Determination of a set from its covariance: complete confirmation of Matheron's conjecture.

Gabriele Bianchi

Università di Firenze
Samos, 25-29 June 2007

Definition of covariogram

$K \subset \mathbb{R}^{n}$ compact set, with $K=\overline{K^{\circ}}$
covariogram (or covariance) of $K=$ function $g_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
g_{K}(x):=\operatorname{vol}(K \cap(K+x))
$$

- the covariogram is the autocorrelation of 1_{K},

$$
g_{K}=1_{K} * 1_{(-K)}
$$

Properties

- support of $g_{K}=K+(-K)=\{x-y: x, y \in K\}$

- when K is convex:
- each level set is convex (convolution bodies);
- $\left(g_{K}\right)^{1 / n}$ is concave;
- invariant with respect to translations and reflections (w.r.t. a point) of K.

Matheron's conjecture confirmed

- Does the covariogram of a set identify the set (up to translations and reflections)?
- Which information about the set does g contains?

Matheron's conjecture confirmed

- Does the covariogram of a set identify the set (up to translations and reflections)?
- Which information about the set does g contains?

Theorem (G. Averkov and G. Bianchi)

The covariogram of a planar convex body K determine K in the class of all convex sets (up to translations and reflections).

- Result conjectured by G. Matheron in '86, and independently asked by R. Adler and R. Pyke in '91.

Matheron's conjecture confirmed

- Does the covariogram of a set identify the set (up to translations and reflections)?
- Which information about the set does g contains?

Theorem (G. Averkov and G. Bianchi)

The covariogram of a planar convex body K determine K in the class of all convex sets (up to translations and reflections).

- Result conjectured by G. Matheron in '86, and independently asked by R. Adler and R. Pyke in ' 91.
- A convex body is determined in a much larger class: the class of compact sets K, with at most two connected components and $K=\overline{K^{\circ}}$ (G. D'Ercole,'07).

equivalent forms of the result

- the distribution of $X-Y$, where X and Y are independent random variables uniformly distributed over K (R. Adler and R. Pyke);

Knowing

covariogram is equivalent to know:

equivalent forms of the result

- the distribution of $X-Y$, where X and Y are independent random variables uniformly distributed over K (R. Adler and R. Pyke);

Knowing
covariogram is equivalent to know:

- $\forall u \in S^{1}$, the distribution of the lengths of the chords of K parallel to u;
- $\forall u \in S^{1}$, the decreasing rearrangement of the X-ray of K in direction u, (R. J. Gardner);

equivalent forms of the result

- the distribution of $X-Y$, where X and Y are independent random variables uniformly distributed over K (R. Adler and R. Pyke);

Knowing
covariogram is equivalent to know:

- $\forall u \in S^{1}$, the distribution of the lengths of the chords of K parallel to u;
- $\forall u \in S^{1}$, the decreasing rearrangement of the X-ray of K in direction u, (R. J. Gardner);
- the modulus of the Fourier transform of 1_{K} (phase retrieval problem).

equivalent forms of the result

- the distribution of $X-Y$, where X and Y are independent random variables uniformly distributed over K (R. Adler and R. Pyke);

Knowing
covariogram is equivalent to know:

- $\forall u \in S^{1}$, the distribution of the lengths of the chords of K parallel to u;
- $\forall u \in S^{1}$, the decreasing rearrangement of the X-ray of K in direction u, (R. J. Gardner);
- the modulus of the Fourier transform of 1_{K} (phase retrieval problem).

$$
\text { Therefore each of these data identifies } K \text { (in the planar convex case) }
$$

Theorem

- The diffraction image of a quasicrystal S determines uniquely the atomic structure of S,
- if S fits into the "cut and project scheme" and the "window" associated to S is a planar convex body.

囯 M. Baake and U. Grimm, Zeitschrift fur Kristallographie, to appear.

Literature on Matheron＇s problem

䦽 W．Nagel，J．Appl．Probability（1993）．
目 M．Schmitt，Mathematical Morphology in Image Processing， Dekker， 1993.

R G．Bianchi，F．Segala and A．Volčič，J．Differential Geom．（2002）．
：G．Bianchi，J．London Math．Soc．（2005）．
（subclasses of planar convex bodies are determined）
目 P．Goodey，R．Schneider and W．Weil，Bull．London Math．Soc． （1997）．
（most convex bodies in \mathbb{R}^{n} are determined）
圁 G．Bianchi， 2006 （preprint）．
（convex polytopes in \mathbb{R}^{3} are determined， false for convex polytopes in $\mathbb{R}^{n}, \forall n \geq 4$ ）

Proof: completing the missing part

Settings

- H and K planar, C^{1} and strictly convex bodies with equal covar. g.

Goal

- It suffices to prove that an arc of ∂H is a translate of an arc of ∂K.

Prerequisites

聞 G. Bianchi, J. London Math. Soc. (2005).
(1) If H or K are not strictly convex, or are not C^{1}, then $H= \pm K+y$.
(2) If an arc of ∂H, or of $-\partial H$, is a translate of an arc of ∂K then $H= \pm K+y$.

Step 1: gradient of g and inscribed parallelograms

- $\forall x$ there is a parallelogram inscribed in K with edges equal to x and to $-\mathcal{R} \nabla g(x)$. $\left(\mathcal{R}=\right.$ counterclockwise rotation by $\left.90^{\circ}\right)$
- A translate of this parallelogram is also inscribed in H. A priori the translation may depend on x.
- $-\mathcal{R} \nabla g(-\mathcal{R} \nabla g(x))=-x$.

Step 1: gradient of g and inscribed parallelograms

- the vector joining the two points of $\partial K \cap(\partial K+x)$ equals
$-\mathcal{R} \nabla g(x)$. ($\mathcal{R}=$ counterclockwise rotation by $\pi / 2$).

- parallelogram $=$ convenient representation of x and $\nabla g(x)$

Step 1: gradient of g and inscribed parallelograms

- the vector joining the two points of $\partial K \cap(\partial K+x)$ equals
$-\mathcal{R} \nabla g(x)$. ($\mathcal{R}=$ counterclockwise rotation by $\pi / 2$).

settings

Step 2: second derivatives of g

- The Hessian matrix of g is

$$
D^{2} g=-\frac{u_{2} \otimes u_{1}}{\operatorname{det}\left(u_{1}, u_{2}\right)}-\frac{u_{3} \otimes u_{4}}{\operatorname{det}\left(u_{3}, u_{4}\right)}
$$

- Moreover

$$
\begin{gathered}
\operatorname{det} D^{2} g=-\frac{\operatorname{det}\left(u_{2}, u_{3}\right) \operatorname{det}\left(u_{4}, u_{1}\right)}{\operatorname{det}\left(u_{1}, u_{2}\right) \operatorname{det}\left(u_{3}, u_{4}\right)}<0, \\
\operatorname{det} D^{2} g+1=\frac{\operatorname{det}\left(u_{2}, u_{4}\right) \operatorname{det}\left(u_{1}, u_{3}\right)}{\operatorname{det}\left(u_{1}, u_{2}\right) \operatorname{det}\left(u_{3}, u_{4}\right)} \lesseqgtr 0,
\end{gathered}
$$

- the matrix $D^{2} g(x)$ depends continuously on x, and

$$
u_{1}\left(D^{2} g\right)^{-1} u_{3}=0,
$$

Step 3: central symmetry and det $D^{2} g$

g solves the Monge-Ampere PDE

K centrally symmetric

$$
\operatorname{det} D^{2} g(x)=-1 \quad \forall x \in \operatorname{int} \operatorname{supp} g \backslash\{0\}
$$

Step 3: central symmetry and det $D^{2} g$

g solves the Monge-Ampere PDE
K centrally symmetric \qquad

$$
\operatorname{det} D^{2} g(x)=-1 \quad \forall x \in \operatorname{int} \operatorname{supp} g \backslash\{0\}
$$

$\operatorname{det} D^{2} g+1=\frac{\operatorname{det}\left(u_{2}, u_{4}\right) \operatorname{det}\left(u_{1}, u_{3}\right)}{\operatorname{det}\left(u_{1}, u_{2}\right) \operatorname{det}\left(u_{3}, u_{4}\right)}$

- a diagonal of each inscribed parallelogram is an affine diameter

Step 3: central symmetry and det $D^{2} g$

g solves the Monge-Ampere PDE

K centrally symmetric

$$
\operatorname{det} D^{2} g(x)=-1 \quad \forall x \in \operatorname{int} \operatorname{supp} g \backslash\{0\}
$$

$\operatorname{det} D^{2} g+1=\frac{\operatorname{det}\left(u_{2}, u_{4}\right) \operatorname{det}\left(u_{1}, u_{3}\right)}{\operatorname{det}\left(u_{1}, u_{2}\right) \operatorname{det}\left(u_{3}, u_{4}\right)}$

- a diagonal of each inscribed parallelogram is an affine diameter
- This settles the centrally symmetric case: K symmetric iff H symmetric. In this case $K=1 / 2 \operatorname{supp} g=H$.

Step 4: controlling the relative position of parallelogr.

Step 4: controlling the relative position of parallelogr.

- Assume K and H not centrally symmetric.
- There exists an open set A such that, for each $x \in A$, we have (up to a reflection of H)

$$
u_{3}(K, x)=u_{3}(H, x) \quad \text { and } \quad u_{1}(K, x)=u_{1}(H, x) .
$$

Step 5: an arc of $\pm \partial H$ is a translate of an arc of ∂K

- Assume step 4.
- Choose all possible $x \in A$ such that $p_{3}(K, x)=$ given (blue) point.
- Then

$$
\bigcup_{x} p_{4}(K, x)=\text { red curve on } \partial K
$$

- A translate of this curve is also on $\partial \mathrm{H}$.

Step 4: controlling the relative position of parallelogr.

- look for two different translations x_{1}, x_{2} such that the corresponding parallelograms (in K) have the diagonal $\left[p_{1}, p_{3}\right]$ in common.

Step 4: controlling the relative position of parallelogr.

- look for two different translations x_{1}, x_{2} such that the corresponding parallelograms (in K) have the diagonal $\left[p_{1}, p_{3}\right]$ in common.
- Why? You obtain a system for the normals in p_{1} and p_{3}

$$
\left\{\begin{array}{l}
t_{1}\left(D^{2} g\left(x_{1}\right)\right)^{-1} u_{3}=0 \\
t_{1}\left(D^{2} g\left(x_{2}\right)\right)^{-1} u_{3}=0
\end{array}\right.
$$

Step 4: controlling the relative position of parallelogr.

- Start from any x_{1} such that $\operatorname{det} D^{2} g\left(x_{1}\right) \neq-1$

Step 4: controlling the relative position of parallelogr.

- Start from any x_{1} such that $\operatorname{det} D^{2} g\left(x_{1}\right) \neq-1$

Step 4: controlling the relative position of parallelogr.

- Start from any x_{1} such that $\operatorname{det} D^{2} g\left(x_{1}\right) \neq-1$

Step 4: controlling the relative position of parallelogr.

- The inscribability of the configuration below in K depends only on the covariogram.

Step 4: controlling the relative position of parallelogr.

- The inscribability of the configuration below in K depends only on the covariogram.

Step 4: controlling the relative position of parallelogr.

- The inscribability of the configuration below in K depends only on the covariogram.

Lemma

A translate of the hexagon on the left can be inscribed in K iff

$$
\begin{aligned}
& -\mathcal{R} \nabla g\left(x_{1}\right)=h_{2}-h_{1}, \\
& -\mathcal{R} \nabla g\left(x_{2}\right)=h_{2}-h_{6}, \\
& -\mathcal{R} \nabla g\left(x_{3}\right)=h_{4}-h_{3}, \\
& \prod_{i=1,2,3}\left(\operatorname{det} D^{2} g\left(x_{i}\right)+1\right)>0 .
\end{aligned}
$$

