Roots of Ehrhart polynomials

joint work with
Ch. Bey \& J.M. Wills + A Schürmann \& J.M. Wills

Samos
June 2007

Notation

- Let $\mathbb{Z}^{n}=\left\{z \in \mathbb{R}^{n}: z_{i} \in \mathbb{Z}\right\}$ be the integral lattice.

Notation

- Let $\mathbb{Z}^{n}=\left\{z \in \mathbb{R}^{n}: z_{i} \in \mathbb{Z}\right\}$ be the integral lattice.
- For $S \subset \mathbb{R}^{n}$, let

$$
G(S)=\#\left(S \cap \mathbb{Z}^{n}\right)
$$

be the lattice point enumerator of S.

Notation

- Let $\mathbb{Z}^{n}=\left\{z \in \mathbb{R}^{n}: z_{i} \in \mathbb{Z}\right\}$ be the integral lattice.
- For $S \subset \mathbb{R}^{n}$, let

$$
G(S)=\#\left(S \cap \mathbb{Z}^{n}\right)
$$

be the lattice point enumerator of S.

- Let \mathcal{P}^{n} be the set of lattice polytopes $P \subset \mathbb{R}^{n}$ with int $P \neq \emptyset$.

The Ehrhart Polynomial

- Ehrhart, 1967. Let $P \in \mathcal{P}^{n}$ and $k \in \mathbb{N}$. Then

$$
\mathrm{G}(k P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) k^{i}
$$

i.e., $\mathrm{G}(k P)$ is a polynomial in k of degree n.

The Ehrhart Polynomial

- Ehrhart, 1967. Let $P \in \mathcal{P}^{n}$ and $k \in \mathbb{N}$. Then

$$
\mathrm{G}(k P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) k^{i}
$$

i.e., $\mathrm{G}(\mathrm{k} P)$ is a polynomial in k of degree n.

- $\mathrm{G}_{0}(P)=1$

The Ehrhart Polynomial

- Ehrhart, 1967. Let $P \in \mathcal{P}^{n}$ and $k \in \mathbb{N}$. Then

$$
\mathrm{G}(k P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) k^{i},
$$

i.e., $\mathrm{G}(k P)$ is a polynomial in k of degree n.

- $\mathrm{G}_{0}(P)=1$
- $\mathrm{G}_{n}(P)=\operatorname{vol}(P)$

The Ehrhart Polynomial

- Ehrhart, 1967. Let $P \in \mathcal{P}^{n}$ and $k \in \mathbb{N}$. Then

$$
\mathrm{G}(k P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) k^{i},
$$

i.e., $\mathrm{G}(k P)$ is a polynomial in k of degree n.

- $\mathrm{G}_{0}(P)=1$
- $\mathrm{G}_{n}(P)=\operatorname{vol}(P)$
- $\left.\mathrm{G}_{n-1}(P)=\frac{1}{2} \sum_{F \text { facet }} \frac{\operatorname{vol}_{n-1}(F)}{\operatorname{det}(a f f} F \cap \mathbb{Z}^{n}\right)$
- There are formulas/identities for the coefficients via generating functions or via the Todd differential operator...
Barvinok, 1992,1993, 1994; Brion, 1988, 1992; Brion and Vergne 1997; Cappell and Shaneson 1994; Chen, 2002; Diaz and Robins, 1999; Kantor and Khovanskii 1993; Morelli 1993; Pommersheim 1993; 1996; 1997; Pukhlikov and Khovanskii 1992;...
- Stanley, 1980; Betke, Gritzmann, 1986. Let Z be a lattice zonotope. Then

$$
\mathrm{G}_{i}(Z)=\sum_{F i \text {-face }} \frac{\operatorname{vol}_{i}(F)}{\operatorname{det}\left(\operatorname{aff} F \cap \mathbb{Z}^{n}\right)} \gamma(Z, F)
$$

where $\gamma(Z, F)$ is the exterior angle of Z at F.

- Stanley, 1980; Betke, Gritzmann, 1986. Let Z be a lattice zonotope. Then

$$
\mathrm{G}_{i}(Z)=\sum_{F i \text {-face }} \frac{\operatorname{vol}_{i}(F)}{\operatorname{det}\left(\operatorname{aff} F \cap \mathbb{Z}^{n}\right)} \gamma(Z, F)
$$

where $\gamma(Z, F)$ is the exterior angle of Z at F.

- Liu, 2005. Let $C(n, m)$ be a cyclic n-polytope with m integral vertices on the moment curve $t \rightarrow\left(t, t^{2}, \ldots, t^{n}\right)$. Then

$$
\mathrm{G}_{i}(C(n, m))=\operatorname{vol}_{i}\left(C(n, m) \mid \mathbb{R}^{i}\right)
$$

- In general the G_{i} 's,$i \in\{1, \ldots, n-2\}$, might be negative:

Reeve simplices. For $n=3$ and $I \geq 1$, let

$$
R(I)=\operatorname{conv}\left\{0, e_{1}, e_{2},(1,1, l)^{\top}\right\}
$$

Then $\mathrm{G}(R(I))=4, \mathrm{G}_{3}(R(I))=I / 6, \mathrm{G}_{2}(R(I))=1$, $\mathrm{G}_{0}(R(I))=1$ and

$$
\mathrm{G}_{1}(R(I))=\frac{12-l}{6}
$$

- Ehrhart's Reciprocity Law, 1967.

$$
\mathrm{G}(\operatorname{int}(k P))=(-1)^{n} \sum_{i=0}^{n} \mathrm{G}_{i}(P)(-k)^{i} .
$$

- Ehrhart's Reciprocity Law, 1967.

$$
\mathrm{G}(\operatorname{int}(k P))=(-1)^{n} \sum_{i=0}^{n} \mathrm{G}_{i}(P)(-k)^{i}
$$

- Betke, Kneser, 1985. Every additive and unimodular invariant functional on \mathcal{P}^{n} is a linear combination of $\mathrm{G}_{i}(), 0 \leq i \leq n$.
- For $P \in \mathcal{P}^{n}$ and $s \in \mathbb{C}$, let

$$
\mathrm{G}(s, P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) s^{i}=\prod_{i=1}^{n}\left(1+\frac{s}{\gamma_{i}(P)}\right)
$$

$-\gamma_{i}(P), 1 \leq i \leq n$, are the roots of the Ehrhart polynomial $\mathrm{G}(s, P)$.

- For $P \in \mathcal{P}^{n}$ and $s \in \mathbb{C}$, let

$$
\mathrm{G}(s, P)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) s^{i}=\prod_{i=1}^{n}\left(1+\frac{s}{\gamma_{i}(P)}\right)
$$

$-\gamma_{i}(P), 1 \leq i \leq n$, are the roots of the Ehrhart polynomial $\mathrm{G}(s, P)$.

$$
\mathrm{G}_{n}(P)=\prod_{i=1}^{n} \frac{1}{\gamma_{i}}, \quad \mathrm{G}_{n-1}(P)=\sum_{j=1}^{n} \prod_{i \neq j} \frac{1}{\gamma_{i}}, \ldots
$$

- Let $T_{n}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$ be the standard simplex. Then

$$
\mathrm{G}\left(s, T_{n}\right)=\binom{s+n}{n}
$$

and so $-\gamma_{i}\left(T_{n}\right)=-i, 1 \leq i \leq n$.

- Let $T_{n}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$ be the standard simplex. Then

$$
\mathrm{G}\left(s, T_{n}\right)=\binom{s+n}{n}
$$

and so $-\gamma_{i}\left(T_{n}\right)=-i, 1 \leq i \leq n$.

- Or, since int $\left(k T_{n}\right) \cap \mathbb{Z}^{n}=\emptyset$ for $k=1, \ldots, n$

it is

$$
\begin{aligned}
0=\mathrm{G}\left(\operatorname{int}\left(k T_{n}\right)\right) & =(-1)^{n} \sum_{i=0}^{n} \mathrm{G}_{i}\left(T_{n}\right)(-k)^{i} \\
& =(-1)^{n} \mathrm{G}\left(-k, T_{n}\right)
\end{aligned}
$$

Thus $-\gamma_{i}\left(T_{n}\right)=-i, 1 \leq i \leq n$.

- Let $C_{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1,1 \leq i \leq n\right\}$ be the cube.

Then $\mathrm{G}\left(s, C_{n}\right)=(2 s+1)^{n}$, and so

$$
-\gamma_{i}\left(C_{n}\right)=-\frac{1}{2}, 1 \leq i \leq n .
$$

- Let $C_{n}^{\star}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right| \leq 1\right\}$ be the regular crosspolytope.

Then

$$
\mathrm{G}\left(s, C_{n}^{\star}\right)=\sum_{i=0}^{n}\binom{n}{i}\binom{s+n-i}{n}
$$

and

$$
-\gamma_{i}\left(C_{n}^{\star}\right)=?
$$

- Beck, De Loera, Develin, Pfeifle, Stanley, 2001. First systematic study of the roots of Ehrhart polynomials.
- Beck, De Loera, Develin, Pfeifle, Stanley, 2001. First systematic study of the roots of Ehrhart polynomials.
- Roots of 2-dimensional lattice polygons with real part $\geq-2 / 3$.

- Theorem. The roots of the Ehrhart polynomials of 3-dimensional lattice polytopes are contained in

$$
[-3,-1] \cup\left\{a+\mathrm{i} b:-1 \leq a<1, a^{2}+b^{2} \leq 3\right\}
$$

and the bounds on a and $a^{2}+b^{2}$ are tight.

- Theorem. The roots of the Ehrhart polynomials of 3-dimensional lattice polytopes are contained in

$$
[-3,-1] \cup\left\{a+\mathrm{i} b:-1 \leq a<1, a^{2}+b^{2} \leq 3\right\}
$$

and the bounds on a and $a^{2}+b^{2}$ are tight.

- Roots of 100000 random lattice simplices in \mathbb{R}^{3} (taken from the paper of Beck, De Loera, Develin, Pfeifle, Stanley, 2001).

- Beck et al., 2001
- The real roots of Ehrhart polynomials are contained in [$-n, n / 2$] and also the upper bound is best possible (up to a constant).
- Beck et al., 2001
- The real roots of Ehrhart polynomials are contained in [$-n, n / 2$] and also the upper bound is best possible (up to a constant).
- Let s be a root of an Ehrhart polynomial. Then

$$
|s| \leq(n+1)!+1 .
$$

- Beck et al., 2001
- The real roots of Ehrhart polynomials are contained in $[-n, n / 2]$ and also the upper bound is best possible (up to a constant).
- Let s be a root of an Ehrhart polynomial. Then

$$
|s| \leq(n+1)!+1
$$

- Braun, 2006

$$
\left|s+\frac{1}{2}\right| \leq n\left(n-\frac{1}{2}\right) .
$$

- For $I \in \mathbb{N}$, let $S_{n}(I)=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-I \sum_{i=1}^{n} e_{i}\right\}$.

- For $I \in \mathbb{N}$, let $S_{n}(I)=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-I \sum_{i=1}^{n} e_{i}\right\}$.

- $\mathrm{G}\left(\operatorname{int} S_{n}(I)\right)=I$ and $\operatorname{vol}\left(S_{n}(I)\right)=(n I+1) / n!$.
- For $I \in \mathbb{N}$, let $S_{n}(I)=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-I \sum_{i=1}^{n} e_{i}\right\}$.

- $\mathrm{G}\left(\operatorname{int} S_{n}(I)\right)=I$ and $\operatorname{vol}\left(S_{n}(I)\right)=(n /+1) / n!$.
- Theorem. Let $P \in \mathcal{P}^{n}$. Then

$$
\operatorname{vol}(P) \geq \frac{n \mathrm{G}(\operatorname{int} P)+1}{n!},
$$

and the bound is best possible.

- Proposition. For $\mathrm{G}(\operatorname{int} P)>1$ lattice polytopes of minimal volume are not necessarily unimodular equivalent, but they have the same Ehrhart polynomial.
- Proposition. For $\mathrm{G}(\operatorname{int} P)>1$ lattice polytopes of minimal volume are not necessarily unimodular equivalent, but they have the same Ehrhart polynomial.
- Theorem. All roots of the polynomial $\mathrm{G}\left(s, S_{n}(1)\right)$ have real part $-1 / 2$. If $-\gamma_{n}$ is a root of $\mathrm{G}\left(s, S_{n}(1)\right)$ with maximal norm, then

$$
\left|-\gamma_{n}+\frac{1}{2}\right|=\frac{n(n+2)}{2 \pi}+O(1)
$$

as n tends to infinity.

$$
\mathrm{G}\left(s, S_{n}(1)\right)=\sum_{i=0}^{n}\binom{s+n-i}{n}=\binom{s+n+1}{n+1}-\binom{s}{n+1}
$$

Hence, if s_{0} is a root then

$$
s_{0}\left(s_{0}-1\right) \cdot \ldots \cdot\left(s_{0}-n\right)=\left(s_{0}+n+1\right)\left(s_{0}+n\right) \cdot \ldots \cdot\left(s_{0}+1\right) .
$$

$$
\mathrm{G}\left(s, S_{n}(1)\right)=\sum_{i=0}^{n}\binom{s+n-i}{n}=\binom{s+n+1}{n+1}-\binom{s}{n+1}
$$

Hence, if s_{0} is a root then

$$
s_{0}\left(s_{0}-1\right) \cdot \ldots \cdot\left(s_{0}-n\right)=\left(s_{0}+n+1\right)\left(s_{0}+n\right) \cdot \ldots \cdot\left(s_{0}+1\right)
$$

$$
\mathrm{G}\left(s, S_{n}(1)\right)=\sum_{i=0}^{n}\binom{s+n-i}{n}=\binom{s+n+1}{n+1}-\binom{s}{n+1} .
$$

Hence, if s_{0} is a root then

$$
s_{0}\left(s_{0}-1\right) \cdot \ldots \cdot\left(s_{0}-n\right)=\left(s_{0}+n+1\right)\left(s_{0}+n\right) \cdot \ldots \cdot\left(s_{0}+1\right) .
$$

- Remark. For $n=2,3$ the polynomial $\mathrm{G}\left(s, S_{n}(1)\right)$ has roots of maximal norm among all Ehrhart polynomials of polytopes with interior points.
- Blichfeldt, 1921; van der Corput, 1935. Let $P \in \mathcal{P}^{n}$ be 0 -symmetric. Then

$$
\operatorname{vol}(P) \leq 2^{n-1}(\mathrm{G}(\operatorname{int} P)+1)
$$

- Blichfeldt, 1921; van der Corput, 1935. Let $P \in \mathcal{P}^{n}$ be 0 -symmetric. Then

$$
\begin{gathered}
\operatorname{vol}(P) \leq 2^{n-1}(\mathrm{G}(\operatorname{int} P)+1) \\
\cdots \\
\vdots
\end{gathered}
$$

- Problem. Let $P \in \mathcal{P}$ be 0 -symmetric. Then

$$
\operatorname{vol}(P) \geq \frac{2^{n-1}}{n!}(\mathrm{G}(\operatorname{int} P)+1)
$$

Equality, for instance for

$$
C_{n}^{\star}(2 I-1)=\operatorname{conv}\left\{ \pm / e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}, \quad I \geq 1
$$

with 2/-1 interior points.

- Kirschenhofer, Pethoe, Tichy, 1999; Bump, Choi, Kurlberg, Vaaler, 2000; Rodriguez-Villegas, 2002.

$$
\Re\left(-\gamma_{i}\left(C_{n}^{\star}\right)\right)=-\frac{1}{2}, \quad 1 \leq i \leq n
$$

- Kirschenhofer, Pethoe, Tichy, 1999; Bump, Choi, Kurlberg, Vaaler, 2000; Rodriguez-Villegas, 2002.

$$
\Re\left(-\gamma_{i}\left(C_{n}^{\star}\right)\right)=-\frac{1}{2}, \quad 1 \leq i \leq n
$$

- Proposition. Let $P \in \mathcal{P}^{n}$. If all roots of $\mathrm{G}(s, P)$ have real part $-1 / 2$ then, up to an unimodular translation, P is a reflexive polytope of volume $\leq 2^{n}$.
- Kirschenhofer, Pethoe, Tichy, 1999; Bump, Choi, Kurlberg, Vaaler, 2000; Rodriguez-Villegas, 2002.

$$
\Re\left(-\gamma_{i}\left(C_{n}^{\star}\right)\right)=-\frac{1}{2}, \quad 1 \leq i \leq n .
$$

- Proposition. Let $P \in \mathcal{P}^{n}$. If all roots of $\mathrm{G}(s, P)$ have real part $-1 / 2$ then, up to an unimodular translation, P is a reflexive polytope of volume $\leq 2^{n}$.
- $P \in \mathcal{P}^{n}(0 \in \operatorname{int} P)$ is called reflexive if

$$
P^{\star}=\left\{y \in \mathbb{R}^{n}: x y \leq 1, \text { for all } x \in P\right\} \in \mathcal{P}^{n}
$$

i.e., if the polar polytope P^{\star} is again a lattice polytope.

- Kirschenhofer, Pethoe, Tichy, 1999; Bump, Choi, Kurlberg, Vaaler, 2000; Rodriguez-Villegas, 2002.

$$
\Re\left(-\gamma_{i}\left(C_{n}^{\star}\right)\right)=-\frac{1}{2}, \quad 1 \leq i \leq n .
$$

- Proposition. Let $P \in \mathcal{P}^{n}$. If all roots of $\mathrm{G}(s, P)$ have real part $-1 / 2$ then, up to an unimodular translation, P is a reflexive polytope of volume $\leq 2^{n}$.
- $P \in \mathcal{P}^{n}(0 \in \operatorname{int} P)$ is called reflexive if

$$
P^{\star}=\left\{y \in \mathbb{R}^{n}: x y \leq 1, \text { for all } x \in P\right\} \in \mathcal{P}^{n}
$$

i.e., if the polar polytope P^{\star} is again a lattice polytope.

- $\Leftrightarrow \operatorname{vol}(P)=\frac{2}{n} \mathrm{G}_{n-1}(P)$.
- Let $K \subset \mathbb{R}^{n}$ be 0 -symmetric convex body.

$$
\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}
$$

is called the i-th successive minimum, $1 \leq i \leq n$.

- Let $K \subset \mathbb{R}^{n}$ be 0 -symmetric convex body.

$$
\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}
$$

is called the i-th successive minimum, $1 \leq i \leq n$.

- Let $K \subset \mathbb{R}^{n}$ be 0-symmetric convex body.

$$
\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}
$$

is called the i-th successive minimum, $1 \leq i \leq n$.

- Minkowski's 1st Theorem, 1896.

$$
\operatorname{vol}(K) \leq\left(\frac{2}{\lambda_{1}(K)}\right)^{n}
$$

- Minkowski's 1st Theorem, 1896.

$$
\operatorname{vol}(K) \leq\left(\frac{2}{\lambda_{1}(K)}\right)^{n}
$$

- Thus

$$
\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq \frac{\lambda_{1}(P)}{2}
$$

for a 0 -symmetric lattice polytope.

- Minkowski's 1st Theorem, 1896.

$$
\operatorname{vol}(K) \leq\left(\frac{2}{\lambda_{1}(K)}\right)^{n}
$$

- Thus

$$
\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq \frac{\lambda_{1}(P)}{2}
$$

for a 0 -symmetric lattice polytope.

- Minkowski's 2nd Theorem, 1896.

$$
\operatorname{vol}(K) \leq \prod_{i=1}^{n} \frac{2}{\lambda_{i}(K)}
$$

- Minkowski's 1st Theorem, 1896.

$$
\operatorname{vol}(K) \leq\left(\frac{2}{\lambda_{1}(K)}\right)^{n}
$$

- Thus

$$
\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq \frac{\lambda_{1}(P)}{2}
$$

for a 0 -symmetric lattice polytope.

- Minkowski's 2nd Theorem, 1896.

$$
\operatorname{vol}(K) \leq \prod_{i=1}^{n} \frac{2}{\lambda_{i}(K)}
$$

- Thus

$$
\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq\left(\prod_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)^{1 / n}
$$

for a 0 -symmetric lattice polytope.

- Minkowski's 1st Theorem, 1896.

$$
\operatorname{vol}(K) \leq\left(\frac{2}{\lambda_{1}(K)}\right)^{n}
$$

- Thus

$$
\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq \frac{\lambda_{1}(P)}{2}
$$

for a 0 -symmetric lattice polytope.

- Minkowski's 2nd Theorem, 1896.

$$
\frac{1}{n!} \prod_{i=1}^{n} \frac{2}{\lambda_{i}(K)} \leq \operatorname{vol}(K) \leq \prod_{i=1}^{n} \frac{2}{\lambda_{i}(K)}
$$

- Thus

$$
\left(n!\prod_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)^{1 / n} \geq\left(\prod_{i=1}^{n} \gamma_{i}(P)\right)^{1 / n} \geq\left(\prod_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)^{1 / n}
$$

for a 0 -symmetric lattice polytope.

- Theorem.

$$
\frac{1}{n}\left(\sum_{i=1}^{n} \gamma_{i}(P)\right) \leq \frac{1}{n}\left(\sum_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)
$$

and the bound is best possible, e.g., for the cube C_{n} and for the crosspolytope C_{n}^{\star}.

- Theorem.

$$
\frac{1}{n}\left(\sum_{i=1}^{n} \gamma_{i}(P)\right) \leq \frac{1}{n}\left(\sum_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)
$$

and the bound is best possible, e.g., for the cube C_{n} and for the crosspolytope C_{n}^{\star}.

- There is no lower bound.
- Theorem.

$$
\begin{aligned}
& \frac{1}{n}\left(\sum_{i=1}^{n} \gamma_{i}(P)\right) \leq \frac{1}{n}\left(\sum_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right) \\
& \left(\Leftrightarrow \frac{\mathrm{G}_{n-1}(P)}{\operatorname{vol}(P)} \leq \sum_{i=1}^{n} \frac{\lambda_{i}(P)}{2}\right)
\end{aligned}
$$

and the bound is best possible, e.g., for the cube C_{n} and for the crosspolytope C_{n}^{\star}.

- There is no lower bound.
- Lemma. Let P be a 0 -symmetric polytope with facets $F_{i}=P \cap\left\{a_{i} x=b_{i}\right\},\left|a_{i}\right|=1$. Let L be an k-dimensional linear subspace and let $I_{L}=\left\{i: a_{i} \in L\right\}$. Then

$$
\operatorname{vol}(P) \geq \frac{1}{k} \sum_{i \in I_{L}} \operatorname{vol}_{n-1}\left(F_{i}\right) b_{i}
$$

- Lemma. Let P be a 0 -symmetric polytope with facets $F_{i}=P \cap\left\{a_{i} x=b_{i}\right\},\left|a_{i}\right|=1$. Let L be an k-dimensional linear subspace and let $I_{L}=\left\{i: a_{i} \in L\right\}$. Then

$$
\operatorname{vol}(P) \geq \frac{1}{k} \sum_{i \in l_{L}} \operatorname{vol}_{n-1}\left(F_{i}\right) b_{i}
$$

- Problem (Betke, H., Wills, 1993.)

$$
\mathrm{G}(K) \leq \prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)}+1\right)
$$

- Problem (Betke, H., Wills, 1993.)

$$
\mathrm{G}(K) \leq \prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)}+1\right)
$$

- would imply Minkowski's 2nd theorem.
- Problem (Betke, H., Wills, 1993.)

$$
\mathrm{G}(K) \leq \prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)}+1\right)
$$

- would imply Minkowski's 2nd theorem.
- $\mathrm{G}(K) \leq\left(\frac{2}{\lambda_{1}(K)}+1\right)^{n}$.
- Problem (Betke, H., Wills, 1993.)

$$
\mathrm{G}(K) \leq \prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)}+1\right)
$$

- would imply Minkowski's 2nd theorem.
- $\mathrm{G}(K) \leq\left(\frac{2}{\lambda_{1}(K)}+1\right)^{n}$.
- it suffices to prove the inequality for lattice polytopes.
- Problem (Betke, H., Wills, 1993.)

$$
\mathrm{G}(K) \leq \prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)}+1\right)
$$

- would imply Minkowski's 2 nd theorem.
- $\mathrm{G}(K) \leq\left(\frac{2}{\lambda_{1}(K)}+1\right)^{n}$.
- it suffices to prove the inequality for lattice polytopes.
- For $s \in \mathbb{C}$ let

$$
\mathrm{L}(K, s)=\prod_{i=1}^{n}\left(\frac{2}{\lambda_{i}(K)} s+1\right)=\sum_{i=0}^{n} \mathrm{~L}_{i}(K) s^{i}
$$

- So we want to show for 0 -symmetric lattice polytopes P

$$
\mathrm{G}(P, 1)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) \leq \mathrm{L}(P, 1)=\sum_{i=0}^{n} \mathrm{~L}_{i}(P)
$$

- So we want to show for 0 -symmetric lattice polytopes P

$$
\mathrm{G}(P, 1)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) \leq \mathrm{L}(P, 1)=\sum_{i=0}^{n} \mathrm{~L}_{i}(P)
$$

- Minkowski's 2nd theorem is equivalent to

$$
\mathrm{G}_{n}(P) \leq \mathrm{L}_{n}(P)
$$

- So we want to show for 0 -symmetric lattice polytopes P

$$
\mathrm{G}(P, 1)=\sum_{i=0}^{n} \mathrm{G}_{i}(P) \leq \mathrm{L}(P, 1)=\sum_{i=0}^{n} \mathrm{~L}_{i}(P)
$$

- Minkowski's 2nd theorem is equivalent to

$$
\mathrm{G}_{n}(P) \leq \mathrm{L}_{n}(P)
$$

- Corollary. The inequality for the arithmetic mean implies

$$
\mathrm{G}_{n-1}(P) \leq \mathrm{L}_{n-1}(P)
$$

