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Example

Isoperimetry

@ (R", |||, 1) ; 1« - Borel probability measure on (R, ||-]|) ,
absolutely continuous.

Emanuel Milman and Sasha Sodin Isoperimetric Inequalities For Uniformly Convex Bodies



Introduction Definitions

Example

Isoperimetry

@ (R", |||, 1) ; 1« - Borel probability measure on (R, ||-]|) ,
absolutely continuous.
@ Minkowski’s boundary measure of Borel set A:
(Acj1) — 1(A)

o
i (A) = limind e :
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Isoperimetry

@ (R", |||, 1) ; 1« - Borel probability measure on (R, ||-]|) ,
absolutely continuous.
@ Minkowski’s boundary measure of Borel set A:
(Acj1) — 1(A)

o
i (A) = limind e :

A ={xeR" |y eA, |x—yl <e}
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Introduction Definitions

Example

Isoperimetry

@ (R", |||, 1) ; 1« - Borel probability measure on (R, ||-]|) ,
absolutely continuous.
@ Minkowski’s boundary measure of Borel set A:
(Acj1) — 1(A)

o
i (A) = limind e :

A ={xeR" |y eA, |x—yl <e}

@ (R",||-||, ) satisfies an isoperimetric inequality:

piy (A 2 1 (1(A) L 1:[0.1/2] - e

—~

1(A) = min(u(A), 1 — u(A))
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Introduction Definitions

Example

Isoperimetry

@ (R", |||, 1) ; 1« - Borel probability measure on (R, ||-]|) ,
absolutely continuous.
@ Minkowski’s boundary measure of Borel set A:
(Acj1) — 1(A)

o
i (A) = limind e :

A ={xeR" |y eA, |x—yl <e}

@ (R",||-||, ) satisfies an isoperimetric inequality:

piy (A 2 1 (1(A) L 1:[0.1/2] - e

—~—

p(A) = min(u(A). 1= pu(A) (1 (A) = i (A°))
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Example

Concentration

@ By integrating an isoperimetric inequality, we obtain an
equivalent global version. More generally:

@ (R |||l , n) satisfies a concentration inequality if
Joa>033,¢q,¢60 > 0:

VA pu(A) = 1

> = M(A5,||||) >1—c eXp(—CznaEﬁ)
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Introduction Definitions

Example

Concentration

@ By integrating an isoperimetric inequality, we obtain an
equivalent global version. More generally:

@ (R |||l , n) satisfies a concentration inequality if
Joa>033,¢q,¢60 > 0:

VA pu(A) = 1

> = M(A5,||||) >1—c eXp(—CznaEﬁ)

Isoperimetry = Concentration
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Introduction Definitions

Example

Concentration

@ By integrating an isoperimetric inequality, we obtain an
equivalent global version. More generally:

@ (R |||l , n) satisfies a concentration inequality if
Joa>033,¢q,¢60 > 0:

VA pu(A) = 1

> = M(A5,||||) >1—c eXp(—CznaEﬁ)

Isoperimetry < Concentration (e.g. ¢y > 1/2)
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Introduction Definitions

Example

Concentration

@ By integrating an isoperimetric inequality, we obtain an
equivalent global version. More generally:

e (R" |||, ) satisfies a concentration inequality if
Joa>033,¢q,c0 > 0:

]
VA w(A)=5 = wA)21-0c exp(—can”e”)

Isoperimetry = Functional Inequalities = Concentration
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(R™,|-],vn) ; vn - standard Gaussian density on (R", |-|).
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Example

(R™, |- ,vn) ; 7n - standard Gaussian density on (R”, |-|).
Thm (Sudakov-Tsirel'son, Borell 1974)

(R",|],vn) satisfies the isoperimetric inequality:

e~

Vi (A) = 0 07 (y(A))
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(R™, |- ,vn) ; 7n - standard Gaussian density on (R”, |-|).
Thm (Sudakov-Tsirel'son, Borell 1974)

(R",|],vn) satisfies the isoperimetric inequality:

e~

Vi (A) = 0 07 (y(A))

0=t o) - [ " o(x)ox
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Definitions
Example

Example

(R™, |- ,vn) ; 7n - standard Gaussian density on (R”, |-|).
Thm (Sudakov-Tsirel'son, Borell 1974)

(R",|],vn) satisfies the isoperimetric inequality:

e~

Vi (A) = 0 07 (y(A))

0=t o) - [ " o(x)ox

wod ' (x) ~xlogz(1/x) Vx € [0,1/2]
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Introduction

Definitions
Example

Example

(R™,|-],vn) ; vn - standard Gaussian density on (R", |-|).

Thm (Sudakov-Tsirel'son, Borell 1974)

(R",]],vn) satisfies the isoperimetric inequality:

’YI\.|(A) > po ¢_1(%EA_/))

Corollary

(R",|],vn) satisfies the concentration inequality:

VA 7n(A):% = n(A.;) =1 —1/2exp(—<%/2)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

M. Gromov-V. Milman Concentration for
Uniformly Convex Spaces
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

M. Gromov-V. Milman Concentration for
Uniformly Convex Spaces

Def: modulus of convexity of (X, ||-||): dx, o). : [0,2] — [0, 1]

X+
i<t -y

Sx(e) = inf {1 -

Kx, Kj, K= {lIxI < 1}
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

M. Gromov-V. Milman Concentration for
Uniformly Convex Spaces

Def: modulus of convexity of (X, ||-||): dx, o). : [0,2] — [0, 1]

X+
2 <1 -z

Sx(e) = inf {1 -

@ (X,||]]) or Kx are uniformly convex if dx(¢) > 0 Ve > 0.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

M. Gromov-V. Milman Concentration for
Uniformly Convex Spaces

Def: modulus of convexity of (X, ||-||): dx, o). : [0,2] — [0, 1]

X+y
2

H XL I <1 X =y = }

Sx(e) = inf {1 -

(X, |||l) or Kx are uniformly convexif ox(¢) > 0 Ve > 0.
(X, |||]) or Kx are p-convex («) if dx(e) > aeP Ve > 0.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

M. Gromov-V. Milman Concentration for
Uniformly Convex Spaces

Def: modulus of convexity of (X, ||-||): dx, o). : [0,2] — [0, 1]

X+y
2

H XL I <1 X =y = }

Sx(e) = inf {1 -

@ (X, |||l) or Kx are uniformly convex if 6x(¢) > 0 Ve > 0.
@ (X, |I|l) or Kx are p-convex () if dx(g) > asP Ve > 0.
@ Example - /4 spaces (1 < g < 0):
2<g<oo g-convex (a=q/29)
{ 1<g<2 2-convex(a=qg—1)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Gromov-Milman Concentration Vs. Isoperimetry

Thm (Gromov—Milman 1987, Arias-de-Reyna—Ball-Villa 1998)
(R™ ]|l , Ak ); Ak = uniform probability measure on K = K ;

Satisfies a concentration inequality:

VA Xk(A) = - AK(A&”‘H) >1-— 2exp(—2n5||.||(a))

1
2
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Gromov-Milman Concentration Vs. Isoperimetry

Thm (Gromov—Milman 1987, Arias-de-Reyna—Ball-Villa 1998)
(R™ ]|l , Ak ); Ak = uniform probability measure on K = K ;

Satisfies a concentration inequality:

VA )\K(A) = - AK(A&”H) >1-— 2exp(—2n<5||||(£))

1
2

Thm 1 (M.—Sodin 2007)
Essentially an isoperimetric version for (R”, ||-|| , Ak):
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Gromov-Milman Concentration Vs. Isoperimetry

Thm (Gromov—Milman 1987, Arias-de-Reyna—Ball-Villa 1998)
(R™ ]|l , Ak ); Ak = uniform probability measure on K = K ;

Satisfies a concentration inequality:

VA )\K(A) = - AK(A&”H) >1-— 2exp(—2n<5||||(£))

1
2

Thm 1 (M.—Sodin 2007)
Essentially an isoperimetric version for (R”, ||-|| , Ak):

@ If K is p-convex («):

+ 1/pnt/p 1-1/p_1
AK7”.”(A) > ca'/Pn )\K( ) log AK(A).
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Gromov-Milman Concentration Vs. Isoperimetry

Thm (Gromov—Milman 1987, Arias-de-Reyna—Ball-Villa 1998)
(R™ ]|l , Ak ); Ak = uniform probability measure on K = K ;

Satisfies a concentration inequality:

VA )\K(A) = - AK(A&”H) >1-— 2exp(—2n<5||||(£))

1
2

Thm 1 (M.—Sodin 2007)
Essentially an isoperimetric version for (R”, ||-|| , Ak):

@ If K is p-convex («):

+ 1/pnt/p 1=1/p_1_
AK7”.”(A) > ca'/Pn )\K( ) log S

@ Analogous version for general modulus dk.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

If K is p-convex («):

11 p
1 1 caPne
M(A) =5 = Axl(Acy) = 1-exp | — [logr 2+ ==
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

If K is p-convex («):
11 p

1 1 caPne
M(A) =5 = Axl(Acy) = 1-exp | — [logr 2+ ==

for large ¢ =1 —exp(—(c'/p)Pn asP)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

If K is p-convex («):
11 p

1 1 caPne
M(A) =5 = Axl(Acy) = 1-exp | — [logr 2+ ==

for large ¢ =1 —exp(—(c'/p)Pn asP)
(GM) >1 —ciexp(—c> naeP)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

@ Strengthens (up to constants) for Ak (A) > exp(—n) a
Sobolev-type isoperimetric inequality for p-convex bodies
of Bobkov—Zegarlinski (2005).

(B2) Xy (A) = ca/Pnl P(k(A))7,

(MS) % (A) = ca'/Pn'/PXi(A) log'—1/P ﬁ

Emanuel Milman and Sasha Sodin Isoperimetric Inequalities For Uniformly Convex Bodies



Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

@ Strengthens (up to constants) for Ak (A) > exp(—n) a
Sobolev-type isoperimetric inequality for p-convex bodies
of Bobkov—Zegarlinski (2005).

(B2) Xy (A) = ca/Pnl P(k(A))7,

+ 1/pnt/ =1/p_1_
(MS) Ak | (A) = ca’/Pn'/PAk(A) log S
1 1
5 = AM(A)>1—exp( —cnrare’)
(MS) \c(A) = 1 = Ak(A) = 1 - exp(—(c'/p)Pn'a’sF)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Corollaries of Thm 1

@ Essentially recovers the Gromov—Milman concentration.

@ Strengthens (up to constants) for Ak (A) > exp(—n) a
Sobolev-type isoperimetric inequality for p-convex bodies
of Bobkov—Zegarlinski (2005).

= o\ n—1

(BZ) Ay (A) = cal /Pl PO (A) 7,

Y (A lanl—1 1
(MS) Ak (A) = cal/Pn'/Pi(A) log' /P o

@ Recovers (up to constants) a log-Sobolev-type functional
inequality for p-convex bodies of Bobkov—Ledoux (2000).
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Log-Concave Measures

@ du = f(x)dx is log-concave if f(x) = exp(—g(x)),
g:R" — RU {400} convex.

@ Examples: 1x(x)dx ; c exp(— ||x||P) dx, p > 1.

@ Known analogy between convex bodies and log-concave
measures.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Log-Concave Measures

@ du = f(x)dx is log-concave if f(x) = exp(—g(x)),
g:R" — RU {400} convex.

@ Examples: 1x(x)dx ; c exp(— ||x||P) dx, p > 1.

@ Known analogy between convex bodies and log-concave
measures.

@ (R", |||, 1) ; modulus of log-concavity of  w.r.t. ||-||:
0 'Ry - Ry U{+o0}:

|-l

Ou (€)= ‘”f{g(X)erg(y) —9 (X;y) ‘ g(ll);)’g%);;o }
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

o

woll-l

(P 5) 5
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
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Motivation
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Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) > aeP Ve > 0.
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Motivation
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Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) > aeP Ve > 0.

Examples:
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Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) > aeP Ve > 0.

Examples:
® v 3 g(x) =L +c= (Parall. iden.) 5, () = £2/8..
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) > aeP Ve > 0.

Examples:
o v 5 g(x) =L +c= (Parall. iden.) 5, (c) = <2/8..
@ (R" ||-|) is p-convex < (using Figiel-Pisier)
du = cexp(— ||x||P) is p-log-concave.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

S 11(6) = imc{g(x) Zg(y) g <X-£y> ‘ g(’r;),_g%);oo }

@ v is uniformly log-concave if 6, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) > aeP Ve > 0.

Examples:
o v 5 9(x) =L 4 c= (Parall. iden.) 5., (c) = 2/8.
@ (R",||]]) is p-convex < (using Figiel-Pisier)
du = cexp(— ||x||P) is p-log-concave.
@ 1x(x)dx is never uniformly log-concave.
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Uniformly Log-Concave Measures

8-/ (€) == inf {Q(X)ZQ(Y) g <X+y> ‘ g(x),g(y) < o0 }

Ix =yl =>e

@ 4 is uniformly log-concave if 4, . () >0 Ve > 0.
@ 4 is p-log-concave (a = ) if 6, . (€) = aeP Ve > 0.

Observation: 6,4, .| > d,,,.| for any log-concave ¢, norm |[-||.

s+
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Thm 2 (M.—Sodin 2007)

(R ||| , ), w is uniformly log-concave, § = o

Nl

M|—|~_.H(A) > 05/7(\’4/)7 (IOQ ;({-43) V(1) = 5_1t(t

(explicit expression for Cs; for 6(¢) > aeP, Cs > ¢ > 0).

)
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Thm 2 (M.—Sodin 2007)

(R™ |||, ), w is uniformly log-concave, § = 5u,II~H3

(explicit expression for Cs; for 6(¢) > aeP, Cs > ¢ > 0).

Corollaries for §(g) > ce? = ~(t) = V't
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Thm 2 (M.—Sodin 2007)
(R™ |||l , ), p is uniformly log-concave, ¢ = ¢

Nl

(explicit expression for Cs; for 6(¢) > aeP, Cs > ¢ > 0).

Corollaries for §(g) > ce? = ~(t) = V't

@ (R"|-|,~n) - recovers (up to constants) Gaussian
isoperimetry (Sudakov—Tsirel'son, Borell 1974).
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Motivation
Results Uniformly Convex Bodies
Uniformly Log-Concave Measures

Thm 2 (M.—Sodin 2007)

(R™ |||, ), w is uniformly log-concave, § = 5u,II~H3

(explicit expression for Cs; for 6(¢) > aeP, Cs > ¢ > 0).

Corollaries for §(g) > ce? = ~(t) = V't

@ (R"|-|,~n) - recovers (up to constants) Gaussian
isoperimetry (Sudakov—Tsirel'son, Borell 1974).

@ (R"|-|,vn¢), ¢ log-concave - recovers (up to constants)
isoperimetry for CD(1, co) (Bakry—Ledoux 1996, Bobkov
2001).
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Thm 2 = Thm 1
Lipschitz Radial Map

Ideas of Proofs Localization

|deas of Proofs
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Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Thm 2 = Thm 1 (ideas of Bobkov—Ledoux)

Apply Thm 2

1

R", unif. convex unif. log-concave
Hic
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Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Thm 2 = Thm 1

(R]1 - [I) unif. convex Q_, {4, unif. log-concave
P D
( AV ~N /0 \\
( Ax ) J Apply Thm 2
N % y \
— B D, .
/N

L

T y.
Step 1: —~.a_ 7

@ for p-convex: du = cexp(— ||x||P)dx is p-log-concave.
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Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Thm 2 = Thm 1

(R]1 - [I) unif. convex Q_, {4, unif. log-concave
P D
( AV ~N /0 \\
( Ax ) J Apply Thm 2
N % y \
— B D, .
/N

L

T \EA 2 J
Step 1: ~a 7
@ for p-convex: du = cexp(— ||x||P)dx is p-log-concave.
e for general &): dp = cexp(—n || x|[*)1x(x)dx.
Can show: 5%”.“(6) > Cn(5H.||(8/4).
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Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Thm 2 = Thm 1

(R",]| - |I) unif. convex //?_, {4, unif. log-concave
1

T, AN A

e \\ ‘4
‘/\ Ax /\)J N /‘/App\y Thm\Z\
S /,,/\ o ﬂ \\\\
LN
" J
Step 1: T~

@ for p-convex: du = cexp(— ||x||P)dx is p-log-concave.
e for general &): dp = cexp(—n || x|[*)1x(x)dx.
Can show: 5%”.“(6) > Cn(5H.||(8/4).

Using Figiel-Pisier, can show that v || x|| , || y| < 1:

2
s ey ().

2

2 2
X+ lyll®
2
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Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Thm 2 = Thm 1

(R - (1) unif. convex U, unif. log-concave

T 3

Step 2 (Idea of Bobkov—Ledoux):

Construct a Lipschitz map (w.r.t. ||-||) which pushes forward px
onto Ak (transfers isoperimetric inequalities).
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Thm 2 = Thm 1
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Thm 2 = Thm 1

(R - (1) unif. convex y U, unif. log-concave

Step 2 (Idea of Bobkov—Ledoux):

Construct a Lipschitz map (w.r.t. ||-||) which pushes forward px
onto Ak (transfers isoperimetric inequalities).

@ For p-convex: ux = cexp(— ||x|°)dx — Ak done by
Bobkov-Ledoux.
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Thm 2 = Thm 1

(R - (1) unif. convex y U, unif. log-concave

Step 2 (Idea of Bobkov—Ledoux):

Construct a Lipschitz map (w.r.t. ||-||) which pushes forward px
onto Ak (transfers isoperimetric inequalities).

@ For p-convex: ux = cexp(— ||x|°)dx — Ak done by
Bobkov—-Ledoux.

@ For arbitrary 6. : uk = f(x)dx — Ak, we generalize their
result.
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Lipschitz Radial Map

]

Let f: R" — R, be integrable.

Following Bobkov—Ledoux, use radial-map T¢ : Ry x — R x,
Vx € R", which pushes-forward f(x)dx onto 1x,(x)dx, so

Ti - f(xr)r"dr — 119 g (xr)r"'dr vx € R".

v
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Lipschitz Radial Map

]

Let f: R" — R, be integrable.

Following Bobkov—Ledoux, use radial-map T¢ : Ry x — R x,
Vx € R", which pushes-forward f(x)dx onto 1x,(x)dx, so

Ti - f(xr)r"dr — 119 g (xr)r"'dr vx € R".

K: = {x eR™, n/ f(xr)r"tdr > 1}
0

v
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Lipschitz Radial Map

]

Let f: R" — R, be integrable.

Following Bobkov—Ledoux, use radial-map T¢ : Ry x — R x,
Vx € R", which pushes-forward f(x)dx onto 1x,(x)dx, so

Ti - f(xr)r"dr — 119 g (xr)r"'dr vx € R".

v

K: = {x eR™, n/ f(xr)r"tdr > 1}
0

Ball: f is (even) log-concave = K} is a (symmetric) convex body.

Emanuel Milman and Sasha Sodin Isoperimetric Inequalities For Uniformly Convex Bodies



Thm 2 = Thm 1
Lipschitz Radial Map
Ideas of Proofs Localization

Lipschitz Radial Map

Thm (M.—Sodin 2007)

For any even log-concave f,
asamap Ty : (R, [|llx,) = R" [-ll,), [ITellp < CFO)'/7.

Let f: R" — R, be integrable.

Following Bobkov—-Ledoux, use radial-map T¢ : Ry x — R x,
Vx € R", which pushes-forward f(x)dx onto 1x,(x)dx, so

Ti - f(xr)r"dr — 1;g g (xr)r"'dr vx € R".

K: = {x eR™, n/ f(xr)r"'dr > 1}
0

Ball: f is (even) log-concave = K} is a (symmetric) convex body.
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Proof of Thm 2 (isop. inequality for (R", ||-|| , x))

@ “Localization Principle": used by Gromov—Milman,
developed by Kannan—Lovasz—Simonovits, advocated and
used by Bobkov.
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Proof of Thm 2 (isop. inequality for (R", ||-|| , x))

@ “Localization Principle": used by Gromov—Milman,
developed by Kannan—Lovasz—Simonovits, advocated and
used by Bobkov.

o Assume f = % semi-continuous, so |g = f|gdxg.
In its local form, the Localization Lemma reduces the study
of isoperimetric inequalities on (R”, ||-||, ») to (L, [|]], u|r¢),
L c R” affine line and ¢ log-concave on L.
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Proof of Thm 2 (isop. inequality for (R", ||-|| , x))

@ “Localization Principle": used by Gromov—Milman,
developed by Kannan—Lovasz—Simonovits, advocated and
used by Bobkov.

o Assume f = % semi-continuous, so |g = f|gdxg.

In its local form, the Localization Lemma reduces the study
of isoperimetric inequalities on (R”, ||-||, ») to (L, [|]], u|r¢),
L c R” affine line and ¢ log-concave on L.

@ Observation:

© Oulug Il = Oulusfl-| = Opul| -
e All norms on R are multiples of |-|.
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Proof of Thm 2 (isop. inequality for (R", ||-|| , x))

@ “Localization Principle": used by Gromov—Milman,
developed by Kannan—Lovasz—Simonovits, advocated and
used by Bobkov.

o Assume f = % semi-continuous, so |g = f|gdxg.
In its local form, the Localization Lemma reduces the study
of isoperimetric inequalities on (R”, ||-||, ») to (L, [|]], u|r¢),
L c R” affine line and ¢ log-concave on L.
@ Observation:
© Oulug Il = Oulusfl-| = Opul| -
e All norms on R are multiples of |-|.

@ Reduces Thm 2 to proving the isoperimetric inequality for
(R, [-],0), 65| =0 i.e. 1-D uniformly log-concave
measures on R.

/’LVH'H’
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Thm 2 = Thm 1
Lipschitz Radial Map

Ideas of Proofs Localization

Thank you!
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