# An extension of a <br> Bourgain-Lindenstrauss-Milman inequality 

Omer Friedland, Sasha Sodin

Tel Aviv University

June 28, 2007

## 1) Definitions

Let $(E,\|\cdot\|)$ be a normed space, and let $v_{1}, \cdots, v_{n} \in E \backslash\{0\}$.
Define a norm ||| $\cdot \| \mid$ on $\mathbb{R}^{n}$ :

$$
\begin{equation*}
\||x|\|=\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i} v_{i}\right\| \tag{1}
\end{equation*}
$$

where the expectation is over the choice of $n$ independent random signs $\varepsilon_{1}, \cdots, \varepsilon_{n}$.

## 1) Definitions

Let $(E,\|\cdot\|)$ be a normed space, and let $v_{1}, \cdots, v_{n} \in E \backslash\{0\}$.
Define a norm ||| $\cdot \| \mid$ on $\mathbb{R}^{n}$ :

$$
\begin{equation*}
\||x|\|=\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i} v_{i}\right\| \tag{1}
\end{equation*}
$$

where the expectation is over the choice of $n$ independent random signs $\varepsilon_{1}, \cdots, \varepsilon_{n}$.

Remark
This is an unconditional norm; that is,

$$
\left\|\left|| ( x _ { 1 } , x _ { 2 } , \cdots , x _ { n } ) | \left\|\left|=\|\left|\left(\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right)\right|\right| \mid .\right.\right.\right.
$$

## 2) Motivation

We ask whether it is possible to average $O(n)$ of the terms, rather than the $2^{n}$ terms in (1) ?

In order to obtain a norm that is isomorphic to $|||\cdot|||$ and is in particular (isomorphically) unconditional.

## 3) Theorem (Sodin \& F.)

Let $N=(1+\delta) n, \delta>0$, and let

$$
\left\{\varepsilon_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq N\right\}
$$

be a collection of independent random signs. Then
$\mathbb{P}\left\{\left.\forall x \in \mathbb{R}^{n} c \delta^{2}\| \| x\| \| \leq \frac{1}{N} \sum_{j=1}^{N}\left\|\sum_{i=1}^{n} \varepsilon_{i j} x_{i} v_{i}\right\| \leq C \right\rvert\,\|x\| \|\right\} \geq 1-e^{-c^{\prime} \delta n}$,
where $c^{\prime}, c, C>0$ are universal constants.

## 4) Some remarks

- This theorem extends a result due to Bourgain, Lindenstrauss and Milman, who considered the case of large $\delta \geq C>1$.


## 4) Some remarks

- This theorem extends a result due to Bourgain, Lindenstrauss and Milman, who considered the case of large $\delta \geq C>1$.
- Their argument yields the upper bound for the full range of $\delta$, so the innovation is in the lower bound for small $\delta>0$.


## 4) Some remarks

- This theorem extends a result due to Bourgain, Lindenstrauss and Milman, who considered the case of large $\delta \geq C>1$.
- Their argument yields the upper bound for the full range of $\delta$, so the innovation is in the lower bound for small $\delta>0$.
- With the stated dependence on $\delta$, the corresponding result for the scalar case, i.e. $\operatorname{dim} E=1$, was proved by Rudelson, improving previous bounds on $c(\delta)$ by Kashin, Johnson - Schechtman, Litvak - Pajor - Rudelson - Tomczak-Jaegermann - Vershynin and Artstein-Avidan - Friedland - Milman - Sodin.


## 4) Some remarks

- This theorem extends a result due to Bourgain, Lindenstrauss and Milman, who considered the case of large $\delta \geq C>1$.
- Their argument yields the upper bound for the full range of $\delta$, so the innovation is in the lower bound for small $\delta>0$.
- With the stated dependence on $\delta$, the corresponding result for the scalar case, i.e. $\operatorname{dim} E=1$, was proved by Rudelson, improving previous bounds on $c(\delta)$ by Kashin, Johnson - Schechtman, Litvak - Pajor - Rudelson - Tomczak-Jaegermann - Vershynin and Artstein-Avidan - Friedland - Milman - Sodin.
- This scalar case is one of the two main ingredients of our proof, the second one being Talagrand's concentration inequality.


## 5) Theorem (Talagrand)

Let $w_{1}, \cdots, w_{n} \in E$ be vectors in a normed space $(E,\|\cdot\|)$, and let $\varepsilon_{1}, \cdots, \varepsilon_{n}$ be independent random signs. Then for any $t>0$

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{n} \varepsilon_{i} w_{i}\right\|-\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} w_{i}\right\|\right| \geq t\right\} \leq C_{1} e^{-c_{1} t^{2} / \sigma^{2}}
$$

where $c_{1}, C_{1}>0$ are universal constants, and

$$
\sigma^{2}=\sigma^{2}\left(w_{1}, \cdots, w_{n}\right)=\sup \left\{\sum_{i=1}^{n} \varphi\left(w_{i}\right)^{2} \mid \varphi \in E^{*},\|\varphi\|^{*} \leq 1\right\}
$$

## 6) Proof

Let us denote $\left\|\|x\|_{N}=\frac{1}{N} \sum_{j=1}^{N}\right\| \sum_{i=1}^{n} \varepsilon_{i j} x_{i} v_{i} \|$.
This is a random norm depending on the choice of $\varepsilon_{i j}$.
Let $S_{\||\cdot|\|}^{n-1}=\left\{x \in \mathbb{R}^{n}:|\|x\||=1\right\}$ be the unit sphere of $\left(\mathbb{R}^{n},|\||\cdot|\|)\right.$;

## 6) Proof

Let us denote $\left\|\|x\|_{N}=\frac{1}{N} \sum_{j=1}^{N}\right\| \sum_{i=1}^{n} \varepsilon_{i j} x_{i} v_{i} \|$.
This is a random norm depending on the choice of $\varepsilon_{i j}$.
Let $S_{\| \| \cdot\| \|}^{n-1}=\left\{x \in \mathbb{R}^{n}:|\|x\||=1\right\}$ be the unit sphere of $\left(\mathbb{R}^{n},|\|\cdot \mid\|)\right.$;
We estimate the following probability

$$
\mathbb{P}\left\{\forall x \in S_{\| \| \cdot\| \|}^{n-1} c \delta^{2} \leq\| \| x \|_{N} \leq C\right\} \quad \geq
$$

## 7) Proof

$$
\begin{aligned}
& \mathbb{P}\left\{\forall x \in S_{\| \| \cdot\| \|}^{n-1} c \delta^{2} \leq\| \| x\| \|_{N} \leq C\right\} \\
& \quad \geq 1-\mathbb{P}\left\{\exists x \in S_{\| \| \cdot \|}^{n-1},\| \| x \|_{N}>C\right\} \\
& \quad-\mathbb{P}\left\{\left(\forall y \in S_{\| \| \cdot\| \|}^{n-1},\| \| y\| \|_{N} \leq C\right) \wedge\left(\exists x \in S_{\| \| \cdot\| \|}^{n-1},\| \| x \|_{N}<c \delta^{2}\right)\right\}
\end{aligned}
$$

## 7) Proof

$$
\begin{aligned}
& \mathbb{P}\left\{\forall x \in S_{\| \| \cdot\| \|}^{n-1} c \delta^{2} \leq\| \| x\| \|_{N} \leq C\right\} \\
& \quad \geq 1-\mathbb{P}\left\{\exists x \in S_{\| \| \cdot \|}^{n-1},\| \| x \|_{N}>C\right\} \\
& \quad-\mathbb{P}\left\{\left(\forall y \in S_{\| \| \cdot\| \|}^{n-1},\| \| y\| \|_{N} \leq C\right) \wedge\left(\exists x \in S_{\| \| \cdot\| \|}^{n-1},\| \| x \|_{N}<c \delta^{2}\right)\right\}
\end{aligned}
$$

## Remark

As we mentioned, the needed estimate for the upper bound follows from the argument in BLM.

## 8) Lower Bound

Denote $\sigma^{2}(x)=\sigma^{2}\left(x_{1} v_{1}, \cdots, x_{n} v_{n}\right)$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$, and we recall that

$$
\sigma^{2}\left(x_{1} v_{1}, \cdots, x_{n} v_{n}\right)=\sup \left\{\sum_{i=1}^{n} \varphi\left(x_{i} v_{i}\right)^{2} \mid \varphi \in E^{*},\|\varphi\|^{*} \leq 1\right\}
$$

## 8) Lower Bound

Denote $\sigma^{2}(x)=\sigma^{2}\left(x_{1} v_{1}, \cdots, x_{n} v_{n}\right)$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$, and we recall that

$$
\sigma^{2}\left(x_{1} v_{1}, \cdots, x_{n} v_{n}\right)=\sup \left\{\sum_{i=1}^{n} \varphi\left(x_{i} v_{i}\right)^{2} \mid \varphi \in E^{*},\|\varphi\|^{*} \leq 1\right\}
$$

We estimate the last term

$$
\mathbb{P}\left\{\left(\forall y \in S_{\| \| \cdot\| \|}^{n-1},\| \| y\| \|_{N} \leq C\right) \wedge\left(\exists x \in S_{\| \| \cdot\| \|}^{n-1},\| \| x \|_{N}<c \delta^{2}\right)\right\}
$$

## 9) Lower Bound

We decompose the sphere $S_{\|| | \cdot\|}^{n-1}=U \cup V$,

$$
\begin{aligned}
& U=\left\{x \in S_{\| \| \cdot \mid \|}^{n-1} \mid \sigma(x) \geq \sigma_{0}\right\}, \\
& V=\left\{x \in S_{\| \| \cdot \mid \|}^{n-1} \mid \sigma(x)<\sigma_{0}\right\},
\end{aligned}
$$

where $\sigma_{0}$ is a universal constant that we choose later.

Recall Rudelson's estimate for the scalar case, i.e. $\operatorname{dim} E=1$ :
Let $N=(1+\delta) n, 0<\delta<1$, and let

$$
\left\{\varepsilon_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq N\right\}
$$

be a collection of independent random signs. Then, with high probability, for any $y \in \mathbb{R}^{n}$

$$
\frac{1}{N} \sum_{j=1}^{N}\left|\sum_{i=1}^{n} \varepsilon_{i j} y_{i}\right| \geq c_{4} \delta^{2}|y|
$$

where $c_{4}>0$ a universal constant, and $|\cdot|$ is the standard Euclidean norm.

Therefore, for any $x \in \mathbb{R}^{n}$ and for any $\varphi \in E^{*}$ with $\|\varphi\|^{*} \leq 1$, we have

$$
\begin{align*}
\|\mid\| x \|_{N} & \geq \frac{1}{N} \sum_{j=1}^{N}\left|\varphi\left(\sum_{i=1}^{n} \varepsilon_{i j} x_{i} v_{i}\right)\right|=\frac{1}{N} \sum_{j=1}^{N}\left|\sum_{i=1}^{n} \varepsilon_{i j} \varphi\left(x_{i} v_{i}\right)\right| \\
& \geq c_{4} \delta^{2} \sqrt{\sum_{i=1}^{n} \varphi\left(x_{i} v_{i}\right)^{2}} . \tag{2}
\end{align*}
$$

Recall that $U=\left\{x \in S_{\| \| \cdot\| \|}^{n-1} \mid \sigma(x) \geq \sigma_{0}\right\}$.
Inequality (2) holds for every $\varphi \in E^{*}$ with $\|\varphi\|^{*} \leq 1$, and hence we get

$$
\begin{aligned}
\|x\|_{N} & \geq c_{4} \delta^{2} \sqrt{\sup \left\{\sum_{i=1}^{n} \varphi\left(x_{i} v_{i}\right)^{2} \mid \varphi \in E^{*},\|\varphi\|^{*} \leq 1\right\}} \\
& =c_{4} \delta^{2} \sigma(x) \\
& \geq c_{4} \delta^{2} \sigma_{0}
\end{aligned}
$$

## 13) $x \in V$

Now, let us consider the other case where

$$
x \in V=\left\{x \in S_{\| \| \cdot\| \|}^{n-1} \mid \sigma(x)<\sigma_{0}\right\} .
$$

Now, let us consider the other case where

$$
x \in V=\left\{x \in S_{\| \| \cdot\| \|}^{n-1} \mid \sigma(x)<\sigma_{0}\right\} .
$$

Let $\mathcal{N}_{\theta} \subset V$ be a $\theta$-net for $V$, it is known that $\left|\mathcal{N}_{\theta}\right| \leq(3 / \theta)^{n}$.
Note that for any $y \in \mathcal{N}_{\theta}$ we have $\sigma(y)<\sigma_{0}$.
Therefore by Talagrand's inequality

$$
\mathbb{P}\left\{\left\|\sum_{i=1}^{n} \varepsilon_{i} y_{i} v_{i}\right\|<1 / 2\right\} \leq C_{1} \exp \left(-\frac{c_{1}}{4 \sigma_{0}^{2}}\right)
$$

## 14) $x \in V$

And hence we get that

$$
\begin{aligned}
& \mathbb{P}\left\{\frac{1}{N} \sum_{j=1}^{N}\left\|\sum_{i=1}^{n} \varepsilon_{i j} y_{i} v_{i}\right\|<\frac{1}{4}\right\} \\
& =\mathbb{P}\left\{\sum_{j=1}^{N}\left\|\sum_{i=1}^{n} \varepsilon_{i j} y_{i} v_{i}\right\|<\frac{1}{2} \cdot \frac{N}{2}\right\} \leq 2^{N}\left\{C_{1} \exp \left(-\frac{c_{1}}{4 \sigma_{0}^{2}}\right)\right\}^{N / 2} .
\end{aligned}
$$

## 15) $x \in V$

Now, we choose $0<\theta<\frac{1}{8 C}$ and $\sigma_{0}>0$ such that the following inequality holds (where $C>0$ comes from the upper bound):

$$
2^{N}\left\{C_{1} \exp \left(-\frac{c_{1}}{4 \sigma_{0}^{2}}\right)\right\}^{N / 2} \cdot\left|\mathcal{N}_{\theta}\right| \leq 2^{-N}
$$

## 15) $x \in V$

Now, we choose $0<\theta<\frac{1}{8 C}$ and $\sigma_{0}>0$ such that the following inequality holds (where $C>0$ comes from the upper bound):

$$
2^{N}\left\{C_{1} \exp \left(-\frac{c_{1}}{4 \sigma_{0}^{2}}\right)\right\}^{N / 2} \cdot\left|\mathcal{N}_{\theta}\right| \leq 2^{-N}
$$

Then with high probability we have for any $y \in \mathcal{N}_{\theta}$ that $\left\|\|y\|_{N} \geq 1 / 4\right.$.

## 15) $x \in V$

Now, we choose $0<\theta<\frac{1}{8 C}$ and $\sigma_{0}>0$ such that the following inequality holds (where $C>0$ comes from the upper bound):

$$
2^{N}\left\{C_{1} \exp \left(-\frac{c_{1}}{4 \sigma_{0}^{2}}\right)\right\}^{N / 2} \cdot\left|\mathcal{N}_{\theta}\right| \leq 2^{-N}
$$

Then with high probability we have for any $y \in \mathcal{N}_{\theta}$ that $\left\|\|y\|_{N} \geq 1 / 4\right.$.

Using the upper bound, we infer:

$$
\begin{aligned}
\left\|\|x\|_{N}\right. & \geq\| \| y\left\|_{N}-\mid\right\| x-y \|_{N} \\
& \geq 1 / 4-C / 8 C=1 / 4-1 / 8=1 / 8, \quad x \in V
\end{aligned}
$$

which concludes the proof.

## 16) Definitions

Let $(E,\|\cdot\|)$ be a normed space, and let $v_{1}, \cdots, v_{n} \in E \backslash\{0\}$.
Define a norm $\left|\left|\left|\left|\left|\mid\right.\right.\right.\right.\right.$ on $\mathbb{R}^{n}$ :

$$
\||x|\|=\int_{\mathbb{R}^{n}}\left\|\sum_{i=1}^{n} a_{i} x_{i} v_{i}\right\| d \mu(a)
$$

where $a_{i}$ is the $i^{\text {th }}$ coordinate of a vector $a$ and $\mu$ is a log-concave probability measure $\mu$ on $\mathbb{R}^{n}$.

## 17) Theorem

Let $N=(1+\delta) n, \delta>0$, and let

$$
\left\{a(1), \cdots, a(N) \in R^{n}\right\}
$$

be a set of $N$ independent random vectors, distributed with respect to a log-concave probability measure $\mu$ on $\mathbb{R}^{n}$.

## 17) Theorem

Let $N=(1+\delta) n, \delta>0$, and let

$$
\left\{a(1), \cdots, a(N) \in R^{n}\right\}
$$

be a set of $N$ independent random vectors, distributed with respect to a log-concave probability measure $\mu$ on $\mathbb{R}^{n}$.

Then with high probability for any $x \in \mathbb{R}^{n}$

$$
c(\delta)\|\|x\|\| \leq \frac{1}{N} \sum_{j=1}^{N}\left\|\sum_{i=1}^{n} a(j)_{i} x_{i} v_{i}\right\| \leq C\| \| x\| \|
$$

where $c(\delta)>0$ is a constant depending only on $\delta$.

