Estimating intrinsic volumes from finitely many projections

Stefano Campi
University of Siena - Italy

(joint work with Paolo Gronchi)

Samos, PHD Annual Conference, June 2007
"Geometric tomography ... deals with the retrieval of information about a geometric object from data about its sections, or projections, or both."
(R.Gardner, Geometric Tomography, 1995)

A prototype of problem in Geometric tomography is estimating the volume of an object from the areas of its finitely many orthogonal projections.

The Loomis and Whitney inequality is a classic geometric inequality which provides an estimate of that type.

The Loomis and Whitney inequality (1949):
If E is a Borel set in R^{n}, and $e_{1}, e_{2}, \ldots, e_{n}$ denote the unit vectors in the coordinate directions, then

$$
V_{n}(E)^{n-1} \leq \prod_{i=1}^{n} V_{n-1}\left(E \mid e_{i}^{\perp}\right)
$$

where equality holds for coordinate boxes.
Among convex sets equality holds only for coordinate boxes.
The quantity $V_{n-1}\left(E \mid e_{i}^{\perp}\right)$ is called the brightness of E in the direction e_{i}.

Generalizations and/or variants in the literature.
Hadwiger (1957), Burago-Zalgaller (1980):
If E is a Borel set in R^{n}, and $A_{1}, A_{2}, \ldots, A_{\lambda}, \lambda=\binom{n}{m}$, denote the coordinate subspaces of dimension m, then

$$
V_{n}(E) \leq \prod_{i=1}^{\lambda} V_{m}\left(E \mid A_{i}\right)^{\frac{n}{\lambda m}}
$$

Betke-McMullen (1982):
For every convex body K in R^{n}

$$
\operatorname{Area}(\partial K) \leq 2 \sum_{i=1}^{n} V_{n-1}\left(K \mid e_{i}^{\perp}\right)
$$

and equality holds if and only if K is a coordinate box.

Ball (1991):
For a convex body K in R^{n}

$$
V_{n}(K)^{n-1} \leq \prod_{i=1}^{m} V_{n-1}\left(K \mid u_{i}^{\perp}\right)^{c_{i}}
$$

where directions u_{i} and numbers $c_{i}>0$ satisfy

$$
\sum_{i=1}^{m} c_{i} u_{i} \otimes u_{i}=I_{n}
$$

Lutwak-Yang-Zhang (work in progress): extensions of Ball's results to different intrinsic volumes.

Intrinsic volumes V_{i} and quermassintegrals W_{j}.

Steiner's formula:

$$
V_{n}(K+\varepsilon B)=\sum_{i=0}^{n}\binom{n}{i} W_{i}(K) \varepsilon^{i}=\sum_{i=0}^{n} \kappa_{n-i} V_{i}(K) \varepsilon^{n-i},
$$

where κ_{j} is the volume of the unit ball in R^{j}.
In particular:

$$
\begin{aligned}
& V_{0}(K)=\frac{1}{\kappa_{n}} W_{n}(K)=1, \text { the Euler characteristic; } \\
& \frac{2 \kappa_{n-1}}{n \kappa_{n}} V_{1}(K)=\frac{2}{\kappa_{n}} W_{n-1}(K) \text {, the mean width; } \\
& 2 V_{n-1}(K)=n W_{1}(K) \text {, the surface area; } \\
& V_{n}(K)=W_{0}(K) \text {, the volume. }
\end{aligned}
$$

Definition. Given a convex body K in R^{n}, a set of directions U spanning R^{n} and an integer number $1 \leq r \leq n-1$, let $\mathrm{H}_{r}(K, U)$ the class of all convex bodies L such that

$$
\begin{aligned}
& V_{r}\left(L \mid u_{i}^{\perp}\right)=V_{r}\left(K \mid u_{i}^{\perp}\right) \\
& \text { for every } i=1,2, \ldots, m .
\end{aligned}
$$

Definition. Given a set of directions U in R^{n}, a node for U is a direction orthogonal to at least $(n-1)$ elements from U.
C.-Colesanti-Gronchi (1995):

For every convex body K in R^{n}, and set of directions U spanning R^{n}, the only element of maximal volume in $\mathrm{H}_{n-1}(K, U)$ is a polytope, having each facet orthogonal to some node.

Moreover, if there exists a zonotope

$$
Z=\sum_{u \in U} \alpha(u) \bar{u}
$$

in $\mathrm{H}_{n-I}(K, U)$, then it has maximal volume.

Main ingredient: rearrangement of the area measure of K.

Keeping $\int z d S_{n-1}(K ; z)$
ω
fixed does not change the brightness in the given directions.

Distributing the measure on the nodes increases the volume.

Henceforth, we consider only the case of convex bodies.
Class of problems: Finding upper bounds of the r-th intrinsic volume of a convex body K from the s-th intrinsic volume of the projections of K
i) on the ($n-1$)-dimensional coordinate hyperplanes;
ii) on finitely many ($n-1$)-dimensional hyperplanes.

1. $r<s$.

Without any extra assumption, in these cases we cannot expect an upper bound of $V_{r}(K)$.

For example, for $n=3, s=2$ and $r=1$, it is easy to find an unbounded sequence of bodies with fixed brightness along finitely many directions.
2. $r=s=n-1$

Theorem 1. For every convex body K, there exists a polytope P from $\mathrm{H}_{n-1}(K, U)$ of maximal surface area, having each facet orthogonal to some node.

The proof of Theorem 1 uses the same arguments as in CCG for volume.

Notice that, in general, the uniqueness of maximizer is not guaranteed.

Special case: If $U=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ then Theorem 1 gives the LW-inequality proved by Betke and McMullen.
3. $r=2, s=1$.

Theorem 2. If there exists a zonotope

$$
Z=\sum_{u \in U} \alpha(u) \bar{u}
$$

in $\mathrm{H}_{1}(K, U)$, then Z is the only element of maximal V_{2}.
The proof is based on the first Minkowski inequality.
In the special case $U=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the existence of a box in $\mathrm{H}_{1}(K, U)$ can be proved.

Theorem 3. For every convex body K there exists a coordinate box Z such that $V_{1}\left(Z \mid e_{i}^{\perp}\right)=V_{1}\left(K \mid e_{i}^{\perp}\right)$ for every $i=1,2, \ldots, n$.

Hence, Theorem 2 gives the following corollary
Corollary 4. For every convex body K

$$
2 V_{2}(K) \leq \frac{1}{n-1}\left(\sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right)\right)^{2}-\sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right)^{2}
$$

and equality holds if and only if K is a coordinate box.
4. $r=1, s=1$.

Theorem 3 can be used also for proving
Theorem 5. For every convex body K

$$
V_{1}(K) \leq \frac{1}{n-1} \sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right)
$$

and equality holds if and only if K is a coordinate box.

Theorem 3 and Theorem 5 are proved by induction.

Thm 5. $V_{1}(K) \leq \frac{1}{n-1} \sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right)$, equality only for coordinate boxes. Thm 3. There exists a coordinate box Z such that $V_{1}\left(Z \mid e_{i}^{\perp}\right)=V_{1}\left(K \mid e_{i}^{\perp}\right)$.

To prove that Theorem 3 in R^{n} implies Theorem 5 in R^{n}, one can assume that K is symmetric with respect to all the coordinate hyperplanes.

The mean width is an integral of the support function. Thus, the inequality

$$
h_{K}(z) \leq \frac{1}{n-1} \sum_{i=1}^{n} h_{K}\left(z \mid e_{i}^{\perp}\right)
$$

which is an identity for coordinate boxes, implies that

$$
V_{1}(K) \leq \frac{1}{n-1} \sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right)=\frac{1}{n-1} \sum_{i=1}^{n} V_{1}\left(Z \mid e_{i}^{\perp}\right)=V_{1}(Z)
$$

To prove that Theorem 5 in R^{n-1} implies Theorem 3 in R^{n}, one can use the fact that Theorem 3 is equivalent to the following inequality:

$$
V_{1}\left(K \mid e_{j}^{\perp}\right) \leq \frac{1}{n-1} \sum_{i=1}^{n} V_{1}\left(K \mid e_{i}^{\perp}\right) .
$$

The second step consists in showing that K can be thought of as contained in e_{j}^{\perp}.

Applying Theorem 5 to K in R^{n-1} leads to the above inequality.

Final remarks.

- Inequalities of LW type for intrinsic volumes of different order.
- Finitely many directions:

Rearrangement of the area measure $S_{1}(K ; \cdot)$.
Counterexample in R^{3} : Fix $u_{1}, u_{2}, \ldots, u_{m}$ in $S^{2} \cap v^{\perp}$. If it were possible to distribute the measure $S_{1}(\mathrm{~K} ; \cdot)$ on the arcs of great circles orthogonal to v or u_{i}, then the resulting body should be a prism.
For suitable K, the non existence of a cylinder C such that

$$
\begin{aligned}
& V_{1}\left(C \mid v^{\perp}\right)=V_{1}\left(K \mid v^{\perp}\right) \text { and } \\
& V_{1}\left(C \mid u^{\perp}\right)=V_{1}\left(K \mid u^{\perp}\right), \text { for every } u \in v^{\perp},
\end{aligned}
$$

contradicts that possibility.

