On the maximal convex chains among random points in a triangle

Gergely Ambrus¹ Imre Bárány²

¹University College London & University of Szeged

²MTA Rényi Institute & University College London

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

3 <mark>2</mark> 10 7 1 8 <mark>5</mark> 4 <mark>6</mark> 9

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

3 **2** 10 7 1 8 **5** 4 **6** 9

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The expected number is $\sim 2\sqrt{n}$. (Logan & Shepp ('77) and Vershik & Kerov('77,'85); Aldous & Diaconis ('95))

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

3 **2** 10 7 1 8 **5** 4 **6** 9

The expected number is $\sim 2\sqrt{n}$. (Logan & Shepp ('77) and Vershik & Kerov('77,'85); Aldous & Diaconis ('95))

Alternative formulation: take *n* random points in the unit square. Maximal number of them in increasing position ?

Random points in the square

32107185469

・ロン ・四 と ・ ヨ と ・ ヨ と

2

Points in increasing position

3 **2** 10 7 1 8 **5** 4 **6** 9

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Points form an increasing chain

Points form an increasing chain from (0,0) to (1,1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

•
$$T = \operatorname{conv}((0,0),(1,0),(1,1))$$

- $T = \operatorname{conv}((0,0),(1,0),(1,1))$
- Choose *n* independent random points from *T* with uniform distribution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \Rightarrow Their set is X_n

- $T = \operatorname{conv}((0,0),(1,0),(1,1))$
- Choose *n* independent random points from *T* with uniform distribution
 - \Rightarrow Their set is X_n
- Take the convex chains connecting (0,0) and (1,1) with vertices among the chosen points
 Convex chain: the vertices are in convex position

- $T = \operatorname{conv}((0,0),(1,0),(1,1))$
- Choose *n* independent random points from *T* with uniform distribution
 - \Rightarrow Their set is X_n
- Take the convex chains connecting (0,0) and (1,1) with vertices among the chosen points Convex chain: the vertices are in convex position
- Look for such chains with maximal number of vertices (referred as maximal length)

(日) (日) (日) (日) (日) (日) (日)

Convex chains can be useful...

The triangle *T*

くして 「「」 (目) (目) (目) (目)

Random points in T

A convex chain

くして 「「」 (目) (目) (目) (目)

Another convex chain

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

A maximal convex chain

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Questions:

• What is the asymptotic behavior of $\mathbb{E}L_n$?

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Questions:

- What is the asymptotic behavior of $\mathbb{E}L_n$?
- What is the deviation of *L_n*?

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Questions:

- What is the asymptotic behavior of $\mathbb{E}L_n$?
- What is the deviation of *L_n*?
- How many chains are there in M_n?

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

Questions:

- What is the asymptotic behavior of $\mathbb{E}L_n$?
- What is the deviation of *L_n*?
- How many chains are there in M_n?
- Where are the chains in *M_n* located? Is there a concentration (limit) shape?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Definition

 L_n - the maximal number of points in X_n which are in convex position with (0,0) and (1,1)

 M_n - the convex chains of maximal length between (0,0) and (1,1) via X_n

Questions:

- What is the asymptotic behavior of $\mathbb{E}L_n$?
- What is the deviation of *L_n*?
- How many chains are there in M_n?
- Where are the chains in *M_n* located? Is there a concentration (limit) shape?

All of these are affine invariant, just depending on *n*.

Asymptotic behavior of the expected length

Theorem

There exists a positive constant c for which

$$\lim_{n\to\infty}\frac{\mathbb{E}L_n}{\sqrt[3]{n}}=c.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 $\mathbb{P}(k \text{ random points form a convex chain}) = \frac{2^k}{k! (k+1)!}$

 $\mathbb{P}(k \text{ random points form a convex chain}) = \frac{2^k}{k! (k+1)!}$ $\mathbb{P}(\text{convex chain of length } k \text{ exists}) \le \binom{n}{k} \frac{2^k}{k! (k+1)!}$

 $\mathbb{P}(k \text{ random points form a convex chain}) = \frac{2^k}{k! (k+1)!}$ $\mathbb{P}(\text{convex chain of length } k \text{ exists}) \le \binom{n}{k} \frac{2^k}{k! (k+1)!}$

$$= \mathbb{P}(L_n \geq k)$$

 $\mathbb{P}(k \text{ random points form a convex chain}) = \frac{2^k}{k! (k+1)!}$

 $\mathbb{P}(\text{convex chain of length } k \text{ exists}) \leq \binom{n}{k} \frac{2^k}{k! (k+1)!}$

$$= \mathbb{P}(L_n \geq k)$$

If X is a positive random variable, then

$$\mathbb{E} X = \int_0^\infty \mathbb{P}(X > x) \, dx$$

For any $\gamma > 0$

$$\begin{split} \mathbb{E}L_n &= \sum_{k=0}^n \mathbb{P}(L_n > k) \\ &\leq \gamma \sqrt[3]{n} + \sum_{k > \gamma \sqrt[3]{n}} \mathbb{P}(L_n > k) \\ &\leq \gamma \sqrt[3]{n} + \sum_{k > \gamma \sqrt[3]{n}} \binom{n}{k} \frac{2^k}{k! (k+1)!} \\ &\leq \gamma \sqrt[3]{n} + n^{-1/2} C(\gamma), \end{split}$$

if $\gamma > \sqrt[3]{2}e$.

 \mathbb{E}

For any $\gamma > 0$

$$\begin{array}{lll} \mathcal{L}_{n} & = & \displaystyle\sum_{k=0}^{n} \mathbb{P}(\mathcal{L}_{n} > k) \\ & \leq & \displaystyle\gamma \sqrt[3]{n} + \displaystyle\sum_{k > \displaystyle\gamma \sqrt[3]{n}} \mathbb{P}(\mathcal{L}_{n} > k) \\ & \leq & \displaystyle\gamma \sqrt[3]{n} + \displaystyle\sum_{k > \displaystyle\gamma \sqrt[3]{n}} \binom{n}{k} \frac{2^{k}}{k! \, (k+1)!} \\ & \leq & \displaystyle\gamma \sqrt[3]{n} + n^{-1/2} C(\gamma), \end{array}$$

if $\gamma > \sqrt[3]{2}e$.

$$\limsup_{n\to\infty}\frac{\mathbb{E}L_n}{\sqrt[3]{n}}\leq\sqrt[3]{2}e=3.9581\ldots$$

◆□ > ◆□ > ◆豆 > ◆豆 > □ = □ の < ⊙

Parabolic arc Γ:

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Number of points above Γ : ~ B(n, 2n/3).

Binomial r.v.'s are strongly concentrated: $k' \sim B(n, p)$, np = k:

$$\mathbb{P}(k' \le k - c\sqrt{k\log k}) \le k^{-c^2/2}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Number of points above Γ : ~ B(n, 2n/3).

Binomial r.v.'s are strongly concentrated: $k' \sim B(n, p)$, np = k:

$$\mathbb{P}(k' \le k - c\sqrt{k\log k}) \le k^{-c^2/2}$$

Take the convex hull of the vertices above Γ :

Rényi-Sulanke '63. *n* uniform random points in K, A(K) - area of K, AP(K) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$\Gamma\left(\frac{5}{3}\right)\sqrt[3]{\frac{2}{3}}(A(D))^{-1/3}AP(K)\sqrt[3]{n}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Rényi-Sulanke '63. *n* uniform random points in K, A(K) - area of K, AP(K) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$\Gamma\left(\frac{5}{3}\right)\sqrt[3]{\frac{2}{3}}(A(D))^{-1/3}AP(K)\sqrt[3]{n}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

In the present case, it is $\approx 1.5772 n^{1/3}$.

Proof - Lower bound

Rényi-Sulanke '63. *n* uniform random points in K, A(K) - area of K, AP(K) - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$\Gamma\left(\frac{5}{3}\right)\sqrt[3]{\frac{2}{3}}(A(D))^{-1/3}AP(K)\sqrt[3]{n}$$

In the present case, it is $\approx 1.5772 n^{1/3}$. Most vertices are close to Γ , forming a convex chain \Rightarrow

$$\liminf_{n\to\infty}\frac{\mathbb{E}L_n}{\sqrt[3]{n}}\geq 1.5772\ldots$$

(日) (日) (日) (日) (日) (日) (日)

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

● Fix a small *ϵ* > 0

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Fix a small
$$\epsilon > 0$$

• Choose n_1 s.t. $\mathbb{E}L_{n_1} \ge (1-\epsilon)\beta\sqrt[3]{n_1}$

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

- Fix a small *ε* > 0
- Choose n_1 s.t. $\mathbb{E}L_{n_1} \ge (1-\epsilon)\beta\sqrt[3]{n_1}$
- Choose $n_2 >> n_1$ with $\mathbb{E}L_{n_2} \approx \alpha \sqrt[3]{n_2}$

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

- Fix a small *e* > 0
- Choose n_1 s.t. $\mathbb{E}L_{n_1} \ge (1-\epsilon)\beta\sqrt[3]{n_1}$
- Choose $n_2 >> n_1$ with $\mathbb{E}L_{n_2} \approx \alpha \sqrt[3]{n_2}$
- Define N_1 such that $n_1 = N_1 \sqrt{N_1 \log N_1}$, and let $t = N_1/(2n_2)$

Suppose on the contrary that

$$\alpha = \liminf_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} < \limsup_{n \to \infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}} = \beta$$

- Fix a small *e* > 0
- Choose n_1 s.t. $\mathbb{E}L_{n_1} \ge (1-\epsilon)\beta\sqrt[3]{n_1}$
- Choose $n_2 >> n_1$ with $\mathbb{E}L_{n_2} \approx \alpha \sqrt[3]{n_2}$
- Define N_1 such that $n_1 = N_1 \sqrt{N_1 \log N_1}$, and let $t = N_1/(2n_2)$

Choose n_2 uniform, independent random points in *T* (expected number of points in a triangle of area *t* is N_1)

Definition

For $q_1, q_2 \in \Gamma$, let $T(q_1, q_2)$ be the triangle determined by q_1, q_2 and the intersection point of the tangents to Γ at these points

Take as many points $(0, 0) = q_0, q_1, \dots, q_k = (1, 1)$ on Γ as possible, ordered by the *x* coordinate, such that

$$A(T_i) = t, \ i < k,$$
$$A(T_k) \le t,$$

where $T_i = T(q_{i-1}, q_i)$.

Take as many points $(0, 0) = q_0, q_1, \dots, q_k = (1, 1)$ on Γ as possible, ordered by the *x* coordinate, such that

$$A(T_i) = t, \ i < k,$$
$$A(T_k) \le t,$$

where $T_i = T(q_{i-1}, q_i)$. Special property of Γ :

$$\sum_{i=1}^{k} \sqrt[3]{\mathrm{A}(T(q_{i-1}, q_i))} = \sqrt[3]{1/2}$$

Take as many points $(0, 0) = q_0, q_1, \dots, q_k = (1, 1)$ on Γ as possible, ordered by the *x* coordinate, such that

$$A(T_i) = t, \ i < k,$$
$$A(T_k) \le t,$$

where $T_i = T(q_{i-1}, q_i)$. Special property of Γ :

$$\sum_{i=1}^{k} \sqrt[3]{A(T(q_{i-1}, q_i))} = \sqrt[3]{1/2}$$

 $k \geq \sqrt[3]{n_2/N_1}$

- *k_i* number of points in *T_i*; binomial distribution with mean *N*₁ (except for *i* = *k*)
- $\mathbb{E}L'_i$ expectation of the maximal convex chain length in T_i

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- *k_i* number of points in *T_i*; binomial distribution with mean *N*₁ (except for *i* = *k*)
- $\mathbb{E}L'_i$ expectation of the maximal convex chain length in T_i

(ロ) (同) (三) (三) (三) (○) (○)

Union of the maximal convex chains in the triangles T_i is a convex chain in T between (0,0) and (1,1)

- *k_i* number of points in *T_i*; binomial distribution with mean *N*₁ (except for *i* = *k*)
- $\mathbb{E}L'_i$ expectation of the maximal convex chain length in T_i

Union of the maximal convex chains in the triangles T_i is a convex chain in T between (0,0) and (1,1)

$$\begin{split} \alpha \sqrt[3]{n_2} &\approx \mathbb{E}L_{n_2} \geq \sum_{i \leq k} \mathbb{E}L'_i \\ &\geq \sum_{i \leq k} \mathbb{P}(k_i > n_1) \mathbb{E}L_{n_1} \\ &\geq \sum_{i \leq k-1} (1 - N_1^{-1/2})(1 - \epsilon) \beta \sqrt[3]{n_1} \\ &\geq (\sqrt[3]{n_2/N_1} - 1)(1 - N_1^{-1/2})(1 - \epsilon) \beta \sqrt[3]{n_1} \\ &= \beta \sqrt[3]{n_2}(1 - \xi) \end{split}$$

(ロ) (同) (三) (三) (三) (○) (○)

Talagrand inequality

- Y is a real-valued random variable on a product probability space Ω^{⊗n}
- $|Y(x) Y(y)| \le d$ whenever x and y differ at d coordinates
- For any x and b with Y(x) ≥ b there exists an index set ℑ of at most b elements, such that Y(y) ≥ b holds for any y agreeing with x on ℑ

If *m* is the median of Y, for any $\gamma > 0$ we have

$$\mathbb{P}(\mathbf{Y} \le m - \gamma) \le 2 \exp\left(\frac{-\gamma^2}{4r^2 f(m)}\right)$$

 $\mathbb{P}(\mathbf{Y} \ge m + \gamma) \le 2 \exp\left(\frac{-\gamma^2}{4r^2 f(m + \gamma)}\right)$

Strong concentration for $\mathbb{E}L_n$

Theorem

For every $\gamma > 0$ there exist a constant N, such that for every n > N $\mathbb{P}(|L_n - \mathbb{E}L_n| > \gamma \sqrt{\log n} n^{1/6}) < n^{-\gamma^2/25}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof

• Talagrand for *L_n*:

$$\mathbb{P}(|L_n - m| \ge \gamma \sqrt{m \log m}) < m^{-\gamma^2/5}$$

Proof

• Talagrand for *L_n*:

$$\mathbb{P}(|L_n - m| \ge \gamma \sqrt{m \log m}) < m^{-\gamma^2/5}$$

Distance between mean and median:

$$\lim_{n\to\infty}\frac{|\mathbb{E}L_n-m|}{\sqrt{m\log m}}=0 \Rightarrow m<4\sqrt[3]{n}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof

• Talagrand for *L_n*:

$$\mathbb{P}(|L_n - m| \ge \gamma \sqrt{m \log m}) < m^{-\gamma^2/5}$$

Distance between mean and median:

$$\lim_{n \to \infty} \frac{|\mathbb{E}L_n - m|}{\sqrt{m \log m}} = 0 \implies m < 4\sqrt[3]{n}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$\begin{split} \mathbb{P}(|L_n - \mathbb{E}L_n| \geq \gamma \sqrt{\log n} \ n^{1/6}) \\ \leq & \mathbb{P}(|L_n - m| > \gamma \frac{\sqrt{3}}{2} \sqrt{m(\log m - \log 64)}) \\ \leq & m^{-3\gamma^2/21} \\ \leq & n^{-\gamma^2/25} \end{split}$$

Concentration in a small triangle

The same result holds when the number of points taken is a binomial random variable:

Theorem

Let $0 \le t \le 1$, and consider the triangle T' with vertices (0,0), $(\sqrt{t},0)$, (\sqrt{t},\sqrt{t}) . Choose *n* independent random points uniformly in *T*, and denote $L_{t,n}$ the maximal number of points in *T'* which form a convex chain from (0,0) to (\sqrt{t},\sqrt{t}) . Then for every $\gamma > 0$ there exists an *N*, such that for every n > N,

$$\mathbb{P}(|L_{t,n} - \mathbb{E}L_{t,n}| > \gamma \sqrt{\log nt} (nt)^{1/6}) < (nt)^{-\gamma^2/25}$$

(日) (日) (日) (日) (日) (日) (日)

Strong concentration for the location

The maximal chains are close to Γ with high probability.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Strong concentration for the location

The maximal chains are close to Γ with high probability. Reason:

For any point *P* in *T*,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Reason - Quantitatively

For a point *P* far from Γ , $\sqrt[3]{A(T_1)} + \sqrt[3]{A(T_2)}$ is small.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Reason - Quantitatively For a point *P* far from Γ , $\sqrt[3]{A(T_1)} + \sqrt[3]{A(T_2)}$ is small.

Lemma

Denote the vertices of T by $P_0 = (0,0)$, $P_1 = (1,0)$ and $P_2 = (1,1)$. Suppose that a line ℓ intersects the side P_0P_1 at $B_1 = (x,0)$ and the side P_1P_2 at $B_2 = (1,y)$. Then for any point P of $\ell \cap T$ we have

$$\sqrt[3]{1/2} - (\sqrt[3]{A(P_0B_1P)} + \sqrt[3]{A(PB_2P_2)}) > \frac{1}{3}(x-y)^2.$$

How far is Γ ?

Definition

The random variable *Q* is the farthest point of the union of the chains in M_n from Γ , in notation:

$$\mathsf{Q} = \mathbf{q} \in \mathcal{T} \mid \left(\operatorname{dist}(\mathbf{q}, \Gamma) = \max_{\mathbf{p} \in \cup M_n} \operatorname{dist}(\mathbf{p}, \Gamma) \right),$$

Definition

For every point $q \in T$ let q' denote the closest point of Γ to q, and let φ denote the angle of the tangent of Γ at q'. Then Γ_t is the following domain containing Γ :

$$\Gamma_t = \left\{ \boldsymbol{q} \in \mathcal{T} \mid \operatorname{dist}(\boldsymbol{q}, \boldsymbol{q}') \leq \sqrt{3}t \frac{\cos \varphi \sin \varphi}{\cos \varphi + \sin \varphi} \right\}$$

Strong concentration theorem for the location of the maximal chains

Theorem

Let $\gamma > 0$ and define $t = \gamma^{1/2} n^{-1/12} (\log n)^{1/4}$. Then there exists N > 0, depending on γ , such that for any n > N,

$$\mathbb{P}(\mathsf{Q}\in \mathsf{\Gamma}_t)>1-2n^{-\gamma^2/25}.$$

Consider the following random variable defined on $T^{\otimes n}$:

$$X = \begin{cases} 1 & \text{if } L_n \geq \mathbb{E}L_n - \gamma \sqrt{\log n} \ n^{1/6} \\ 0 & \text{otherwise;} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Consider the following random variable defined on $T^{\otimes n}$:

$$X = \begin{cases} 1 & \text{if } L_n \geq \mathbb{E}L_n - \gamma \sqrt{\log n} \ n^{1/6} \\ 0 & \text{otherwise;} \end{cases}$$

The conditional expectation $\mathbb{E}(X|Q)$ of X with respect to Q exists:

$$\int_{\{\mathsf{Q}\in S\}} Xd\mathbb{P} = \int_{\mathsf{S}} \mathbb{E}(X|\mathsf{Q}=q)\mu_{\mathsf{Q}}(dq),$$

where $S \in B(T)$, and μ_Q is the distribution of Q,

$$\mu_{\mathsf{Q}}(\mathsf{S}) = \mathbb{P}(\mathsf{Q} \in \mathsf{S}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma

If n is large enough, then for any $q \in T \setminus \Gamma_t$,

 $\mathbb{E}(X|\mathsf{Q}=q)<1/2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma

If n is large enough, then for any $q \in T \setminus \Gamma_t$,

$$\mathbb{E}(X|\mathsf{Q}=q)<1/2.$$

Let S denote the event $\{Q \in \Gamma_t\}$. Let $p = \mathbb{P}(S)$. Then

$$\begin{split} \mathbb{E}X &= \int_{S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) + \int_{T^{\otimes n} \setminus S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) \\ &\leq p + (1-p)/2 = (1+p)/2. \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Lemma

If n is large enough, then for any $q \in T \setminus \Gamma_t$,

$$\mathbb{E}(X|\mathsf{Q}=q)<1/2.$$

Let S denote the event $\{Q \in \Gamma_t\}$. Let $p = \mathbb{P}(S)$. Then

$$\begin{split} \mathbb{E}X &= \int_{S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) + \int_{T^{\otimes n} \setminus S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) \\ &\leq p + (1-p)/2 = (1+p)/2. \end{split}$$

On the other hand, strong concentration implies that

$$\mathbb{E}X\geq 1-n^{-\gamma^2/25},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Lemma

If n is large enough, then for any $q \in T \setminus \Gamma_t$,

$$\mathbb{E}(X|\mathsf{Q}=q)<1/2.$$

Let S denote the event $\{Q \in \Gamma_t\}$. Let $p = \mathbb{P}(S)$. Then

$$\begin{split} \mathbb{E}X &= \int_{S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) + \int_{T^{\otimes n} \setminus S} \mathbb{E}(X|Q=q) \mu_{Q}(dq) \\ &\leq p + (1-p)/2 = (1+p)/2. \end{split}$$

On the other hand, strong concentration implies that

$$\mathbb{E}X \geq 1 - n^{-\gamma^2/25},$$

and therefore

$$1-2n^{-\gamma^2/25}\leq p$$

• What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}}$? Is it 3?

(ロ)、

• What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}}$? Is it 3?

• What is the variance of *L_n*? What is the limit distribution?

- What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{3/n}$? Is it 3?
- What is the variance of L_n ? What is the limit distribution?
- How many chains are there in *M_n*?

• What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{3/n}$? Is it 3?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- What is the variance of *L_n*? What is the limit distribution?
- How many chains are there in *M_n*?
- What is the real concentration of the distance from Γ?

- What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{3/n}$? Is it 3?
- What is the variance of L_n ? What is the limit distribution?
- How many chains are there in *M_n*?
- What is the real concentration of the distance from Γ?
- What is the limit distribution of the edge vectors of the chains in *M_n*?

- What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{\sqrt[3]{n}}$? Is it 3?
- What is the variance of *L_n*? What is the limit distribution?
- How many chains are there in *M_n*?
- What is the real concentration of the distance from Γ?
- What is the limit distribution of the edge vectors of the chains in *M_n*?
- Which of the theorems proved here transfer to general convex bodies?

- What is the exact value of the constant $\lim_{n\to\infty} \frac{\mathbb{E}L_n}{3/n}$? Is it 3?
- What is the variance of *L_n*? What is the limit distribution?
- How many chains are there in *M_n*?
- What is the real concentration of the distance from Γ?
- What is the limit distribution of the edge vectors of the chains in *M_n*?
- Which of the theorems proved here transfer to general convex bodies?

• and so on ...

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

|▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへ⊙