigraph becomes closed, equivalently 𝑢 is lower-semicontinuous. Such
a function is called closed. Moreover, 𝑢 is continuous on int(dom(𝑓)). All convex
functions in this article will be assumed to be closed.

A convex function is proper if it is not identically +∞. However, in this work
we need to also exclude the trivial case where the function is equal to +∞ with
the exception of an affine subspace of ℝ𝑛 of dimension strictly less than 𝑛 (a point
if 𝑛 = 1). Thus, if 𝑓 ∶ ℝ → (−∞,+∞] is a proper convex function then the set
dom(𝑓) is a subinterval of ℝ, as a non trivial convex subset of ℝ. We will also
assume that all convex functions in this article are proper in the above sense.

A function 𝑓 ∶ ℝ𝑛 → [0,∞) is called centered if ∫ℝ𝑛 𝑥𝑓(𝑥) 𝑑𝑥 = 0, and 𝑓 is
called log-concave if log 𝑓 is concave (or equivalently if − log 𝑓 is convex, and so
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assumed closed and proper throughout this article), that is if 𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≥
(𝑓(𝑥))1−𝜆(𝑓(𝑦))𝜆, for all 𝑥, 𝑦 ∈ ℝ𝑛 and all 𝜆 ∈ (0, 1).

A basic property of log-concave densities that we will need is that they decay
exponentially as |𝑥| → ∞ (see [1], Lemma 10.6.1). In particular, this implies that
a log-concave density has finite moments of all orders.
Lemma 2.1. For every log-concave density 𝑓 in ℝ𝑛, there exist constants 𝐴,𝐵 > 0,
such that

𝑓(𝑥) ≤ 𝐴𝑒−𝐵|𝑥|, (1)
for all 𝑥 ∈ ℝ𝑛. 2

The next result is due to Fradelizi [8].
Theorem 2.2. If 𝑓 is a centered log-concave density in ℝ𝑛, then

𝑓(0) ≤ sup
𝑥∈ℝ𝑛

𝑓(𝑥) ≤ 𝑒𝑛𝑓(0). (2)

2.1. Isotropicity. A convex body 𝐾 in ℝ𝑛 is isotropic if it has volume 1, it is
centered and its inertia matrix is a multiple of the identity, that is there exists a
constant 𝐿𝐾 > 0, called the isotropic constant of 𝐾, such that

∫
𝐾
⟨𝑥, 𝜃⟩2 𝑑𝑥 = 𝐿2

𝐾

for every 𝜃 ∈ 𝕊𝑛−1.
More generally, for any probability density function 𝑓 ∶ ℝ𝑛 → [0,∞), we define

its isotropic constant by
𝐿𝑓 ∶= sup

𝑥∈ℝ𝑛
𝑓(𝑥)1/𝑛 detCov(𝑓)1/2𝑛,

where Cov(𝑓) is the covariance matrix of 𝑓 with entries

Cov(𝑓)𝑖𝑗 = ∫
ℝ𝑛

𝑥𝑖𝑥𝑗𝑓(𝑥) 𝑑𝑥 −∫
ℝ𝑛

𝑥𝑖𝑓(𝑥) 𝑑𝑥∫
ℝ𝑛

𝑥𝑗𝑓(𝑥) 𝑑𝑥.

We say that a probability density function 𝑓 in ℝ𝑛 distributes the mass isotropically
if it is centered and Cov(𝑓) is a multiple of the identity 𝑛×𝑛 matrix. Equivalently
the integral

∫
ℝ𝑛

|⟨𝑥, 𝜉⟩|2𝑓(𝑥) 𝑑𝑥

is independent of the vector 𝜉 ∈ 𝕊𝑛−1. If, in particular, Cov(𝑓) is the identity,
then we say that 𝑓 is isotropic and we have 𝐿𝑓 = sup𝑥∈ℝ𝑛 𝑓(𝑥)1/𝑛. Note that
a convex body 𝐾 of volume 1 is isotropic if and only if the log-concave function
𝑓𝐾 = 𝐿𝑛

𝐾1𝐿−1
𝐾 𝐾 is isotropic.

One can check that for every log-concave function 𝑓 ∶ ℝ𝑛 → [0,∞) there exist
a non-singular affine isomorphism 𝑇 and a positive number 𝛼 so that 𝛼𝑓 ∘ 𝑇 is
isotropic.

The hyperplane conjecture is a question in the theory of isotropic log-concave
measures, asking if there exists an absolute constant 𝐶 > 0 such that

𝐿𝑛 ∶= sup {𝐿𝑓 ∶ 𝑓 is an isotropic log-concave density in ℝ𝑛} ≤ 𝐶,
for all 𝑛 ∈ ℕ. Bourgain proved in [5] that 𝐿𝑛 ≤ 𝑐 4√𝑛 log𝑛 and later Klartag [11]
obtain the bound 𝐿𝑛 ≤ 𝑐 4√𝑛 (see also [14]). Chen [7] in a breakthrough work proved
that for any 𝜀 > 0 there exists a 𝑛0(𝜀) ∈ ℕ such that 𝐿𝑛 ≤ 𝑛𝜀, for every 𝑛 ≥ 𝑛0(𝜀).
Klartag and Lehec [13] showed then that 𝐿𝑛 ≤ 𝑐(log𝑛)4, and shortly after that,
Klartag [12] proved that 𝐿𝑛 ≤ 𝑐√log𝑛, which is the best known upper bound until
now.
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2.2. Keith Ball's Bodies. The bodies 𝐾𝑝(𝑓) are defined as follows:
Definition 2.3 (K. Ball). Let 𝑓 ∶ ℝ𝑛 → [0,+∞) be a measurable function such that
𝑓(0) > 0. For any 𝑝 > 0 we define the set 𝐾𝑝(𝑓) as follows:

𝐾𝑝(𝑓) = {𝑥 ∈ ℝ𝑛 ∶ ∫
∞

0
𝑟𝑝−1𝑓(𝑟𝑥) 𝑑𝑟 ≥ 𝑓(0)

𝑝 } .

If 𝑓𝜇 is the density of a Borel probability measure 𝜇 and 𝑓𝜇(0) > 0, then we define
𝐾𝑝(𝜇) ∶= 𝐾𝑝(𝑓𝜇).

From the definition it follows that the Minkowski functional of 𝐾𝑝(𝑓) is given
by

‖𝑥‖𝐾𝑝(𝑓) = ( 𝑝
𝑓(0) ∫

∞

0
𝑟𝑝−1𝑓(𝑟𝑥) 𝑑𝑟)

−1/𝑝
.

Ball showed (see [2]) that if 𝑓 ∶ ℝ𝑛 → [0,+∞) is a log-concave function such that
𝑓(0) > 0 and 0 < ∫ℝ𝑛 𝑓(𝑥) 𝑑𝑥 < +∞ then 𝐾𝑝(𝑓) is a convex body for all 𝑝 > 0.

Several properties of these bodies are well-known (see for example [1] or [6]).
For example, 𝐾𝑝(1𝐾) = 𝐾 for every convex body 𝐾 in ℝ𝑛, one always has that
0 ∈ 𝐾𝑝(𝑓), and 𝐾𝑝(𝑓) is symmetric if 𝑓 is even. It is also known that the bodies
𝐾𝑝(𝑓) are equivalent:
Proposition 2.4. Let 𝑓 ∶ ℝ𝑛 → [0,+∞) be a log-concave function such that
𝑓(0) > 0.

(1) If 0 < 𝑝 ≤ 𝑞 then

Γ(𝑝 + 1)1/𝑝
Γ(𝑞 + 1)1/𝑞 𝐾𝑞(𝑓) ⊆ 𝐾𝑝(𝑓) ⊆ (‖𝑓‖∞

𝑓(0) )
1
𝑝− 1

𝑞

𝐾𝑞(𝑓).

(2) If 𝑓 has its barycenter at the origin then, for every 0 < 𝑝 ≤ 𝑞,
Γ(𝑝 + 1)1/𝑝
Γ(𝑞 + 1)1/𝑞 𝐾𝑞(𝑓) ⊆ 𝐾𝑝(𝑓) ⊆ 𝑒𝑛

𝑝 −𝑛
𝑞 𝐾𝑞(𝑓). □

These inclusions imply the following estimate for the volume of 𝐾𝑝(𝑓) for every
𝑝 > 0: if 𝑓 is a centered log-concave density in ℝ𝑛, then for every 𝑠 > 0 we have

1
𝑒 ≤ 𝑓(0) 1

𝑛+ 1
𝑠 |𝐾𝑛+𝑠(𝑓)|

1
𝑛+ 1

𝑠 ≤ 𝑒 𝑛 + 𝑠
𝑛 . (3)

Finally note that if 𝑓 is even then it is easy to see that ‖𝑓‖∞ = 𝑓(0) > 0, since
by log-concavity 𝑓(0) ≥ √𝑓(𝑥)√𝑓(−𝑥) = 𝑓(𝑥) for every 𝑥 ∈ ℝ𝑛. Then, using
the estimate Γ(𝑝 + 1)1/𝑝 ≃ 𝑝, Proposition 2.4 implies that there exists an absolute
constant 𝑐 > 0 so that if 0 < 𝑝 ≤ 𝑞 then

𝑐 𝑝𝑞𝐾𝑞(𝑓) ⊆ 𝐾𝑝(𝑓) ⊆ 𝐾𝑞(𝑓),

that is, 𝐾𝑝(𝑓) are equivalent up to constants independent of the dimension.
A crucial observation is that through the study of 𝐾𝑝(𝑓) bodies one can provide

bounds for the isotropic constant of log-concave probability densities. If 𝑓 ∶ ℝ𝑛 →
[0,∞) is an even log-concave function with finite and positive integral, then Ball
showed that 𝐾𝑛+2(𝑓) is a centrally symmetric convex body in ℝ𝑛 such that

𝑐1𝐿𝑓 ≤ 𝐿𝐾𝑛+2(𝑓) ≤ 𝑐2𝐿𝑓 , (4)
where 𝑐1, 𝑐2 > 0 are absolute constants. If in addition 𝑓 is isotropic, then the
normalized body 𝐾𝑛+2(𝑓)/|𝐾𝑛+2(𝑓)|1/𝑛 is an isotropic convex body.
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In the general case where 𝑓 ∶ ℝ𝑛 → [0,∞) is a centered log-concave function
with finite and positive integral, but not necessarily even, one has that 𝐾𝑛+1(𝑓) is
a centered convex body in ℝ𝑛 with

𝑐1𝐿𝑓 ≤ 𝐿𝐾𝑛+1(𝑓) ≤ 𝑐2𝐿𝑓 , (5)
where 𝑐1, 𝑐2 > 0 are absolute constants.

The reader may find more details about the bodies 𝐾𝑝(𝑓) and the geometry of
isotropic log-concave measures in the books [1] and [6].
2.3. Contoured Distributions. The contoured distributions were introduced in [10]
by Guleryuz, Lutwak, Yang and Zhang. A distribution on ℝ𝑛 is called contoured
if it is absolutely continuous and there exists a decomposition of its probability
density function 𝑓 in the form

𝑓(𝑥) = 𝑐𝜙(𝜆(𝑥)),
where 𝑐 is a positive constant, 𝜙 ∶ [0,+∞) → [0,+∞) is an integrable function
and 𝜆 ∶ ℝ𝑛 → [0,∞) is positive away from 0 and positively homogeneous i.e.,
𝜆(𝑡𝑥) = 𝑡𝜆(𝑥), for any 𝑡 > 0 and 𝑥 ∈ ℝ𝑛. We say then that 𝜆 is a shape function.

Associated to any shape function 𝜆 is the compact star-shaped body
𝐾𝜆 = {𝑥 ∈ ℝ𝑛 ∶ 𝜆(𝑥) ≤ 1},

and backwards, associated to any compact star-shaped body𝐾 is the shape function
defined by the Minkowski functional of 𝐾 (or the norm ‖ ⋅ ‖𝐾 if 𝐾 is a symmetric
convex body),

𝜆𝐾(𝑥) = inf {𝑡 > 0 ∶ 𝑥 ∈ 𝑡𝐾}.
It is known that there exists a one-to-one correspondence between shape func-

tions and compact star-shaped bodies which leads us to the following notation. We
say that the distribution of a random vector in ℝ𝑛 is contoured if its probability
density function has the form

𝑓𝐾,𝜙(𝑥) =
𝜔𝑛
|𝐾|𝜙(‖𝑥‖𝐾), 𝑥 ∈ ℝ𝑛, (6)

where 𝐾 is a star-shaped set in ℝ𝑛 and 𝜙 ∶ [0,+∞) → [0,+∞) is an integrable func-
tion such that 𝜙(|𝑥|) is a density in ℝ𝑛, which by integration in polar coordinates,
is equivalent to

𝑛𝜔𝑛 ∫
∞

0
𝑡𝑛−1 𝜙(𝑡) 𝑑𝑡 = 1. (7)

The body 𝐾 is called the contoured body of the distribution, and 𝜙 is called the
radial profile function of the distribution.

In this paper we only consider contoured distributions such that the contoured
body 𝐾 is a centered convex body in ℝ𝑛. We refer to the paper [10] for more
details about the definition of a contoured distribution and the normalization (7)
of its radial profile function.

3. Characterization of contoured log-concave distributions
Let 𝑊 ∶ ℝ → [1,∞) be an even and continuous function satisfying the condition

lim
|𝑡|→+∞

log𝑊(𝑡)
log |𝑡| = +∞ (8)

and for each 1 ≤ 𝑝 < +∞, consider the Banach space of measurable functions

𝐿𝑝
𝑊 = {𝑓 ∶ ∫

ℝ

|𝑓(𝑡)|𝑝
𝑊(𝑡)𝑝 𝑑𝑡 < +∞} .
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A classical Bernstein type approximation problem is to determine conditions under
which the polynomials are dense in 𝐿𝑝

𝑊 . The following is a well known result in
this direction that reduces the answer to the logarithmic integral (see [4], [15] and
the references therein).
Theorem 3.1. Let 𝑊 ∶ ℝ → [1,∞) be an even continuous function satisfying (8)
such that the map 𝑡 ↦ log𝑊(exp 𝑡) defines a convex function on ℝ. Then, if

∫
ℝ

log𝑊(𝑡)
𝑡2 + 1 𝑑𝑡 = +∞, (9)

the polynomials are dense in 𝐿𝑝
𝑊 , for any 1 ≤ 𝑝 < ∞. Otherwise, if

∫
ℝ

log𝑊(𝑡)
𝑡2 + 1 𝑑𝑡 < +∞,

the polynomials are not dense in any 𝐿𝑝
𝑊 , for 1 ≤ 𝑝 < ∞.

It is not hard to see that if 𝑓 is the density of a contoured distribution in ℝ𝑛,
then the bodies 𝐾𝑝(𝑓) are all dilations of the distribution's contoured body. In the
next proposition, for the sake of completeness, we quote this well known fact, along
with its simple proof.
Proposition 3.2. Let 𝑓(𝑥) = 𝑓𝐾,𝜙(𝑥) = 𝜔𝑛

|𝐾|𝜙(‖𝑥‖𝐾) be the density of a contoured
distribution in ℝ𝑛, with a radial profile function 𝜙 and a contoured (star-shaped)
body 𝐾. Then,

𝐾𝑝(𝑓𝐾,𝜙) = 𝑐𝑝(𝜙)𝐾, ∀ 𝑝 > 0, (10)

where 𝑐𝑝(𝜙) ∶=
1

‖1‖𝐾𝑝(𝜙)
= ( 𝑝

𝜙(0) ∫
∞

0
𝑡𝑝−1𝜙(𝑡) 𝑑𝑡)

1/𝑝
.

Proof. For all 𝑝 > 0, one has that

𝑥 ∈ 𝐾𝑝(𝑓) ⇔ 𝑝∫
∞

0
𝑟𝑝−1𝜙(𝑟‖𝑥‖𝐾) 𝑑𝑟 ≥ 𝜙(0) ⇔ 𝑝∫

∞

0
𝑡𝑝−1𝜙(𝑡) 𝑑𝑡 ≥ 𝜙(0)‖𝑥‖𝑝𝐾

⇔ ‖𝑥‖𝐾 ≤ ( 𝑝
𝜙(0) ∫

∞

0
𝑡𝑝−1𝜙(𝑡) 𝑑𝑡)

1/𝑝
. 2

Thus, in order to prove Theorem 1.1, we need to establish the following reverse
statement.
Theorem 3.3. Let 𝑓 be a log-concave probability density in ℝ𝑛 and let 𝐾 be a
convex body in ℝ𝑛 with the property that for every 𝑝 ∈ ℕ there exists a constant
𝑐𝑝 > 0 such that 𝐾𝑝(𝑓) = 𝑐𝑝𝐾. Then 𝑓 defines a contoured distribution.

We first need a couple of technical elementary lemmata. For the first one notice
that by convexity, if 𝑥0 < 𝑦 < 𝑧 then (𝑧 − 𝑥0)𝑓(𝑦) ≤ (𝑧 − 𝑦)𝑓(𝑥0) + (𝑦 − 𝑥0)𝑓(𝑧).
It follows that

lim inf
𝑦→𝑥+

0
𝑓(𝑦) ≤ lim sup

𝑦→𝑥+
0

𝑓(𝑦) ≤ 𝑓(𝑥0)

and using lower semi-continuity we readily get the following.
Lemma 3.4. If 𝑓 ∶ ℝ → (−∞,+∞] is a convex and lower semi-continuous function
then lim inf𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) for all 𝑥0 ∈ ℝ, and 𝑓 is continuous at every 𝑥 ∈
dom(𝑓).

For the next lemma, note that if 𝑢, 𝑤 are two convex functions on ℝ and 𝑢(𝑡0) >
𝑤(𝑡0), for some 𝑡0 ∈ ℝ, then by Lemma 3.4 we can find 𝛿, 𝜖 > 0 and 𝑡1 ∈ dom(𝑤)
with |𝑡1 − 𝑡0| < 𝛿 so that 𝑢(𝑡) ≥ inf0<|𝑡−𝑡0|<𝛿 𝑢(𝑡) > 𝑤(𝑡1) + 𝜖, and by continuity of
𝑤 at 𝑡1 we easily get the following.
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Lemma 3.5. Let 𝑢, 𝑤 be two convex functions on ℝ and suppose that there exists
𝑡0 ∈ ℝ so that 𝑢(𝑡0) > 𝑤(𝑡0). Then, we can find 𝛾 > 0 and an interval (𝑎, 𝑏) so
that 𝑢(𝑡) > 𝑤(𝑡) + 𝛾 for all 𝑡 ∈ (𝑎, 𝑏).
Proof of Theorem 3.3. First we prove the following claim, as a consequence of The-
orem 3.1.
Claim. Assume that 𝑒−𝑢 ∶ ℝ𝑛 → ℝ is a log-concave density in ℝ𝑛 and 𝑥, 𝑦 ∈ ℝ𝑛⧵{0}
satisfy

∫
ℝ
𝑒−𝑢(𝑡𝑥)𝑡𝑝−1 𝑑𝑡 = ∫

ℝ
𝑒−𝑢(𝑡𝑦)𝑡𝑝−1 𝑑𝑡 ∀ 𝑝 ∈ ℕ. (11)

Then 𝑢(𝑡𝑥) = 𝑢(𝑡𝑦) for every 𝑡 ∈ ℝ.
Proof of the Claim: Consider the function 𝑔(𝑡) = 𝑒−𝑢(𝑡𝑥) − 𝑒−𝑢(𝑡𝑦) and assume that
𝑔(𝑡0) ≠ 0 for some 𝑡0 ∈ ℝ. Then by Lemma 3.5 there exist 𝛾 > 0 and an interval
(𝑎, 𝑏) in ℝ, such that

𝑔(𝑡) ≥ 𝛾 for all 𝑡 ∈ (𝑎, 𝑏). (12)

By Lemma 2.1, there exist constants 𝐴,𝐵 > 0 such that 𝑒−𝑢(𝑡𝑥) ≤ 𝐴𝑒−𝐵|𝑥| |𝑡| for all
𝑡 ∈ ℝ and 𝑥 ∈ ℝ𝑛. Let 𝑐𝑥,𝑦 = 𝐵min{|𝑥|, |𝑦|} > 0 and define 𝑊 ∶ ℝ → [1,+∞) with

𝑊(𝑡) = exp (𝑐𝑥,𝑦|𝑡|),
Then 1(𝑎,𝑏) ∈ 𝐿1

𝑊 , and 𝑊 satisfies all the conditions of Theorem 3.1. Thus there
exists a sequence of polynomials (𝑝𝑚) such that

∥1(𝑎,𝑏) − 𝑝𝑚∥𝐿1
𝑊

= ∫
ℝ

∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣
𝑊(𝑡) 𝑑𝑡 → 0, (13)

as 𝑚 → ∞. Notice now that by (11), (12) and (13) one has

𝛾(𝑏 − 𝑎) ≤ ∣∫
ℝ
𝑔(𝑡)(1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)) 𝑑𝑡∣ ≤ ∫

ℝ
|𝑔(𝑡)| ∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣ 𝑑𝑡

≤ ∫
ℝ
(𝑒−𝑢(𝑡𝑥) + 𝑒−𝑢(𝑡𝑦)) ∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣ 𝑑𝑡

≤ ∫
ℝ
(𝐴𝑒−𝐵|𝑡||𝑥| +𝐴𝑒−𝐵|𝑡||𝑥|) ∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣ 𝑑𝑡

≤ 2𝐴∫
ℝ
𝑒−𝑐𝑥,𝑦|𝑡| ∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣ 𝑑𝑡 = 2𝐴∫

ℝ

∣1(𝑎,𝑏)(𝑡) − 𝑝𝑚(𝑡)∣
𝑊(𝑡) 𝑑𝑡 → 0,

as 𝑚 → ∞ by (13). This is a contradiction and so 𝑔 must be identically 0.
To finish the proof, write the log-concave density as 𝑓(𝑥) = 𝑒−𝑢(𝑥), where 𝑢 is a

convex function in ℝ𝑛. By the assumption of the theorem we have that ‖𝑥‖𝐾𝑝(𝑓) =
𝑐−1
𝑝 ‖𝑥‖𝐾 for any 𝑝 ∈ ℕ, which implies that

𝑝
𝑐𝑝𝑓(0)

∫
∞

0
𝑓(𝑟𝑥)𝑟𝑝−1 𝑑𝑟 = ‖𝑥‖−𝑝

𝐾 .

Thus for any 𝑝 ∈ ℕ and any 𝑥 ∈ bd(𝐾), the function

𝐹𝑝(𝑥) =
𝑝

𝑐𝑝𝑓(0)
∫

∞

0
𝑒−𝑢(𝑟𝑥)𝑟𝑝−1 𝑑𝑟

is constant and in fact it is equal to 1. So by the claim we have that 𝑢(𝑟𝑥) = 𝑢(𝑟𝑦)
for all 𝑟 ∈ ℝ and 𝑥, 𝑦 ∈ bd(𝐾). To end the proof, fix 𝑥0 ∈ bd(𝐾) and define
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𝜙(𝑟) = 𝑒−𝑢(𝑟𝑥0). It follows that

𝑢(𝑥) = 𝑢(‖𝑥‖𝐾
𝑥

‖𝑥‖𝐾
) = 𝑢(‖𝑥‖𝐾𝑥0) = − ln𝜙(‖𝑥‖𝐾)

for every 𝑥 ∈ ℝ𝑛 ⧵ {0}, and so 𝑓(𝑥) = 𝑒−𝑢(𝑥) = 𝜙(‖𝑥‖𝐾) completing the proof. □

Proof of Theorem 1.2. Let 𝑓(𝑥) = 𝑒−𝑢(𝑥) and 𝑔(𝑥) = 𝑒−𝑤(𝑥) be two log-concave
functions on ℝ𝑛, and assume that 𝐾𝑝(𝑓) = 𝐾𝑝(𝑔) for all 𝑝 ∈ ℕ. Thus, by the
definition of the bodies 𝐾𝑝 we have that, for all 𝑥 ∈ ℝ𝑛 and 𝑝 ∈ ℕ,

∫
ℝ
𝑒−𝑢(𝑡𝑥)𝑡𝑝−1 𝑑𝑡 = ∫

ℝ
𝑒−𝑤(𝑡𝑥)𝑡𝑝−1 𝑑𝑡. (14)

Then, the same arguments that we have used in the proof of Theorem 1.1 show
that 𝑢(𝑡𝑥) = 𝑤(𝑡𝑥) for all 𝑡 ∈ ℝ and all 𝑥 ∈ ℝ𝑛. Thus 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ ℝ𝑛.
The other direction is obvious, and hence the proof is complete. □

3.1. An example. As discussed in the introduction, if we want to define a log-
concave distribution which avoids being a contoured one, we need to find an ex-
ample for which the bodies 𝐾𝑝(𝑓) avoid being multiples of each other but they are
all equivalent, in particular up to constants independent of the dimension in the
even case. This may appear to be very delicate and definitely supports a related
statement in [10] :

“It is worth noting, however, that the class of origin-symmetric
convex contoured distributions already contains most, if not all,
commonly used explicit examples of multidimensional probability
distributions.”

Here we provide a simple example of a log-concave distribution that is not con-
toured. Consider the 1-dimensional log-concave densities 𝑓1(𝑥) = 1

2𝑒−|𝑥|, 𝑓2(𝑥) =
1[− 1

2 , 12 ](𝑥), 𝑥 ∈ ℝ, and the 2-dimensional log-concave density of their product mea-
sure

𝑓(𝑥, 𝑦) = 𝑓1(𝑥)𝑓2(𝑦) =
1
2𝑒

−|𝑥|1[− 1
2 , 12 ](𝑦), (𝑥, 𝑦) ∈ ℝ2.

For any 𝑝 > 0 and any (𝑥, 𝑦) ∈ ℝ2, a direct computation leads to the formula

‖(𝑥, 𝑦)‖𝐾𝑝(𝑓) =
|𝑥|

(𝑝 ∫|𝑥|/(2|𝑦|)
0 𝑡𝑝−1𝑒−𝑡 𝑑𝑡)

1/𝑝 .

Taking (𝑥, 𝑦) on the line 𝑥 = 𝛼𝑦, we get that for any 𝛼 > 0,

‖(𝛼𝑥, 𝑥)‖𝐾𝑝(𝑓) =
𝛼|𝑥|

(𝑝 ∫𝛼/2
0 𝑡𝑝−1𝑒−𝑡 𝑑𝑡)

1/𝑝 , ∀ 𝑥 ∈ ℝ.

Thus

‖(𝛼𝑥, 𝑥)‖𝐾𝑝(𝑓)
‖(𝛼𝑥, 𝑥)‖𝐾𝑞(𝑓)

=
(𝑞 ∫𝛼/2

0 𝑡𝑞−1𝑒−𝑡 𝑑𝑡)
1/𝑞

(𝑝∫𝛼/2
0 𝑡𝑝−1𝑒−𝑡 𝑑𝑡)

1/𝑝 , (15)

for any 𝑝, 𝑞, 𝛼 > 0, and any 𝑥 ∈ ℝ. If 𝑓 was a contoured density, then by Proposi-
tion 3.2 we should have that there exists a constant 𝐶𝑝,𝑞 > 0 such that

‖(𝑥, 𝑦)‖𝐾𝑝(𝑓)
‖(𝑥, 𝑦)‖𝐾𝑞(𝑓)

= 𝐶𝑝,𝑞 ∀ (𝑥, 𝑦) ∈ ℝ2,

and this is definitely not the case in our example since, as equation (15) shows, the
above norm ratio depends also on (𝑥, 𝑦) ∈ ℝ2.
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4. Isotropic constant reduction
In this section, for any log-concave probability density 𝑓 and every centered

convex body 𝐾 in ℝ𝑛, we introduce a contoured probability density that distributes
the mass “similarly” to the way 𝑓 does. The contoured distribution is defined using
spherical averages of 𝑓 .

Definition 4.1 (Spherical average density). Let 𝑓 ∶ ℝ𝑛 → [0,+∞) be a log-concave
probability density. We define a function 𝜑 ∶ ℝ → [0,+∞) by

𝜑(𝑡) = ∫
𝕊𝑛−1

𝑓(𝑡𝜃) 𝑑𝜎(𝜃)

and for any centered convex body 𝐾 in ℝ𝑛, we define the spherical average density
ℎ ∶ ℝ𝑛 → [0,∞) by

ℎ(𝑥) = 𝜔𝑛
|𝐾|𝜑(‖𝑥‖𝐾). (16)

Observe that ℎ is a contoured density, since its radial profile function 𝜑 satisfies
the normalization condition (7). Indeed, using polar coordinates we see that

𝑛𝜔𝑛 ∫
∞

0
𝑡𝑛−1 𝜑(𝑡) 𝑑𝑡 = 𝑛𝜔𝑛 ∫

∞

0
∫
𝕊𝑛−1

𝑡𝑛−1𝑓(𝑡𝜃) 𝑑𝜎(𝜃)𝑑𝑡 = ∫
ℝ𝑛

𝑓(𝑥) 𝑑𝑥 = 1.

Remark 4.2. Note also that the center of mass of ℎ lies at the origin since its
contoured body 𝐾 is centered. Truthfully, for any 𝜉 ∈ 𝕊𝑛−1, the definition of ℎ and
integration in polar coordinates imply that

∫
ℝ𝑛

⟨𝑥, 𝜉⟩ℎ(𝑥) 𝑑𝑥 = 𝜔𝑛
|𝐾| 𝐼1(𝑓)∫𝕊𝑛−1

⟨𝜁, 𝜉⟩
‖𝜁‖𝑛+1

𝐾
𝑑𝜎(𝜁),

where

𝐼1(𝑓) = ∫
ℝ𝑛

|𝑥|𝑓(𝑥) 𝑑𝑥.

Then, integration in polar coordinates gives

𝑛 + 1
𝑛 ∫

𝐾
⟨𝑥, 𝜉⟩ 𝑑𝑥 = 𝜔𝑛 ∫

𝕊𝑛−1

⟨𝑥, 𝜉⟩
‖𝜁‖𝑛+1

𝐾
𝑑𝜎(𝜁),

and so

∫
ℝ𝑛

⟨𝑥, 𝜉⟩ℎ(𝑥) 𝑑𝑥 = 𝑛 + 1
𝑛 𝐼1(𝑓)

1
|𝐾| ∫𝐾

⟨𝑥, 𝜉⟩ 𝑑𝑥 = 0.

Theorem 4.3. With the above assumptions, if 𝐾 is an isotropic convex body and
𝑓 is an isotropic density in ℝ𝑛, then so is ℎ and 𝐿ℎ ≃ 𝐿𝑓𝐿𝐾. Moreover, if we
choose 𝐾 to be the isotropic image of 𝐾𝑛+1(𝑓), then we get that 𝐿ℎ ≃ 𝐿2

𝑓 .

Proof. Let 𝑓 be a log-concave density and𝐾 be a centered convex body in ℝ𝑛. First
note that by Remark 4.2, ℎ is centered. Moreover, for any 𝜉 ∈ 𝕊𝑛−1, integration in
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polar coordinates an Fubini's theorem imply that

∫
ℝ𝑛

|⟨𝑥, 𝜉⟩|2ℎ(𝑥) 𝑑𝑥 = 𝜔𝑛
|𝐾| ∫ℝ𝑛

∫
𝕊𝑛−1

𝑓(‖𝑥‖𝐾𝜃) 𝑑𝜎(𝜃) |⟨𝑥, 𝜉⟩|2 𝑑𝑥

= 𝜔𝑛
|𝐾| ∫𝕊𝑛−1

𝑛𝜔𝑛 ∫
𝕊𝑛−1

∫
∞

0
𝑓(‖𝑟𝜁‖𝐾𝜃)|⟨𝑟𝜁, 𝜉⟩|2𝑟𝑛−1 𝑑𝑟𝑑𝜎(𝜁)𝑑𝜎(𝜃)

= 𝜔𝑛
|𝐾| ∫𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2 𝑛𝜔𝑛 ∫
𝕊𝑛−1

∫
∞

0
𝑓(𝑟‖𝜁‖𝐾𝜃)𝑟𝑛+1 𝑑𝑟𝑑𝜎(𝜃)𝑑𝜎(𝜁)

= 𝜔𝑛
|𝐾| ∫𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2
‖𝜁‖𝑛+2

𝐾
𝑑𝜎(𝜁) 𝑛𝜔𝑛 ∫

𝕊𝑛−1
∫

∞

0
𝑓(𝑠𝜃)𝑠𝑛+1 𝑑𝑠𝑑𝜎(𝜃)

= 𝜔𝑛
|𝐾| ∫𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2
‖𝜁‖𝑛+2

𝐾
𝑑𝜎(𝜁) ∫

ℝ𝑛
|𝑥|2𝑓(𝑥) 𝑑𝑥,

arriving at

∫
ℝ𝑛

|⟨𝑥, 𝜉⟩|2ℎ(𝑥) 𝑑𝑥 = 𝜔𝑛
|𝐾|𝐼2(𝑓)

2 ∫
𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2
‖𝜁‖𝑛+2

𝐾
𝑑𝜎(𝜁), ∀ 𝜉 ∈ 𝕊𝑛−1. (17)

If we assume that 𝑓 distributes the mass isotropically in ℝ𝑛, then

𝐼2(𝑓)2 = ∫
ℝ𝑛

|𝑥|2𝑓(𝑥) 𝑑𝑥 = 𝑛
𝐿2
𝑓

sup 𝑓2/𝑛 , (18)

If moreover 𝐾 is isotropic, then by computing ∫𝐾 |⟨𝑥, 𝜉⟩|2 𝑑𝑥 in polar coordinates,
we get that

∫
𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2
‖𝜁‖𝑛+2

𝐾
𝑑𝜎(𝜁) = 𝑛 + 2

𝑛𝜔𝑛
𝐿2
𝐾. (19)

Thus, returning to (17) we finally get

∫
ℝ𝑛

|⟨𝑥, 𝜉⟩|2ℎ(𝑥) 𝑑𝑥 = 𝑛 + 2
𝑛 𝐿2

𝐾𝐼2(𝑓)2,

that is, the integral on the left is independent of the direction 𝜉 ∈ 𝕊𝑛−1, and this
means that ℎ distributes the mass in ℝ𝑛 isotropically.

To compute the isotropic constant of ℎ we notice that since 𝑓 is log-concave, by
Theorem 2.2 we have that

𝜔𝑛
|𝐾|𝑓(0) ≤ sup

𝑥∈ℝ𝑛
ℎ(𝑥) = 𝜔𝑛

|𝐾| sup
𝑥∈ℝ𝑛

∫
𝕊𝑛−1

𝑓(‖𝑥‖𝐾𝜃) 𝑑𝜎(𝜃) ≤ 𝑒𝑛 𝜔𝑛
|𝐾| 𝑓(0)

and so

sup
𝑥∈ℝ𝑛

ℎ(𝑥)1/𝑛 ≃ ( 𝜔𝑛
|𝐾|)

1/𝑛
𝑓(0)1/𝑛 ≃ ( 𝜔𝑛

|𝐾|)
1/𝑛

sup
𝑥∈ℝ𝑛

𝑓1/𝑛. (20)

Now we use the fact that if a density 𝑓 distributes the mass in ℝ𝑛 isotropically,
then

𝐿𝑓 = sup
𝑥∈ℝ𝑛

𝑓(𝑥)1/𝑛 (∫
ℝ𝑛

|⟨𝑥, 𝜉⟩|2𝑓(𝑥) 𝑑𝑥)
1/2

.

Since both 𝑓 and ℎ distribute the mass isotropically, by (17), (18), (20) and using
the estimate √𝑛𝜔1/𝑛

𝑛 ≃ 1, we arrive at the formula

𝐿ℎ ≃ 𝜔1/2
𝑛

|𝐾| 1
𝑛+ 1

2
(∫

𝕊𝑛−1

|⟨𝜁, 𝜉⟩|2
‖𝜁‖𝑛+2

𝐾
𝑑𝜎(𝜁))

1/2
𝐿𝑓 (21)

which, for 𝐾 isotropic and by (19), gives that 𝐿ℎ ≃ 𝐿𝐾𝐿𝑓 .
For the second part of the theorem, we assume that 𝑓 is an isotropic log-concave

density in ℝ𝑛. Note that if in addition we assume that 𝑓 is even, then 𝐾𝑛+2(𝑓) is
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centrally symmetric and distributes the mass isotropically in ℝ𝑛. Then by (4) we
have that 𝐿𝐾 ≃ 𝐿𝑓 and so 𝐿ℎ ≃ 𝐿2

𝑓 . Nevertheless, we can prove this result without
assuming the evenness of 𝑓 .

Note that by (5) 𝐾𝑛+1(𝑓) is a centered convex body in ℝ𝑛 with 𝐿𝐾𝑛+1(𝑓) ≃ 𝐿𝑓 .
Then, if 𝑇 is the isotropic image of 𝐾𝑛+1(𝑓), by the affine invariant of the isotropic
constant we have that 𝐿𝑇 = 𝐿𝐾𝑛+1(𝑓) ≃ 𝐿𝑓 . Thus if we take ℎ to be the spherical
average density of 𝑓 with the isotropic body 𝑇 , by the first part of the Theorem we
have that ℎ is also isotropic and

𝐿ℎ = 𝐿𝑓 𝐿𝑇 ≃ 𝐿2
𝑓 ,

completing the proof. □
Remark 4.4. Notice that the spherical average density ℎ in (16) defines always a
contoured distribution, but it is not necessarily log-concave. Nevertheless, if one
could prove that there exists a log-concave density 𝑓∗ such that 𝐿𝑛 is attained (up
to an absolute constant) by 𝐿𝑓∗ and its spherical average density ℎ∗ is log-concave,
then by Theorem 4.3 we would have that

𝐿2
𝑛 ≃ 𝐿2

𝑓∗ ≃ 𝐿ℎ∗
≤ 𝐿𝑛,

and so 𝐿𝑛 would be bounded by an absolute constant.
We conclude this section with a remark regarding a question that would allow to

use contoured distributions for bounding the isotropic constant. We will say that
a (probability density) function ℎ ∶ ℝ𝑛 → [0,∞) is sub-log-concave if there exist a
log-concave (probability density) function 𝑔 ∶ ℝ𝑛 → [0,∞) and a constant 𝑐 > 0
such that ℎ ≤ 𝑐𝑔.

Although the spherical average density ℎ in (16) may not be log-concave, since
it is defined by a log-concave function 𝑓 , using Lemma 2.1 we see that it is always
sub-log-concave. Define

𝐿sub
𝑛 ∶= sup {𝐿ℎ ∶ ℎ is an isotropic sub-log-concave density in ℝ𝑛}

and then obviously 𝐿𝑛 ≤ 𝐿sub
𝑛 . Conversely, if it can be proved that 𝐿sub

𝑛 is attained
(up to an absolute constant) on a log-concave density, say 𝑓0, then using a log-
concave density that maximizes 𝐿𝑛, say 𝑓max, by Theorem 4.3 we would get that

𝐿2
𝑛 ≃ 𝐿2

𝑓max
≃ 𝐿ℎmax

≲ 𝐿sub
𝑛 ≃ 𝐿𝑓0 ≤ 𝐿𝑛,

from which it would follow that 𝐿𝑛 is bounded by an absolute constant.
Finally, we note that the same argument also works with the class of contoured

distributions. More specifically, we define
𝐿cont
𝑛 ∶= sup {𝐿ℎ ∶ ℎ is an isotropic contoured density in ℝ𝑛},

and similarly to the sub-log-concave case, we see that if 𝐿cont
𝑛 is attained (up to an

absolute constant) on a log-concave contoured density function, then 𝐿𝑛 is bounded
by an absolute constant.
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