Estimating intrinsic volumes from finitely many projections

Stefano Campi University of Siena – Italy

(joint work with Paolo Gronchi)

Samos, PHD Annual Conference, June 2007

"Geometric tomography ... deals with the retrieval of information about a geometric object from data about its sections, or projections, or both."

(R.Gardner, Geometric Tomography, 1995)

A prototype of problem in Geometric tomography is estimating the volume of an object from the areas of its finitely many orthogonal projections.

The Loomis and Whitney inequality is a classic geometric inequality which provides an estimate of that type.

The Loomis and Whitney inequality (1949):

If *E* is a Borel set in \mathbb{R}^n , and $e_1, e_2, ..., e_n$ denote the unit vectors in the coordinate directions, then

$$V_n(E)^{n-1} \le \prod_{i=1}^n V_{n-1}(E \mid e_i^{\perp}),$$

where equality holds for coordinate boxes.

Among convex sets equality holds only for coordinate boxes.

The quantity $V_{n-1}(E | e_i^{\perp})$ is called the *brightness* of *E* in the direction e_i .

Generalizations and/or variants in the literature.

Hadwiger (1957), Burago-Zalgaller (1980): If *E* is a Borel set in \mathbb{R}^n , and $A_1, A_2, ..., A_{\lambda}, \lambda = \binom{n}{m}$, denote the coordinate subspaces of dimension *m*, then

$$V_n(E) \leq \prod_{i=1}^{\lambda} V_m(E \mid A_i)^{\frac{n}{\lambda m}}.$$

Betke-McMullen (1982): For every convex body K in \mathbb{R}^n

$$Area(\partial K) \le 2\sum_{i=1}^{n} V_{n-1}(K \mid e_i^{\perp})$$

and equality holds if and only if *K* is a coordinate box.

Ball (1991): For a convex body K in \mathbb{R}^n

$$V_n(K)^{n-1} \le \prod_{i=1}^m V_{n-1}(K | u_i^{\perp})^{c_i},$$

where directions u_i and numbers $c_i > 0$ satisfy

$$\sum_{i=1}^m c_i u_i \otimes u_i = I_n \,.$$

Lutwak-Yang-Zhang (work in progress): extensions of Ball's results to different intrinsic volumes. Intrinsic volumes V_i and quermassintegrals W_j .

Steiner's formula:

$$V_n(K + \varepsilon B) = \sum_{i=0}^n \binom{n}{i} W_i(K) \varepsilon^i = \sum_{i=0}^n \kappa_{n-i} V_i(K) \varepsilon^{n-i} ,$$

where κ_j is the volume of the unit ball in R^{*j*}. In particular:

$$V_0(K) = \frac{1}{\kappa_n} W_n(K) = 1, \text{ the Euler characteristic;}$$
$$\frac{2\kappa_{n-1}}{n\kappa_n} V_1(K) = \frac{2}{\kappa_n} W_{n-1}(K), \text{ the mean width;}$$
$$2V_{n-1}(K) = nW_1(K), \text{ the surface area;}$$
$$V_n(K) = W_0(K), \text{ the volume.}$$

Definition. Given a convex body K in \mathbb{R}^n , a set of directions U spanning \mathbb{R}^n and an integer number $1 \le r \le n-1$, let $H_r(K, U)$ the class of all convex bodies L such that

$$V_r\left(L \mid u_i^{\perp}\right) = V_r\left(K \mid u_i^{\perp}\right)$$

for every $i = 1, 2, ..., m$.

Definition. Given a set of directions U in \mathbb{R}^n , a *node* for U is a direction orthogonal to at least (*n*-1) elements from U.

C.-Colesanti-Gronchi (1995):

For every convex body K in \mathbb{R}^n , and set of directions U spanning \mathbb{R}^n , the only element of maximal volume in $H_{n-1}(K, U)$ is a polytope, having each facet orthogonal to some node.

Moreover, if there exists a zonotope

$$Z = \sum_{u \in U} \alpha(u) \,\overline{u}$$

in $H_{n-1}(K, U)$, then it has maximal volume.

Main ingredient: rearrangement of the area measure of *K*.

Keeping
$$\int z \, dS_{n-1}(K;z)$$

fixed does not change the brightness
in the given directions.

Distributing the measure on the nodes increases the volume.

Henceforth, we consider only the case of **convex bodies**.

Class of problems: Finding upper bounds of the r-th intrinsic volume of a convex body K from the s-th intrinsic volume of the projections of K

- i) on the (*n*-1)-dimensional coordinate hyperplanes;
- ii) on finitely many (*n*-1)-dimensional hyperplanes.

1. r < s.

Without any extra assumption, in these cases we cannot expect an upper bound of $V_r(K)$.

For example, for n = 3, s = 2 and r = 1, it is easy to find an unbounded sequence of bodies with fixed brightness along finitely many directions.

2. r = s = n - 1

Theorem 1. For every convex body *K*, there exists a polytope *P* from $H_{n-1}(K, U)$ of maximal surface area, having each facet orthogonal to some node.

The proof of Theorem 1 uses the same arguments as in CCG for volume.

Notice that, in general, the uniqueness of maximizer is not guaranteed.

Special case: If $U = \{e_1, e_2, ..., e_n\}$ then Theorem 1 gives the LW-inequality proved by Betke and McMullen.

3. r = 2, s = 1.

Theorem 2. If there exists a zonotope

$$Z = \sum_{u \in U} \alpha(u) \,\overline{u}$$

in $H_1(K, U)$, then Z is the only element of maximal V_2 .

The proof is based on the first Minkowski inequality.

In the special case $U = \{e_1, e_2, ..., e_n\}$ the existence of a box in $H_1(K, U)$ can be proved.

Theorem 3. For every convex body *K* there exists a coordinate box *Z* such that $V_1(Z | e_i^{\perp}) = V_1(K | e_i^{\perp})$ for every i = 1, 2, ..., n.

Hence, Theorem 2 gives the following corollary

Corollary 4. For every convex body *K*

$$2V_2(K) \le \frac{1}{n-1} \left(\sum_{i=1}^n V_1(K \mid e_i^{\perp}) \right)^2 - \sum_{i=1}^n V_1(K \mid e_i^{\perp})^2$$

and equality holds if and only if *K* is a coordinate box.

4. r = 1, s = 1.

Theorem 3 can be used also for proving

Theorem 5. For every convex body K $V_1(K) \le \frac{1}{n-1} \sum_{i=1}^n V_1(K | e_i^{\perp})$

and equality holds if and only if *K* is a coordinate box.

Theorem 3 and Theorem 5 are proved by induction.

Thm 5.
$$V_1(K) \le \frac{1}{n-1} \sum_{i=1}^n V_1(K | e_i^{\perp})$$
, equality only for coordinate boxes.

Thm 3. There exists a coordinate box Z such that $V_1(Z|e_i^{\perp}) = V_1(K|e_i^{\perp})$.

To prove that Theorem 3 in \mathbb{R}^n implies Theorem 5 in \mathbb{R}^n , one can assume that *K* is symmetric with respect to all the coordinate hyperplanes.

The mean width is an integral of the support function. Thus, the inequality

$$h_K(z) \leq \frac{1}{n-1} \sum_{i=1}^n h_K(z \mid e_i^{\perp}),$$

which is an identity for coordinate boxes, implies that

$$V_1(K) \le \frac{1}{n-1} \sum_{i=1}^n V_1(K \mid e_i^{\perp}) = \frac{1}{n-1} \sum_{i=1}^n V_1(Z \mid e_i^{\perp}) = V_1(Z).$$

To prove that Theorem 5 in \mathbb{R}^{n-1} implies Theorem 3 in \mathbb{R}^n , one can use the fact that Theorem 3 is equivalent to the following inequality:

$$V_1(K | e_j^{\perp}) \le \frac{1}{n-1} \sum_{i=1}^n V_1(K | e_i^{\perp}).$$

The second step consists in showing that *K* can be thought of as contained in e_j^{\perp} .

Applying Theorem 5 to K in \mathbb{R}^{n-1} leads to the above inequality.

Final remarks.

- Inequalities of LW type for intrinsic volumes of different order.
- Finitely many directions:

Rearrangement of the area measure $S_1(K; \cdot)$.

Counterexample in R³: Fix u_1 , u_2 , ..., u_m in $S^2 \cap v^{\perp}$. If it were possible to distribute the measure $S_1(K; \cdot)$ on the arcs of great circles orthogonal to v or u_i , then the resulting body should be a prism.

For suitable *K*, the non existence of a cylinder *C* such that

$$V_1(C \mid v^{\perp}) = V_1(K \mid v^{\perp}) \text{ and}$$

$$V_1(C \mid u^{\perp}) = V_1(K \mid u^{\perp}), \text{ for every } u \in v^{\perp},$$

contradicts that possibility.