On the maximal convex chains among random points in a triangle

Gergely Ambrus ${ }^{1}$ Imre Bárány ${ }^{2}$

${ }^{1}$ University College London \&
University of Szeged
${ }^{2}$ MTA Rényi Institute \&
University College London

Related problem - Longest increasing subsequences

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

Related problem - Longest increasing subsequences

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

32107185469

Related problem - Longest increasing subsequences

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

$$
32107185469
$$

The expected number is $\sim 2 \sqrt{n}$. (Logan \& Shepp ('77) and Vershik \& Kerov('77,'85); Aldous \& Diaconis ('95))

Related problem - Longest increasing subsequences

What is the length of the longest increasing subsequence in a random permutation of $1, \ldots, n$?

$$
32107185469
$$

The expected number is $\sim 2 \sqrt{n}$. (Logan \& Shepp ('77) and Vershik \& Kerov('77,'85); Aldous \& Diaconis ('95))

Alternative formulation: take n random points in the unit square. Maximal number of them in increasing position?

Random points in the square

$$
32107185469
$$

Points in increasing position

32107185469

Points form an increasing chain

Points form an increasing chain from $(0,0)$ to $(1,1)$

Maximal convex chains

$$
\text { - } T=\operatorname{conv}((0,0),(1,0),(1,1))
$$

Maximal convex chains

- $T=\operatorname{conv}((0,0),(1,0),(1,1))$
- Choose n independent random points from T with uniform distribution
\Rightarrow Their set is X_{n}

Maximal convex chains

- $T=\operatorname{conv}((0,0),(1,0),(1,1))$
- Choose n independent random points from T with uniform distribution
\Rightarrow Their set is X_{n}
- Take the convex chains connecting $(0,0)$ and $(1,1)$ with vertices among the chosen points Convex chain: the vertices are in convex position

Maximal convex chains

- $T=\operatorname{conv}((0,0),(1,0),(1,1))$
- Choose n independent random points from T with uniform distribution
\Rightarrow Their set is X_{n}
- Take the convex chains connecting $(0,0)$ and $(1,1)$ with vertices among the chosen points Convex chain: the vertices are in convex position
- Look for such chains with maximal number of vertices (referred as maximal length)

Convex chains can be useful...

The triangle T

Random points in T

A convex chain

Another convex chain

A maximal convex chain

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Questions:

- What is the asymptotic behavior of $\mathbb{E} L_{n}$?

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Questions:

- What is the asymptotic behavior of $\mathbb{E} L_{n}$?
- What is the deviation of L_{n} ?

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Questions:

- What is the asymptotic behavior of $\mathbb{E} L_{n}$?
- What is the deviation of L_{n} ?
- How many chains are there in M_{n} ?

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Questions:

- What is the asymptotic behavior of $\mathbb{E} L_{n}$?
- What is the deviation of L_{n} ?
- How many chains are there in M_{n} ?
- Where are the chains in M_{n} located? Is there a concentration (limit) shape?

Maximal convex chains

Definition

L_{n} - the maximal number of points in X_{n} which are in convex position with $(0,0)$ and $(1,1)$
M_{n} - the convex chains of maximal length between $(0,0)$ and $(1,1)$ via X_{n}

Questions:

- What is the asymptotic behavior of $\mathbb{E} L_{n}$?
- What is the deviation of L_{n} ?
- How many chains are there in M_{n} ?
- Where are the chains in M_{n} located? Is there a concentration (limit) shape?
All of these are affine invariant, just depending on n.

Asymptotic behavior of the expected length

Theorem

There exists a positive constant c for which

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=c
$$

Proof - Upper bound

$\mathbb{P}(k$ random points form a convex chain $)=\frac{2^{k}}{k!(k+1)!}$

Proof - Upper bound

$\mathbb{P}(k$ random points form a convex chain $)=\frac{2^{k}}{k!(k+1)!}$
$\mathbb{P}($ convex chain of length k exists $) \leq\binom{ n}{k} \frac{2^{k}}{k!(k+1)!}$

Proof - Upper bound

$\mathbb{P}(k$ random points form a convex chain $)=\frac{2^{k}}{k!(k+1)!}$
$\mathbb{P}($ convex chain of length k exists $) \leq\binom{ n}{k} \frac{2^{k}}{k!(k+1)!}$

$$
=\mathbb{P}\left(L_{n} \geq k\right)
$$

Proof - Upper bound

$\mathbb{P}(k$ random points form a convex chain $)=\frac{2^{k}}{k!(k+1)!}$
$\mathbb{P}($ convex chain of length k exists $) \leq\binom{ n}{k} \frac{2^{k}}{k!(k+1)!}$

$$
=\mathbb{P}\left(L_{n} \geq k\right)
$$

If X is a positive random variable, then

$$
\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}(X>x) d x
$$

Proof - Upper bound

For any $\gamma>0$

$$
\begin{aligned}
\mathbb{E} L_{n} & =\sum_{k=0}^{n} \mathbb{P}\left(L_{n}>k\right) \\
& \leq \gamma \sqrt[3]{n}+\sum_{k>\gamma \sqrt[3]{n}} \mathbb{P}\left(L_{n}>k\right) \\
& \leq \gamma \sqrt[3]{n}+\sum_{k>\gamma \sqrt[3]{n}}\binom{n}{k} \frac{2^{k}}{k!(k+1)!} \\
& \leq \gamma \sqrt[3]{n}+n^{-1 / 2} C(\gamma),
\end{aligned}
$$

if $\gamma>\sqrt[3]{2} e$.

Proof - Upper bound

For any $\gamma>0$

$$
\begin{aligned}
\mathbb{E} L_{n} & =\sum_{k=0}^{n} \mathbb{P}\left(L_{n}>k\right) \\
& \leq \gamma \sqrt[3]{n}+\sum_{k>\gamma \sqrt[3]{n}} \mathbb{P}\left(L_{n}>k\right) \\
& \leq \gamma \sqrt[3]{n}+\sum_{k>\gamma \sqrt[3]{n}}\binom{n}{k} \frac{2^{k}}{k!(k+1)!} \\
& \leq \gamma \sqrt[3]{n}+n^{-1 / 2} C(\gamma)
\end{aligned}
$$

if $\gamma>\sqrt[3]{2} e$.

$$
\limsup _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}} \leq \sqrt[3]{2} e=3.9581 \ldots
$$

Proof - Lower bound

Parabolic arc 「:

$$
y=(1-\sqrt{1-x})^{2}, 0 \leq x \leq 1
$$

Proof - Lower bound

Number of points above $\Gamma: \sim B(n, 2 n / 3)$.
Binomial r.v.'s are strongly concentrated: $k^{\prime} \sim B(n, p), n p=k$:

$$
\mathbb{P}\left(k^{\prime} \leq k-c \sqrt{k \log k}\right) \leq k^{-c^{2} / 2}
$$

Proof - Lower bound

Number of points above 「: $\sim B(n, 2 n / 3)$.
Binomial r.v.'s are strongly concentrated: $k^{\prime} \sim B(n, p), n p=k$:

$$
\mathbb{P}\left(k^{\prime} \leq k-c \sqrt{k \log k}\right) \leq k^{-c^{2} / 2}
$$

Take the convex hull of the vertices above Γ :

Proof - Lower bound

Rényi-Sulanke '63. n uniform random points in $K, A(K)$ - area of $K, A P(K)$ - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$
\Gamma\left(\frac{5}{3}\right) \sqrt[3]{\frac{2}{3}}(A(D))^{-1 / 3} A P(K) \sqrt[3]{n}
$$

Proof - Lower bound

Rényi-Sulanke '63. n uniform random points in $K, A(K)$ - area of $K, A P(K)$ - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$
\Gamma\left(\frac{5}{3}\right) \sqrt[3]{\frac{2}{3}}(A(D))^{-1 / 3} A P(K) \sqrt[3]{n}
$$

In the present case, it is $\approx 1.5772 n^{1 / 3}$.

Proof - Lower bound

Rényi-Sulanke '63. n uniform random points in $K, A(K)$ - area of $K, A P(K)$ - affine perimeter of K

Expected number of vertices of the convex hull of the points is

$$
\Gamma\left(\frac{5}{3}\right) \sqrt[3]{\frac{2}{3}}(A(D))^{-1 / 3} A P(K) \sqrt[3]{n}
$$

In the present case, it is $\approx 1.5772 \mathrm{n}^{1 / 3}$.
Most vertices are close to Γ, forming a convex chain \Rightarrow

$$
\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}} \geq 1.5772 \ldots
$$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\operatorname{limsups}_{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\limsup _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

- Fix a small $\epsilon>0$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\limsup _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

- Fix a small $\epsilon>0$
- Choose n_{1} s.t. $\mathbb{E} L_{n_{1}} \geq(1-\epsilon) \beta \sqrt[3]{n_{1}}$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\limsup _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

- Fix a small $\epsilon>0$
- Choose n_{1} s.t. $\mathbb{E} L_{n_{1}} \geq(1-\epsilon) \beta \sqrt[3]{n_{1}}$
- Choose $n_{2} \gg n_{1}$ with $\mathbb{E} L_{n_{2}} \approx \alpha \sqrt[3]{n_{2}}$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\limsup _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

- Fix a small $\epsilon>0$
- Choose n_{1} s.t. $\mathbb{E} L_{n_{1}} \geq(1-\epsilon) \beta \sqrt[3]{n_{1}}$
- Choose $n_{2} \gg n_{1}$ with $\mathbb{E} L_{n_{2}} \approx \alpha \sqrt[3]{n_{2}}$
- Define N_{1} such that $n_{1}=N_{1}-\sqrt{N_{1} \log N_{1}}$, and let $t=N_{1} /\left(2 n_{2}\right)$

Proof - Existence of the limit

Suppose on the contrary that

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}<\operatorname{limsups}_{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}=\beta
$$

- Fix a small $\epsilon>0$
- Choose n_{1} s.t. $\mathbb{E} L_{n_{1}} \geq(1-\epsilon) \beta \sqrt[3]{n_{1}}$
- Choose $n_{2} \gg n_{1}$ with $\mathbb{E} L_{n_{2}} \approx \alpha \sqrt[3]{n_{2}}$
- Define N_{1} such that $n_{1}=N_{1}-\sqrt{N_{1} \log N_{1}}$, and let $t=N_{1} /\left(2 n_{2}\right)$
Choose n_{2} uniform, independent random points in T (expected number of points in a triangle of area t is N_{1})

Proof - Existence of the limit

Definition

For $q_{1}, q_{2} \in \Gamma$, let $T\left(q_{1}, q_{2}\right)$ be the triangle determined by q_{1}, q_{2} and the intersection point of the tangents to Γ at these points

Proof - Existence of the limit

Take as many points $(0,0)=q_{0}, q_{1}, \ldots, q_{k}=(1,1)$ on Γ as possible, ordered by the x coordinate, such that

$$
\begin{gathered}
A\left(T_{i}\right)=t, i<k, \\
A\left(T_{k}\right) \leq t
\end{gathered}
$$

where $T_{i}=T\left(q_{i-1}, q_{i}\right)$.

Proof - Existence of the limit

Take as many points $(0,0)=q_{0}, q_{1}, \ldots, q_{k}=(1,1)$ on Γ as possible, ordered by the x coordinate, such that

$$
\begin{gathered}
A\left(T_{i}\right)=t, i<k, \\
A\left(T_{k}\right) \leq t,
\end{gathered}
$$

where $T_{i}=T\left(q_{i-1}, q_{i}\right)$. Special property of Γ :

$$
\sum_{i=1}^{k} \sqrt[3]{\mathrm{A}\left(T\left(q_{i-1}, q_{i}\right)\right)}=\sqrt[3]{1 / 2}
$$

Proof - Existence of the limit

Take as many points $(0,0)=q_{0}, q_{1}, \ldots, q_{k}=(1,1)$ on Γ as possible, ordered by the x coordinate, such that

$$
\begin{gathered}
A\left(T_{i}\right)=t, i<k, \\
A\left(T_{k}\right) \leq t,
\end{gathered}
$$

where $T_{i}=T\left(q_{i-1}, q_{i}\right)$.
Special property of Γ :

$$
\begin{gathered}
\sum_{i=1}^{k} \sqrt[3]{\mathrm{A}\left(T\left(q_{i-1}, q_{i}\right)\right)}=\sqrt[3]{1 / 2} \\
k \geq \sqrt[3]{n_{2} / N_{1}}
\end{gathered}
$$

Proof - Existence of the limit

- k_{i} - number of points in T_{i}; binomial distribution with mean N_{1} (except for $i=k$)
- $\mathbb{E} L_{i}^{\prime}$ - expectation of the maximal convex chain length in T_{i}

Proof - Existence of the limit

- k_{i} - number of points in T_{i}; binomial distribution with mean N_{1} (except for $i=k$)
- $\mathbb{E} L_{i}^{\prime}$ - expectation of the maximal convex chain length in T_{i}

Union of the maximal convex chains in the triangles T_{i} is a convex chain in T between $(0,0)$ and $(1,1)$

Proof - Existence of the limit

- k_{i} - number of points in T_{i}; binomial distribution with mean N_{1} (except for $i=k$)
- $\mathbb{E} L_{i}^{\prime}$ - expectation of the maximal convex chain length in T_{i} Union of the maximal convex chains in the triangles T_{i} is a convex chain in T between $(0,0)$ and $(1,1)$

$$
\begin{align*}
\alpha \sqrt[3]{n_{2}} \approx \mathbb{E} L_{n_{2}} & \geq \sum_{i \leq k} \mathbb{E} L_{i}^{\prime} \\
& \geq \sum_{i \leq k} \mathbb{P}\left(k_{i}>n_{1}\right) \mathbb{E} L_{n_{1}} \\
& \geq \sum_{i \leq k-1}\left(1-N_{1}^{-1 / 2}\right)(1-\epsilon) \beta \sqrt[3]{n_{1}} \\
& \geq\left(\sqrt[3]{n_{2} / N_{1}}-1\right)\left(1-N_{1}^{-1 / 2}\right)(1-\epsilon) \beta \sqrt[3]{n_{1}} \\
& =\beta \sqrt[3]{n_{2}}(1-\xi)
\end{align*}
$$

Talagrand inequality

- Y is a real-valued random variable on a product probability space $\Omega^{\otimes n}$
- $|Y(x)-Y(y)| \leq d$ whenever x and y differ at d coordinates
- For any x and b with $Y(x) \geq b$ there exists an index set \mathfrak{I} of at most b elements, such that $Y(y) \geq b$ holds for any y agreeing with x on \mathfrak{I}
If m is the median of Y, for any $\gamma>0$ we have

$$
\begin{gathered}
\mathbb{P}(Y \leq m-\gamma) \leq 2 \exp \left(\frac{-\gamma^{2}}{4 r^{2} f(m)}\right) \\
\mathbb{P}(Y \geq m+\gamma) \leq 2 \exp \left(\frac{-\gamma^{2}}{4 r^{2} f(m+\gamma)}\right)
\end{gathered}
$$

Strong concentration for $\mathbb{E} L_{n}$

Theorem

For every $\gamma>0$ there exist a constant N, such that for every $n>N$

$$
\mathbb{P}\left(\left|L_{n}-\mathbb{E} L_{n}\right|>\gamma \sqrt{\log n} n^{1 / 6}\right)<n^{-\gamma^{2} / 25} .
$$

Proof

- Talagrand for L_{n} :

$$
\mathbb{P}\left(\left|L_{n}-m\right| \geq \gamma \sqrt{m \log m}\right)<m^{-\gamma^{2} / 5}
$$

Proof

- Talagrand for L_{n} :

$$
\mathbb{P}\left(\left|L_{n}-m\right| \geq \gamma \sqrt{m \log m}\right)<m^{-\gamma^{2} / 5}
$$

- Distance between mean and median:

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathbb{E} L_{n}-m\right|}{\sqrt{m \log m}}=0 \Rightarrow m<4 \sqrt[3]{n}
$$

Proof

- Talagrand for L_{n} :

$$
\mathbb{P}\left(\left|L_{n}-m\right| \geq \gamma \sqrt{m \log m}\right)<m^{-\gamma^{2} / 5}
$$

- Distance between mean and median:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|\mathbb{E} L_{n}-m\right|}{\sqrt{m \operatorname{logm}}}=0 \Rightarrow m<4 \sqrt[3]{n} \\
& \mathbb{P}\left(\left|L_{n}-\mathbb{E} L_{n}\right| \geq \gamma \sqrt{\log n} n^{1 / 6}\right) \\
\leq & \mathbb{P}\left(\left|L_{n}-m\right|>\gamma \frac{\sqrt{3}}{2} \sqrt{m(\log m-\log 64)}\right) \\
\leq & m^{-3 \gamma^{2} / 21} \\
\leq & n^{-\gamma^{2} / 25}
\end{aligned}
$$

Concentration in a small triangle

The same result holds when the number of points taken is a binomial random variable:

Theorem

Let $0 \leq t \leq 1$, and consider the triangle T^{\prime} with vertices $(0,0)$, $(\sqrt{t}, 0),(\sqrt{t}, \sqrt{t})$. Choose n independent random points uniformly in T, and denote $L_{t, n}$ the maximal number of points in T^{\prime} which form a convex chain from $(0,0)$ to (\sqrt{t}, \sqrt{t}). Then for every $\gamma>0$ there exists an N, such that for every $n>N$,

$$
\mathbb{P}\left(\left|L_{t, n}-\mathbb{E} L_{t, n}\right|>\gamma \sqrt{\log n t}(n t)^{1 / 6}\right)<(n t)^{-\gamma^{2} / 25} .
$$

Strong concentration for the location

The maximal chains are close to Γ with high probability.

Strong concentration for the location

The maximal chains are close to Γ with high probability. Reason:
For any point P in T,

$$
\sqrt[3]{A\left(T_{1}\right)}+\sqrt[3]{A\left(T_{2}\right)} \leq \sqrt[3]{A(T)}
$$

Reason - Quantitatively

For a point P far from $\Gamma, \sqrt[3]{A\left(T_{1}\right)}+\sqrt[3]{A\left(T_{2}\right)}$ is small.

Reason - Quantitatively

For a point P far from $\Gamma, \sqrt[3]{A\left(T_{1}\right)}+\sqrt[3]{A\left(T_{2}\right)}$ is small.

Lemma

Denote the vertices of T by $P_{0}=(0,0), P_{1}=(1,0)$ and $P_{2}=(1,1)$. Suppose that a line ℓ intersects the side $P_{0} P_{1}$ at $B_{1}=(x, 0)$ and the side $P_{1} P_{2}$ at $B_{2}=(1, y)$. Then for any point P of $\ell \cap T$ we have

$$
\sqrt[3]{1 / 2}-\left(\sqrt[3]{\mathrm{A}\left(P_{0} B_{1} P\right)}+\sqrt[3]{\mathrm{A}\left(P B_{2} P_{2}\right)}\right)>\frac{1}{3}(x-y)^{2}
$$

How far is $\Gamma ?$

Definition

The random variable Q is the farthest point of the union of the chains in M_{n} from Γ, in notation:

$$
Q=q \in T \mid\left(\operatorname{dist}(q, \Gamma)=\max _{p \in \cup M_{n}} \operatorname{dist}(p, \Gamma)\right),
$$

Definition

For every point $q \in T$ let q^{\prime} denote the closest point of Γ to q, and let φ denote the angle of the tangent of Γ at q^{\prime}. Then Γ_{t} is the following domain containing Γ :

$$
\Gamma_{t}=\left\{q \in T \left\lvert\, \operatorname{dist}\left(q, q^{\prime}\right) \leq \sqrt{3} t \frac{\cos \varphi \sin \varphi}{\cos \varphi+\sin \varphi}\right.\right\} .
$$

Strong concentration theorem for the location of the maximal chains

Theorem

Let $\gamma>0$ and define $t=\gamma^{1 / 2} n^{-1 / 12}(\log n)^{1 / 4}$. Then there exists $N>0$, depending on γ, such that for any $n>N$,

$$
\mathbb{P}\left(Q \in \Gamma_{t}\right)>1-2 n^{-\gamma^{2} / 25} .
$$

Proof - location

Consider the following random variable defined on $T^{\otimes n}$:

$$
X= \begin{cases}1 & \text { if } L_{n} \geq \mathbb{E} L_{n}-\gamma \sqrt{\log n} n^{1 / 6} \\ 0 & \text { otherwise }\end{cases}
$$

Proof - location

Consider the following random variable defined on $T^{\otimes n}$:

$$
X= \begin{cases}1 & \text { if } L_{n} \geq \mathbb{E} L_{n}-\gamma \sqrt{\log n} n^{1 / 6} \\ 0 & \text { otherwise }\end{cases}
$$

The conditional expectation $\mathbb{E}(X \mid Q)$ of X with respect to Q exists:

$$
\int_{\{Q \in S\}} X d \mathbb{P}=\int_{S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q)
$$

where $S \in \mathcal{B}(T)$, and μ_{Q} is the distribution of Q,

$$
\mu_{Q}(S)=\mathbb{P}(Q \in S)
$$

Proof - location

Lemma
If n is large enough, then for any $q \in T \backslash \Gamma_{t}$,

$$
\mathbb{E}(X \mid Q=q)<1 / 2 .
$$

Proof - location

Lemma
If n is large enough, then for any $q \in T \backslash \Gamma_{t}$,

$$
\mathbb{E}(X \mid Q=q)<1 / 2 .
$$

Let S denote the event $\left\{Q \in \Gamma_{t}\right\}$. Let $p=\mathbb{P}(S)$. Then

$$
\begin{aligned}
\mathbb{E} X & =\int_{S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q)+\int_{T \otimes n \backslash S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q) \\
& \leq p+(1-p) / 2=(1+p) / 2 .
\end{aligned}
$$

Proof - location

Lemma
If n is large enough, then for any $q \in T \backslash \Gamma_{t}$,

$$
\mathbb{E}(X \mid Q=q)<1 / 2 .
$$

Let S denote the event $\left\{Q \in \Gamma_{t}\right\}$. Let $p=\mathbb{P}(S)$. Then

$$
\begin{aligned}
\mathbb{E} X & =\int_{S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q)+\int_{T \otimes n \backslash S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q) \\
& \leq p+(1-p) / 2=(1+p) / 2 .
\end{aligned}
$$

On the other hand, strong concentration implies that

$$
\mathbb{E} X \geq 1-n^{-\gamma^{2} / 25}
$$

Proof - location

Lemma
If n is large enough, then for any $q \in T \backslash \Gamma_{t}$,

$$
\mathbb{E}(X \mid Q=q)<1 / 2 .
$$

Let S denote the event $\left\{Q \in \Gamma_{t}\right\}$. Let $p=\mathbb{P}(S)$. Then

$$
\begin{aligned}
\mathbb{E} X & =\int_{S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q)+\int_{T \otimes n \backslash S} \mathbb{E}(X \mid Q=q) \mu_{Q}(d q) \\
& \leq p+(1-p) / 2=(1+p) / 2 .
\end{aligned}
$$

On the other hand, strong concentration implies that

$$
\mathbb{E} X \geq 1-n^{-\gamma^{2} / 25}
$$

and therefore

$$
1-2 n^{-\gamma^{2} / 25} \leq p .
$$

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?
- How many chains are there in M_{n} ?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?
- How many chains are there in M_{n} ?
- What is the real concentration of the distance from 「?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?
- How many chains are there in M_{n} ?
- What is the real concentration of the distance from Г?
- What is the limit distribution of the edge vectors of the chains in M_{n} ?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?
- How many chains are there in M_{n} ?
- What is the real concentration of the distance from Г?
- What is the limit distribution of the edge vectors of the chains in M_{n} ?
- Which of the theorems proved here transfer to general convex bodies?

A couple of open questions

- What is the exact value of the constant $\lim _{n \rightarrow \infty} \frac{\mathbb{E} L_{n}}{\sqrt[3]{n}}$? Is it 3 ?
- What is the variance of L_{n} ? What is the limit distribution?
- How many chains are there in M_{n} ?
- What is the real concentration of the distance from Г?
- What is the limit distribution of the edge vectors of the chains in M_{n} ?
- Which of the theorems proved here transfer to general convex bodies?
- and so on ...

Thank you!

$$
4 \square>4 \text { 吕 } \downarrow 4 \text { 三 }
$$

What do you want to do?

...and you can do. anything!

