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“Geometric tomography ... deals with the retrieval of
Information about a geometric object from data about its
sections, or projections, or both.”

(R.Gardner, Geometric Tomography, 1995)

A prototype of problem in Geometric tomography Is estimating
the volume of an object from the areas of its finitely many

orthogonal projections.



\

The Loomis and Whitney inequality i1s a classic geometric
Inequality which provides an estimate of that type.



The Loomis and Whitney inequality (1949):

If £1s a Borel set In R”, and ey, e, ..., e, denote the unit vectors
IN the coordinate directions, then

n
Vn (E)n_l < HVn—l(E | eij_)’
1

where equality holds for coordinate boxes.

Among convex sets equality holds only for coordinate boxes.

L
The quantity Vn—l(Elei ) Is called the brightness of E In the
direction e, .



Generalizations and/or variants in the literature.

Hadwiger (1957), Burago-Zalgaller (1980): )
If £ 1s a Borel set iIn R”, and 44, 4, ..., 4, /Iz[ j - denote the
coordinate subspaces of dimension m, then "

A n
V(E)< [TV, (E 14 ).
i=1

Betke-McMullen (1982):
For every convex body K in R”

n
Area(0K) < ZZ Vn—l(K | el-l)
i=1
and equality holds if and only If K Is a coordinate box.



Ball (1991):
For a convex body K in R"

n C.
KY™< HVn_l(K | uﬁ) g
i=1

where directions u; and numbers ¢; > 0 satisfy

Zcu u; =

Lutwak-Yang-Zhang (work in progress):
extensions of Ball’s results to different intrinsic volumes.



Intrinsic volumes V; and quermassintegrals W

Steiner’s formula:

n

A TS AR

i=0
where x; is the volume of the unit ball in R’.
In particular:

Vo(K)= Ki W ,(K)=1, the Euler characteristic;
n
2Kn—1 2 ; _
Vi(K)=—W, 1(K), the mean width;
nK, K,

2V

n

(K)=nw,(K), the surface area;

%

n

(K)=W,(K), the volume.



Definition. Given a convex body K In R”, a set of directions U
spanning R” and an integer number 1 < r <n-1, let H(X, U) the
class of all convex bodies L such that

AP AS
foreveryi=1, 2, ..., m.

Definition. Given a set of directions U in R”, a node for U IS a
direction orthogonal to at least (n-1) elements from U.



C.-Colesanti-Gronchi (1995):

For every convex body K Iin R”, and set of directions U
spanning R”, the only element of maximal volume in H,_;(K, U)
IS a polytope, having each facet orthogonal to some node.

Moreover, if there exists a zonotope

/L = Z&(u)ﬁ
uel
In H,_;(K, U), then it has maximal volume.



Main ingredient: rearrangement of the area measure of K.

Keeping j zdS, 4(K;z)
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Distributing the measure on the nodes increases the volume.



Henceforth, we consider only the case of convex bodies.

Class of problems: Finding upper bounds of the »-th Intrinsic
volume of a convex body K from the s-th intrinsic volume of

the projections of K

1) on the (n-1)-dimensional coordinate hyperplanes;

11) on finitely many (»-1)-dimensional hyperplanes.



l.r<s.

Without any extra assumption, in these cases we cannot expect
an upper bound of V,(K).

For example, forn =3, s =2 and » = 1, it Is easy to find an
unbounded sequence of bodies with fixed brightness along
finitely many directions.



2.r=s=n-1

Theorem 1. For every convex body K, there exists a polytope

P from H,_;(K, U) of maximal surface area, having each facet
orthogonal to some node.

The proof of Theorem 1 uses the same arguments as in CCG
for volume.

Notice that, in general, the unigueness of maximizer is not
guaranteed.

Special case: If U = {ey, ey, ..., e,} then Theorem 1 gives the
LW-inequality proved by Betke and McMullen.



Theorem 2. If there exists a zonotope

L = Za(u)ﬁ
uel
In Hy(K, U), then Z is the only element of maximal V5.

The proof Is based on the first Minkowski inequality.

In the special case U = {ey, e, ..., e,} the existence of a box In
H.(K, U) can be proved.



Theorem 3. For every convex body K there exists a coordinate
box Z such that V:L(Zlef)= Vl(K|eiJ_) foreveryi=1,2, .., n.

Hence, Theorem 2 gives the following corollary

Corollary 4. For every convex body K

2V2(K)si(ilfl(1<|ei¢)} _éVl(K|€iJ_)Z

and equality holds if and only If K Is a coordinate box.



Theorem 3 can be used also for proving

Theorem 5. For every convex body K

n
nK)<——Snlk|et)
n—-13

and equality holds if and only if K Is a coordinate box.

Theorem 3 and Theorem 5 are proved by induction.



Thm 5. V(K s—ZVl(K|e ) equality only for coordinate boxes.

Thm 3. There exists a coordmate box Z such that Vl(Z
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To prove that Theorem 3 In R" implies Theorem 5 in R”, one
can assume that K iIs symmetric with respect to all the
coordinate hyperplanes.

The mean width is an integral of the support function. Thus,
the inequality

he(2)<—2 S elele).

n—-13
which is an identity for coordinate boxes, implies that

HK)s- SRl et =23zl ) h(2)



To prove that Theorem 5 in R"* implies Theorem 3 in R, one
can use the fact that Theorem 3 Is equivalent to the following
Inequality:

The second step consists in showing that K can be thought of as
contained in ¢;

Applying Theorem 5 to X in R"* leads to the above inequality.



Final remarks.

e Inequalities of LW type for intrinsic volumes of different order.

e Finitely many directions:
Rearrangement of the area measure S1(K; -).
Counterexample in R* FixX wuy, up, ..., u, in S°~w+. If it were
possible to distribute the measure S1(K; -) on the arcs of great
circles orthogonal to v or u;, then the resulting body should be a
prism.
For suitable K, the non existence of a cylinder C such that

nlcvt)=nlk1vt) and

Vl(C | uL)= Vl(K | uL) for every uev",
contradicts that possibility.



