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Related problem - Longest increasing subsequences

What is the length of the longest increasing subsequence in a
random permutation of 1, . . . , n?

3 2 10 7 1 8 5 4 6 9

The expected number is ∼ 2
√

n. (Logan & Shepp (’77) and
Vershik & Kerov(’77,’85); Aldous & Diaconis (’95))

Alternative formulation: take n random points in the unit square.
Maximal number of them in increasing position ?
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Random points in the square

3 2 10 7 1 8 5 4 6 9



Points in increasing position

3 2 10 7 1 8 5 4 6 9



Points form an increasing chain

Points form an increasing chain from (0, 0) to (1, 1)



Maximal convex chains

T = conv((0, 0), (1, 0), (1, 1))

Choose n independent random points from T with uniform
distribution
⇒ Their set is Xn

Take the convex chains connecting (0, 0) and (1, 1) with
vertices among the chosen points
Convex chain: the vertices are in convex position

Look for such chains with maximal number of vertices
(referred as maximal length)
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Convex chains can be useful...



The triangle T

(0, 0) (1, 0)

(1, 1)

T



Random points in T

(0, 0) (1, 0)

(1, 1)

T



A convex chain

(0, 0) (1, 0)

(1, 1)

T



Another convex chain

(0, 0) (1, 0)

(1, 1)

T



A maximal convex chain

(0, 0) (1, 0)

(1, 1)

T



Maximal convex chains

Definition
Ln- the maximal number of points in Xn which are in convex
position with (0, 0) and (1, 1)

Mn- the convex chains of maximal length between (0, 0) and
(1, 1) via Xn

Questions:

What is the asymptotic behavior of ELn?

What is the deviation of Ln?

How many chains are there in Mn?

Where are the chains in Mn located? Is there a
concentration (limit) shape?

All of these are affine invariant, just depending on n.
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Asymptotic behavior of the expected length

Theorem
There exists a positive constant c for which

lim
n→∞

ELn
3
√

n
= c .



Proof - Upper bound

P(k random points form a convex chain) =
2k

k ! (k + 1)!

P(convex chain of lengthk exists)≤
(

n
k

)
2k

k ! (k + 1)!

= P(Ln ≥ k)

If X is a positive random variable, then

EX =

∫ ∞

0
P(X > x) dx
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Proof - Upper bound

For any γ > 0

ELn =
n∑

k=0

P(Ln > k)

≤ γ 3
√

n +
∑

k>γ 3√n

P(Ln > k)

≤ γ 3
√

n +
∑

k>γ 3√n

(
n
k

)
2k

k ! (k + 1)!

≤ γ 3
√

n + n−1/2C(γ),

if γ >
3
√

2e.

lim sup
n→∞

ELn
3
√

n
≤ 3
√

2e = 3.9581 . . .
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Proof - Lower bound

Parabolic arc Γ:

y = (1−
√

1− x)2, 0 ≤ x ≤ 1.



Proof - Lower bound
Number of points above Γ: ∼ B(n, 2n/3).

Binomial r.v.’s are strongly concentrated: k ′ ∼ B(n, p), np = k :

P(k ′ ≤ k − c
√

k log k) ≤ k−c2/2

Take the convex hull of the vertices above Γ:
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Proof - Lower bound

Rényi-Sulanke ’63. n uniform random points in K , A(K ) - area
of K , AP(K ) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

Γ

(
5
3

)
3

√
2
3

(A(D))−1/3 AP(K ) 3
√

n

In the present case, it is ≈ 1.5772 n1/3.
Most vertices are close to Γ, forming a convex chain ⇒

lim inf
n→∞

ELn
3
√

n
≥ 1.5772 . . .



Proof - Lower bound

Rényi-Sulanke ’63. n uniform random points in K , A(K ) - area
of K , AP(K ) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

Γ

(
5
3

)
3

√
2
3

(A(D))−1/3 AP(K ) 3
√

n

In the present case, it is ≈ 1.5772 n1/3.

Most vertices are close to Γ, forming a convex chain ⇒

lim inf
n→∞

ELn
3
√

n
≥ 1.5772 . . .



Proof - Lower bound

Rényi-Sulanke ’63. n uniform random points in K , A(K ) - area
of K , AP(K ) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

Γ

(
5
3

)
3

√
2
3

(A(D))−1/3 AP(K ) 3
√

n

In the present case, it is ≈ 1.5772 n1/3.
Most vertices are close to Γ, forming a convex chain ⇒

lim inf
n→∞

ELn
3
√

n
≥ 1.5772 . . .



Proof - Existence of the limit

Suppose on the contrary that

α = lim inf
n→∞

ELn
3
√

n
< lim sup

n→∞

ELn
3
√

n
= β

Fix a small ε > 0

Choose n1 s.t. ELn1 ≥ (1− ε)β 3
√

n1

Choose n2 >> n1 with ELn2 ≈ α 3
√

n2

Define N1 such that n1 = N1 −
√

N1 log N1, and let
t = N1/(2n2)

Choose n2 uniform, independent random points in T (expected
number of points in a triangle of area t is N1)
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Proof - Existence of the limit

Definition
For q1, q2 ∈ Γ, let T (q1, q2) be the triangle determined by q1, q2

and the intersection point of the tangents to Γ at these points

(0,0) (1,0)

(1,1)

qi

qi+1

T (qi, qi+1)

T

Γ



Proof - Existence of the limit

Take as many points (0, 0) = q0, q1, . . . , qk = (1, 1) on Γ as
possible, ordered by the x coordinate, such that

A(Ti) = t , i < k ,

A(Tk ) ≤ t ,

where Ti = T (qi−1, qi).

Special property of Γ:

k∑
i=1

3
√

A(T (qi−1, qi)) = 3
√

1/2

k ≥ 3
√

n2/N1
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Proof - Existence of the limit

ki - number of points in Ti ; binomial distribution with mean
N1 (except for i = k )

EL′i - expectation of the maximal convex chain length in Ti

Union of the maximal convex chains in the triangles Ti is a
convex chain in T between (0, 0) and (1, 1)

α 3
√

n2 ≈ ELn2 ≥
∑
i≤k

EL′i

≥
∑
i≤k

P(ki > n1)ELn1

≥
∑

i≤k−1

(1− N−1/2
1 )(1− ε)β 3

√
n1

≥ ( 3
√

n2/N1 − 1)(1− N−1/2
1 )(1− ε)β 3

√
n1

= β 3
√

n2(1− ξ) �
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Talagrand inequality

Y is a real-valued random variable on a product probability
space Ω⊗n

|Y (x)−Y (y)| ≤ d whenever x and y differ at d coordinates

For any x and b with Y (x) ≥ b there exists an index set I

of at most b elements, such that Y (y) ≥ b holds for any y
agreeing with x on I

If m is the median of Y , for any γ > 0 we have

P(Y ≤ m − γ) ≤ 2 exp

(
−γ2

4r2f (m)

)

P(Y ≥ m + γ) ≤ 2 exp

(
−γ2

4r2f (m + γ)

)



Strong concentration for ELn

Theorem
For every γ > 0 there exist a constant N, such that for every
n > N

P(|Ln − ELn| > γ
√

log n n1/6) < n−γ2/25.



Proof

Talagrand for Ln:

P(|Ln −m| ≥ γ
√

m log m) < m−γ2/5

Distance between mean and median:

lim
n→∞

|ELn −m|√
m logm

= 0 ⇒ m < 4 3
√

n

P(|Ln − ELn| ≥ γ
√

log n n1/6)

≤ P(|Ln −m| > γ

√
3

2

√
m(log m − log 64))

≤ m−3γ2/21

≤ n−γ2/25 �
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Concentration in a small triangle

The same result holds when the number of points taken is a
binomial random variable:

Theorem
Let 0 ≤ t ≤ 1, and consider the triangle T ′ with vertices (0, 0),
(
√

t , 0), (
√

t ,
√

t). Choose n independent random points
uniformly in T , and denote Lt ,n the maximal number of points in
T ′ which form a convex chain from (0, 0) to (

√
t ,
√

t). Then for
every γ > 0 there exists an N, such that for every n > N,

P(|Lt ,n − ELt ,n| > γ
√

log nt (nt)1/6) < (nt)−γ2/25.



Strong concentration for the location
The maximal chains are close to Γ with high probability.

Reason:
For any point P in T ,

3
√

A(T1) + 3
√

A(T2) ≤ 3
√

A(T )

Γ

P

T1

T2

q0

q1

q2

q3

T1

T2
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Reason - Quantitatively
For a point P far from Γ, 3

√
A(T1) + 3

√
A(T2) is small.

Lemma

Denote the vertices of T by P0 = (0, 0), P1 = (1, 0) and
P2 = (1, 1). Suppose that a line ` intersects the side P0P1 at
B1 = (x , 0) and the side P1P2 at B2 = (1, y). Then for any point
P of ` ∩ T we have

3
√

1/2− ( 3
√

A(P0B1P) + 3
√

A(PB2P2)) >
1
3
(x − y)2.

P0 P1

P2

B1

B2

x 1− x

y

1− y

P

T

z : (1− z)

`
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How far is Γ?

Definition
The random variable Q is the farthest point of the union of the
chains in Mn from Γ, in notation:

Q = q ∈ T |
(

dist(q, Γ) = max
p∈∪Mn

dist(p, Γ)

)
,

Definition
For every point q ∈ T let q ′ denote the closest point of Γ to q,
and let ϕ denote the angle of the tangent of Γ at q ′. Then Γt is
the following domain containing Γ:

Γt =

{
q ∈ T | dist(q, q ′) ≤

√
3t

cos ϕ sin ϕ

cos ϕ + sin ϕ

}
.



Strong concentration theorem for the location of the
maximal chains

Theorem

Let γ > 0 and define t = γ1/2 n−1/12(log n)1/4. Then there
exists N > 0, depending on γ, such that for any n > N,

P(Q ∈ Γt) > 1− 2n−γ2/25.



Proof - location

Consider the following random variable defined on T⊗n:

X =

{
1 if Ln ≥ ELn − γ

√
log n n1/6

0 otherwise;

The conditional expectation E(X |Q) of X with respect to Q
exists: ∫

{Q∈S}
XdP =

∫
S

E(X |Q = q)µQ(dq),

where S ∈ B(T ), and µQ is the distribution of Q,

µQ(S) = P(Q ∈ S).
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{Q∈S}
XdP =

∫
S

E(X |Q = q)µQ(dq),

where S ∈ B(T ), and µQ is the distribution of Q,

µQ(S) = P(Q ∈ S).



Proof - location
Lemma
If n is large enough, then for any q ∈ T \ Γt ,

E(X |Q = q) < 1/2.

Let S denote the event {Q ∈ Γt}. Let p = P(S). Then

EX =

∫
S

E(X |Q = q)µQ(dq) +

∫
T⊗n\S

E(X |Q = q)µQ(dq)

≤ p + (1− p)/2 = (1 + p)/2.

On the other hand, strong concentration implies that

EX ≥ 1− n−γ2/25,

and therefore
1− 2n−γ2/25 ≤ p.
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A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



A couple of open questions

What is the exact value of the constant limn→∞
ELn
3√n

? Is it 3?

What is the variance of Ln? What is the limit distribution?

How many chains are there in Mn?

What is the real concentration of the distance from Γ?

What is the limit distribution of the edge vectors of the
chains in Mn?

Which of the theorems proved here transfer to general
convex bodies?

and so on . . .



Thank you!
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