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Central Limit Theorem for Convex Bodies

I Let X = (X1, . . . ,Xn) be a random vector, uniformly
distributed in a convex body K ⊂ Rn.

The dimension n is assumed very large.

I In some situations (e.g., K is the cube or the Euclidean ball)
the random variable

X1 + . . .+ Xn√
n

is approximately gaussian.

I The gaussian approximation actually holds for all convex
bodies, once we select an appropriate coordinate system.
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Central Limit Theorem for Convex Bodies

I Normalize the random vector X = (X1, . . . ,Xn): Assume that

EXi = 0, EXiXj = δi ,j .

We say that X is normalized or isotropic.

I General Theorem: Suppose X is an isotropic random vector,
uniformly distributed in some convex body in Rn. Then with
respect to an appropriate (or “generic”) orthogonal basis,

I The random variables X1, . . . ,Xn are approximately
gaussian.

I The random variables X1, . . . ,Xn are approximately
independent in `-tuples (` ≤ nc).



Quantitative Information

Remarks on the above theorem:

I “approximately gaussian” means, say, total variation distance:

sup
A⊂R

∣∣∣∣P{Xi ∈ A} − 1√
2π

∫
A

e−t2/2dt

∣∣∣∣ ≤ C

nc
.

I “approximately independent in `-tuples” means that the joint
distribution is close to the product of the 1D distributions.

I “generic orthogonal basis” means that a random basis
{v1, . . . , vn} ∈ O(n) works, with probability > 1− exp(−

√
n).

This central limit theorem for convex bodies was explicitly conjectured by
Anttila-Ball-Perissinaki ’03 and Brehm-Voigt ’00.
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Thin Spherical Shell

This central limit theorem for convex bodies follows from a
“spherical thin shell” estimate:

P
(∣∣∣∣ |X |√n

− 1

∣∣∣∣ > ε

)
< ε

for ε << 1.

I The equivalence of a “thin shell estimate”
and “central limit theorems” is classical,
due to Sudakov ’78, Diaconis-Freedman ’84,
Anttila-Ball-Perissinaki ’03 and others.

I Its proof has two ingredients: The concentration of
measure phenomenon, and Maxwell’s principle,
stating that marginals of the Euclidean sphere
are approximately gaussian.



Thin Spherical Shell

Thus, to prove our main theorem, it suffices to show that

E
(
|X |√

n
− 1

)2

<< 1.

I First proof: An upper bound of C
log n << 1. This results in

weaker, logarithmic estimates in place of Cn−c .

I Another proof, by Fleury, Guédon and Paouris, yielded similar
logarithmic bounds.

I Yet another proof gives a bound

E
(
|X |√

n
− 1

)2

≤ C

nc

with, say, c ≈ 1/5.



Sketch of Proof

A density function in Rn is log-concave if it takes the form e−H

with H : Rn → (−∞,∞], a convex function.

I When X is uniformly distributed in a convex set, its density is
obviously log-concave.

I When X ,Y are independent with log-concave densities, then
also X + Y and ProjE (X ) have log-concave densities
(Prékopa-Leindler inequality).

Observation: Suppose X is an isotropic random vector, whose
density f is log-concave and radial. Then,

E
(
|X |√

n
− 1

)2

≤ C

n
.



Radial, log-concave densities

Explanation of the observation: The density of the real-valued
random variable |X | is

t 7→ tn−1f (t)

with f log-concave.

Such densities are necessarily very peaked:

“ tn−1f (t) ≤ tn−1
0 f (t0) exp

(
−Cn(t − t0)2

)
”

where t0 ≈
√

n is the point where t 7→ tn−1f (t) attains its
maximum.

It follows that

E
(
|X |√

n
− 1

)2

≤ C

n
.

 



Sketch of Proof

Problem: The density of our random vector X is assumed to be
log-concave, but not at all radial.

We would like to “transform” our random vector somehow, and
then to apply the result for radial & log-concave distributions.

Two simple observations:
I It is enough to prove that

E
(
|X + Y |√

2n
− 1

)2

≤ 1

nc

where Y is an independent, isotropic vector (say, gaussian).

I Suppose E is a random k-dimensional subspace in Rn,
independent of everything. Then, with high probability,

|ProjE (X + Y )| ≈
√

k

n
|X + Y |.



Sketch of Proof

Therefore, in order to show that |X | is concentrated, it suffices to
prove that the real-valued random variable

|ProjE (X + Y )|

is concentrated, where Y is an independent gaussian, and E an
independent random subspace.

Claim: For most choices of E , the random vector ProjE (X + Y ) is
log-concave and approximately radial.

I If the claim is true, and the approximation is good enough
(e.g., total-variation), then we may conclude by applying the
result on radial & log-concave densities.



Lipschitz Functions in High Dimension

The density of ProjE (X + Y ) is always log-concave, by
Prékopa-Leindler.

I How can we show that ProjE (X + Y ) is approximately radial?

Denote by fE : E → [0,∞) the density of ProjE (X + Y ).
We hope that log fE (x) is Lipschitz in E ∈ Gn,k and x ∈ E .

In other words, fix E0 ∈ Gn,k and x0 ∈ E0, and consider the map

M(U) = log fU(E0)(U(x0)) (U ∈ SO(n)).

We need to show that M is Lipschitz. Then we could use
concentration inequalities.



Concentration of Measure

Some analysis with log-concave densities shows that under mild
assumptions, for U1,U2 ∈ SO(n),

|M(U1)−M(U2)| ≤ Ck2|U1 − U2|HS ,

the Hilbert-Schmidt norm. (The power of k should be improved.)

We make an essential use of the convolution with the gaussian
(i.e., X + Y in place of X ). Otherwise, M would not even be finite.

Theorem: [Gromov-Milman ’83]
Select random, independent, U1,U2 ∈ SO(n). Then,

P {|M(U1)−M(U2)| ≥ ε} ≤ exp
(
−cnε2/k4

)
.



Tying up loose ends

If k << n1/4, then for a random U ∈ SO(n),

log fU(E0)(U(x1)) ≈ log fU(E0)(U(x2))

if x1, x2 ∈ E0 with |x1| = |x2|.

Consequently, fE is typically approximately radial pointwise, and
hence also in total-variation.

This finishes the proof (up to details). We obtain

E
(
|X |√

n
− 1

)2

≈ Var

(
|X |√

n

)
≤ C

nc
.

Optimal exponents are still unknown in general.



Unconditional Convex Bodies

Consider an isotropic random vector X , with a log-concave density
f , such that

f (x1, . . . , xn) = f (|x1|, . . . , |xn|) (x1, . . . , xn) ∈ Rn,

i.e., unconditional densities. Then we can prove

E
(
|X |√

n
− 1

)2

≤ C

n
,

the optimal estimate. The methods are completely different.

I For simplicity, assume that X is uniform in a convex body
K ⊂ Rn. Let ρ : Rn → R be a convex function with

K = {x ∈ Rn; ρ(x) ≤ 1}.



Hörmander’s Formula

Proposition: [“Hörmander’s Formula”]
For any smooth function u : K → R with ∂nu = 0 on ∂K ,∫

K
(4u)2 =

∫
K
|∇2u|2HS +

∫
∂K
∇2ρ(∇u,∇u).

I Since K is convex, then:∫
K

(4u)2 ≥
∫

K
|∇2u|2HS =

n∑
i=1

∫
K
|∇∂ iu|2.

I We dualize, and get that for any function f : K → R,∫
K

f = 0 ⇒
∫

K
f 2 ≤

n∑
i=1

‖∂ i f ‖2H−1(K),

where ‖v‖H−1(K) = sup
{∫

K uv ;
∫
K |∇u|2 ≤ 1

}
.



Transportation of Measure

For a given function f , how can we compute

‖f ‖H−1(K) = sup

{∫
K

fu;

∫
K
|∇u|2 ≤ 1

}
?

I The H−1(K )-norm of f makes sense only when
∫
K f = 0.

Denote by λ the restriction of the Lebesgue measure to K .

Proposition: [Brenier ’87, Villani ’02] When
∫
K f = 0,

‖f ‖H−1(K) ≤ lim inf
ε→0+

W2 (λ, (1 + εf )λ)

ε
,

where W2 is the L2-Wasserstein distance between the measures.

(Actually, up to some technicalities, it’s an equality)



Transportation of Measure

I Recall that for two measures µ and ν on Rn,

W 2
2 (µ, ν) = inf

γ

∫
Rn×Rn

|x − y |2dγ(x , y)

where the infimum runs over all couplings γ of µ and ν: That
is, measures on Rn × Rn whose corresponding marginals are µ
and ν.

I To summarize: For any function f : K → R with
∫
K f = 0,∫

K
f 2 ≤

n∑
i=1

‖∂ i f ‖2H−1(K) ≤
n∑

i=1

lim inf
ε→0+

W 2
2

(
λ, (1 + ε∂ i f )λ

)
ε2

.



Unconditional Convex Bodies

I Consider the function f (x) = |x |2 − n. Then,∫
K

(
|x |2 − n

)2
dx ≤

n∑
i=1

lim inf
ε→0+

W 2
2 (λ, (1 + 2εxi )λ)

ε2
.

I When K is unconditional, direct analysis shows that

1

Voln(K )
lim inf
ε→0+

W 2
2 (λ, (1 + 2εxi )λ)

ε2
≤ 8

3
EX 4

i ≤ 16,

where X is the isotropic random vector, uniform in K . Hence,

E
(
|X |2 − n

)2 ≤ 16n =⇒ E
(
|X |√

n
− 1

)2

≤ C

n
.



The End

Thank you!


