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Definition of covariogram

K ⊂ Rn compact set, with K = K ◦

covariogram (or covariance) of K = function gK : Rn → R defined as

gK (x) := vol (K ∩ (K + x))

the covariogram is the autocorrelation of 1K ,

gK = 1K ∗ 1(−K )
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Properties
support of gK = K + (−K ) = {x − y : x , y ∈ K}

when K is convex:
I each level set is convex (convolution bodies);
I (gK )1/n is concave;

invariant with respect to translations and reflections (w.r.t. a point)
of K .
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Matheron’s conjecture confirmed

Does the covariogram of a set identify the set (up to translations
and reflections)?
Which information about the set does g contains?

Theorem (G. Averkov and G. Bianchi)
The covariogram of a planar convex body K determine K in the class
of all convex sets (up to translations and reflections).

Result conjectured by G. Matheron in ’86, and independently
asked by R. Adler and R. Pyke in ’91.
A convex body is determined in a much larger class: the class of
compact sets K , with at most two connected components and
K = K ◦ (G. D’Ercole,’07).
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equivalent forms of the result

Knowing
covariogram is
equivalent to know:

the distribution of X-Y, where X and Y are
independent random variables uniformly
distributed over K
(R. Adler and R. Pyke);

∀ u ∈ S1, the distribution of the lengths of the
chords of K parallel to u;
∀ u ∈ S1, the decreasing rearrangement of
the X -ray of K in direction u,
(R. J. Gardner);
the modulus of the Fourier transform of 1K
(phase retrieval problem).

Therefore each of these data identifies K (in the planar convex case)
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Theorem
The diffraction image of a quasicrystal S determines uniquely the
atomic structure of S,
if S fits into the “cut and project scheme” and the “window”
associated to S is a planar convex body.

M. Baake and U. Grimm, Zeitschrift fur Kristallographie, to appear.
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Proof: completing the missing part

Settings

H and K planar, C1 and strictly convex bodies with equal covar. g.

Goal

It suffices to prove that an arc of ∂H is a translate of an arc of ∂K .

Prerequisites

G. Bianchi, J. London Math. Soc. (2005).

1 If H or K are not strictly convex, or are not C1, then H = ±K + y .
2 If an arc of ∂H, or of −∂H, is a translate of an arc of ∂K then

H = ±K + y .
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Step 1: gradient of g and inscribed parallelograms

∀ x there is a parallelogram inscribed in K with edges equal to x
and to −R∇g(x). (R=counterclockwise rotation by 900)
A translate of this parallelogram is also inscribed in H. A priori the
translation may depend on x .
−R∇g(−R∇g(x)) = −x .
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Step 1: gradient of g and inscribed parallelograms

the vector joining the two points of ∂K ∩ (∂K + x) equals
−R∇g(x). (R=counterclockwise rotation by π/2).

parallelogram = convenient representation of x and ∇g(x)
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settings
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Step 2: second derivatives of g

The Hessian matrix of g is

D2g = − u2 ⊗ u1

det(u1, u2)
− u3 ⊗ u4

det(u3, u4)
.

Moreover

det D2g = −det(u2, u3) det(u4, u1)

det(u1, u2) det(u3, u4)
< 0,

det D2g + 1 =
det(u2, u4) det(u1, u3)

det(u1, u2) det(u3, u4)
S 0,

the matrix D2g(x) depends continuously on x , and

tu1(D2g)−1u3 = 0,
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Step 3: central symmetry and det D2g

K centrally symmetric ⇐⇒
g solves the Monge-Ampere PDE

det D2g(x) = −1 ∀x ∈ int supp g \ {o}.

det D2g+1 =
det(u2, u4) det(u1, u3)

det(u1, u2) det(u3, u4)

a diagonal of each inscribed parallelogram is an affine diameter
This settles the centrally symmetric case: K symmetric iff H
symmetric. In this case K = 1/2supp g = H.
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Step 4: controlling the relative position of parallelogr.

Assume K and H not centrally symmetric.
There exists an open set A such that, for each x ∈ A, we have (up
to a reflection of H)

u3(K , x) = u3(H, x) and u1(K , x) = u1(H, x).
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Step 5: an arc of ±∂H is a translate of an arc of ∂K
Assume step 4.
Choose all possible x ∈ A such that p3(K , x) = given (blue) point.
Then ⋃

x

p4(K , x) = red curve on ∂K .

A translate of this curve is also on ∂H.
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Step 4: controlling the relative position of parallelogr.

look for two different translations x1, x2 such that the
corresponding parallelograms (in K) have the diagonal [p1, p3] in
common.

Why? You obtain a system for the normals in p1 and p3{
tu1(D2g(x1))

−1u3 = 0
tu1(D2g(x2))

−1u3 = 0
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Step 4: controlling the relative position of parallelogr.

Start from any x1 such that det D2g(x1) 6= −1
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Step 4: controlling the relative position of parallelogr.

The inscribability of the configuration below in K depends only on
the covariogram.

Lemma
A translate of the hexagon on the
left can be inscribed in K iff

−R∇g(x1) = h2 − h1,

−R∇g(x2) = h2 − h6,

−R∇g(x3) = h4 − h3,∏
i=1,2,3

(det D2g(xi) + 1) > 0.

Gabriele Bianchi (Firenze) Determination of a set from its covariance Samos 2007 18 / 18



Step 4: controlling the relative position of parallelogr.

The inscribability of the configuration below in K depends only on
the covariogram.

Lemma
A translate of the hexagon on the
left can be inscribed in K iff

−R∇g(x1) = h2 − h1,

−R∇g(x2) = h2 − h6,

−R∇g(x3) = h4 − h3,∏
i=1,2,3

(det D2g(xi) + 1) > 0.

Gabriele Bianchi (Firenze) Determination of a set from its covariance Samos 2007 18 / 18



Step 4: controlling the relative position of parallelogr.

The inscribability of the configuration below in K depends only on
the covariogram.

Lemma
A translate of the hexagon on the
left can be inscribed in K iff

−R∇g(x1) = h2 − h1,

−R∇g(x2) = h2 − h6,

−R∇g(x3) = h4 − h3,∏
i=1,2,3

(det D2g(xi) + 1) > 0.

Gabriele Bianchi (Firenze) Determination of a set from its covariance Samos 2007 18 / 18


	Statement of the problem
	the result
	literature
	settings e prerequisiti
	parallelogrammi
	second derivatives
	central symmetry
	equal normals in opposite vertices

