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“Geometric tomography … deals with the retrieval of 
information about a geometric object from data about its 

sections, or projections, or both.” 
 
(R.Gardner, Geometric Tomography, 1995) 
 
 
A prototype of problem in Geometric tomography is estimating 
the volume of an object from the areas of its finitely many 
orthogonal projections. 
 



 
 
 
 
 
 
 
 
 
 
 
 
The Loomis and Whitney inequality is a classic geometric 
inequality which provides an estimate of that type. 



The Loomis and Whitney inequality (1949): 
 
If E is a Borel set in Rn, and e1, e2, ..., en denote the unit vectors 
in the coordinate directions, then 
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where equality holds for coordinate boxes. 
 
Among convex sets equality holds only for coordinate boxes. 
 

The quantity  ( )⊥
− in eEV |1   is  called the brightness  of E  in the 

direction ei . 
 



Generalizations and/or variants in the literature. 
 

Hadwiger (1957), Burago-Zalgaller (1980): 
If E is a Borel set in Rn, and A1, A2, ..., Aλ,          , denote the 
coordinate subspaces of dimension m, then 
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Betke-McMullen (1982): 
For every convex body K in Rn
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and equality holds if and only if K is a coordinate box. 



Ball (1991): 
For a convex body K in Rn
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where directions ui and numbers ci > 0 satisfy 
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Lutwak-Yang-Zhang (work in progress): 
extensions of Ball’s results to different intrinsic volumes. 
 



Intrinsic volumes Vi and quermassintegrals Wj. 
 
Steiner’s formula: 
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where κj is the volume of the unit ball in Rj. 
In particular: 
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Definition.  Given a convex body K in Rn, a set of directions U 
spanning Rn and an integer number 1 ≤ r ≤ n-1, let Hr(K, U) the 
class of all convex bodies  L such that 
 

( ) ( )⊥⊥ = irir uKVuLV ||   
for every i = 1, 2, ..., m. 

 
 
Definition. Given a set of directions U in Rn, a node for U is a 
direction orthogonal to at least (n-1) elements from U. 
 



C.-Colesanti-Gronchi (1995): 
For every convex body K in Rn, and set of directions U 
spanning Rn, the only element of maximal volume in Hn-1(K, U) 
is a polytope, having each facet orthogonal to some node. 
 
Moreover, if there exists a zonotope 
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in Hn-1(K, U), then it has maximal volume. 
 
 



Main ingredient: rearrangement of the area measure of K. 
 

ω 

 
 
Keeping   
 
fixed does not change the brightness 
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in the given directions. 
 
 
 
Distributing the measure on the nodes increases the volume. 
 



Henceforth, we consider only the case of convex bodies. 
 
Class of problems:  Finding upper bounds of the r-th intrinsic 
volume of a convex body K from the s-th intrinsic volume of 
the projections of K  
 

i) on the (n-1)-dimensional coordinate hyperplanes; 
 

ii) on finitely many (n-1)-dimensional hyperplanes. 
 
 
 
 
 



1. r < s . 
 
Without any extra assumption, in these cases we cannot expect 
an upper bound of Vr(K). 
 
For example, for n = 3, s = 2 and r = 1, it is easy to find an 
unbounded sequence of bodies with fixed brightness along 
finitely many directions. 
 



2. r = s = n - 1 
 
Theorem 1. For every convex body K, there exists a polytope 
P from Hn-1(K, U) of maximal surface area, having each facet 
orthogonal to some node. 
 
The proof of Theorem 1 uses the same arguments as in CCG 
for volume. 
 
Notice that, in general, the uniqueness of maximizer is not 
guaranteed. 
 
Special case: If U = {e1, e2, ..., en} then Theorem 1 gives the 
LW-inequality proved by Betke and McMullen. 



3. r = 2, s = 1. 
 
Theorem 2. If there exists a zonotope 
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in H1(K, U), then Z is the only element of maximal V2. 
 
The proof is based on the first Minkowski inequality. 
 
In the special case U = {e1, e2, ..., en} the existence of a box in 
H1(K, U) can be proved. 
 



Theorem 3. For every convex body K there exists a coordinate 
box Z such that ( ) ( )⊥⊥ = ii eKVeZV || 11  for every i = 1, 2, ..., n. 
 
 
Hence, Theorem 2 gives the following corollary 
 
Corollary 4. For every convex body K  
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and equality holds if and only if K is a coordinate box. 
 
 



4. r = 1, s = 1. 
 
Theorem 3 can be used also for proving 
 
Theorem 5. For every convex body K  
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and equality holds if and only if K is a coordinate box. 
 

Theorem 3 and Theorem 5 are proved by induction.
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To prove that Theorem 3 in Rn implies Theorem 5 in Rn, one 
can assume that K is symmetric with respect to all the 
coordinate hyperplanes. 
 
The mean width is an integral of the support function. Thus, 
the inequality 
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which is an identity for coordinate boxes, implies that 

( ) ( ) ( ) ( ) .|
1

1|
1

1
1

1
1

1
11 ZVeZV

n
eKV

n
KV

n

i
i

n

i
i =

−
=

−
≤ ∑∑

=

⊥

=

⊥

 
 
 



To prove that Theorem 5 in Rn-1 implies Theorem 3 in Rn, one 
can use the fact that Theorem 3 is equivalent to the following 
inequality: 
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The second step consists in showing that K can be thought of as 
contained in ej

⊥. 
 
Applying Theorem 5 to K in Rn-1 leads to the above inequality.



Final remarks. 
 
Inequalities of LW type for intrinsic volumes of different order. 
 
Finitely many directions: 
Rearrangement of the area measure S1(K ; ⋅). 
Counterexample in R3: Fix u1, u2, ..., um in S2∩v⊥. If it were 
possible to distribute the measure S1(K ; ⋅) on the arcs of great 
circles orthogonal to v or ui, then the resulting body should be a 
prism. 
For suitable K, the non existence of a cylinder C such that 

( ) ( )⊥⊥ = vKVvCV || 11   and 
( ) ( )⊥⊥ = uKVuCV || 11  , for every , ⊥∈vu

contradicts that possibility. 


