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1) Definitions

Let (E,| - ||) be a normed space, and let vi,---,v, € E\ {0}.
Define a norm ||| - ||| on R™:
Xl =E Y exvill , (1)
i=1

where the expectation is over the choice of n independent random
signs €1, -+ ,€p.
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where the expectation is over the choice of n independent random
signs €1, -+ ,€p.
Remark

This is an unconditional norm; that is,

10O x2s - xa) [ = [[[(xal, el - Bl



2) Motivation

We ask whether it is possible to average O(n) of the terms, rather
than the 2" terms in (1) ?

In order to obtain a norm that is isomorphic to ||| - ||| and is in
particular (isomorphically) unconditional.



3) Theorem (Sodin & F.)

Let N=(1+0)n, 0 >0, and let
{ej|1<i<n1<j<N}

be a collection of independent random signs. Then

N n
1 o
P{ Vx € R" c52||\x||\SNZHZEUX,-V,chH\xH\ >1—e N
j=1 i=1

where ¢’, ¢, C > 0 are universal constants.
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4) Some remarks

» This theorem extends a result due to Bourgain, Lindenstrauss
and Milman, who considered the case of large § > C > 1.

» Their argument yields the upper bound for the full range of §,
so the innovation is in the lower bound for small § > 0.

» With the stated dependence on §, the corresponding result for
the scalar case, i.e. dim E = 1, was proved by Rudelson,
improving previous bounds on ¢(d) by Kashin,

Johnson - Schechtman,
Litvak - Pajor - Rudelson - Tomczak-Jaegermann - Vershynin
and Artstein-Avidan - Friedland - Milman - Sodin.

» This scalar case is one of the two main ingredients of our
proof, the second one being Talagrand's concentration
inequality.



5) Theorem (Talagrand)

Let wy,- -, w, € E be vectors in a normed space (E, || -||), and let
€1, - ,Ep be independent random signs. Then for any t > 0

IP’{‘H > eiwil —E[D eiwil]
i=1 i=1

4272
zt}gcle at’/e”,

where ¢y, C; > 0 are universal constants, and

= P _sup{zw e B ol <1}.



6) Proof

Let us denote [||x|||ny = & oIy | Sy eixivill-
This is a random norm depending on the choice of ¢;;.

Let S = {x € R : [|[x]l| = 1} be the unit sphere of (R", ||| |});



6) Proof

Let us denote [||x|||ny = & oIy | Sy eixivill-

This is a random norm depending on the choice of ¢;;.

Let 5|’|’|f||1| = {x € R" : |||x]|| = 1} be the unit sphere of (R", ||| -]||);
We estimate the following probability

P {vx € Sl ca? < [|IxllIw < c} >



7) Proof

P {vx e Siih co < |lIxllln < €}

> 1—]P{EIX e S xllv > C}

~P{(vy e Sl lvllin < €) A (3x e STl < e6?) } -



7) Proof

P {vx e Siih co < |lIxllln < €}

>1 —P{HX S S|r|7|_‘|1|7 |HX|HN > C}

~P{(vy e Sl lvllin < €) A (3x e STl < e6?) } -

Remark
As we mentioned, the needed estimate for the upper bound follows
from the argument in BLM.



8) Lower Bound

Denote 02(x) = 0?(xyv1, -+ ,XnVp) for x = (xg,--- ,xn) € R,

and we recall that

02(X1V17"' XnVn) SUP{ZQP(XIVI SOGE* lloll* <1} .



8) Lower Bound

Denote 02(x) = 0?(xyv1, -+ ,XnVp) for x = (xg,--- ,xn) € R,

and we recall that

n
02(X1v1, 1+ XpVp) = sup {Z cp(x,-v,-)2 | p€E" |o|f < 1} )

i=1

We estimate the last term

P{(vy e SiiLllliv < €) A (3x € S lIIxllIn < %) } .



9) Lower Bound

We decompose the sphere SIH = =UuvV,
U={xespi|ot) = oo} .
v={xesfii|oto <o} .

where og is a universal constant that we choose later.



10) x e U

Recall Rudelson’s estimate for the scalar case, i.e. dim E = 1:
Let N=(1+0)n, 0<d <1, and let
{ej|1<i<nl1<j<N}

be a collection of independent random signs. Then, with high
probability, for any y € R”

n

N
Z > el = el

where ¢4 > 0 a universal constant, and | - | is the standard
Euclidean norm.



11) xe U

Therefore, for any x € R” and for any ¢ € E* with ||¢]|* <1, we
have

n

oD eixivi)
i=1

n
Z&J'SO(X:'W)

i=1

LN
:NZ

j=1

1 N
=SS
j=1

2)




12) x e U

Recall that U = {x e st ’a(x) > 00}.

Inequality (2) holds for every ¢ € E* with |¢||* <1, and hence we
get

n
x> cao? sup{Zso(x;v;)Z o€ B gl < 1}

i=1
= ¢46%0(x)

> C4(52(70 .



13) xe V

Now, let us consider the other case where

xeV= {X € S‘Tﬂﬁ o(x) < O'g}.



13) xe V

Now, let us consider the other case where

xeV={xesfl|o0) <oo}.

Let Ny C V be a 6-net for V, it is known that |Ny| < (3/6)".
Note that for any y € Ny we have o(y) < oo.

Therefore by Talagrand's inequality

{I!Zs,y,v,” < 1/2} < Grexp(— %)
90

i=1



14) xe V

And hence we get that

n

‘ ZEU)/,V,H <

N
NZ
N n N/2
1 N N C]_
= syivil < == 3 < - )
{; et <52 <o fon (-2}

i=1 0



15) x e V

Now, we choose 0 < 6 < % and og > 0 such that the following
inequality holds (where C > 0 comes from the upper bound):

N €1 Nr2 N
Moo (-2 )b Nl <2
0
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15) x e V

Now, we choose 0 < 6 < % and og > 0 such that the following
inequality holds (where C > 0 comes from the upper bound):

N €1 Nr2 N
Moo (-2 )b Nl <2
0

Then with high probability we have for any y € Ny that
y[lln = 1/4.

Using the upper bound, we infer:

IxHn = Myl = [lx = yllin
>1/4—C/8C=1/4—1/8=1/8, xcV,

which concludes the proof.



16) Definitions

Let (E,|| - ||) be a normed space, and let vq,--- ,v, € E\ {0}.

Define a norm ||| - ||| on R™:

n
Il = /R IS amvilldu(a) |
=1

where a; is the i*" coordinate of a vector a and y is a log-concave
probability measure p on R".



17) Theorem

Let N=(1+0)n, 0 >0, and let
{a(l)v’ o 7a(N) S Rn}

be a set of N independent random vectors, distributed with respect
to a log-concave probability measure p on R”.



17) Theorem

Let N=(1+0)n, 0 >0, and let
{a(l)v’ o 7a(N) S Rn}

be a set of N independent random vectors, distributed with respect
to a log-concave probability measure p on R”.

Then with high probability for any x € R"

I < 5 ZHZ Dixivill < ClIIx[Il;

where ¢(4) > 0 is a constant depending only on 4.



