Contracting Clusters of Critical Percolation

Itai Benjamini, Ori Gurel-Gurevich and Gady Kozma (speaker)

Phenomena in High Dimensions, Samos 2007

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results

Definition of p_{c}

Generalities

Euclidean grids
Random walk in component. $\psi(p)$ is obviously an increasing function of

Definition of p_{c}

Generalities

Euclidean grids

- Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore $\psi(p)$ is either 0 or 1 .

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.
- Let $\psi(p)$ be the probability that G_{p} has an infinite component. $\psi(p)$ is obviously an increasing function of p.
- Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore $\psi(p)$ is either 0 or 1 .
- Therefore there exists some p_{c}, depending on G, such that $\psi(p)=0$ for $p<p_{c}$ and $\psi(p)=1$ for $p>p_{c}$.

Percolation on $\mathbb{Z}^{2}, p=0.45$

Generalities

Euclidean grids Random walk in andom
environment
Previous models
Our model
The results
Proof - $\log \log$

Tools

Diagrammatic bounds

Percolation on $\mathbb{Z}^{2}, p=0.45$

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$

Tools

Diagrammatic bounds

Percolation on $\mathbb{Z}^{2}, p=0.55$

Generalities

Euclidean grids Random walk in random
nvironment
Previous models
Our model
The results
Proof - log log
Tools
Diagrammatic bounds

Percolation on $\mathbb{Z}^{2}, p=0.55$

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$

Tools

Diagrammatic bounds

Simple examples

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - log log
Tools
Diagrammatic
bounds

Simple examples

Generalities

Euclidean grids
Random walk in random
environment

- for $G=\mathbb{Z}, p_{c}=1$ and $\psi\left(p_{c}\right)=1$ (exercise).
- for G a d-regular tree, $p_{c}=\frac{1}{d-1}$ and $\psi\left(p_{c}\right)=0$. This is equivalent to a Galton-Watson branching process.

Simple examples

Generalities

Euclidean grids

- The complete graph on n vertices exhibits similar behvior (even though it is finite) with " $p_{c}=\frac{1}{n}$ " and " $\psi\left(p_{c}\right)=0$ ", Erdős \& Rényi (1959).
- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the supercritical case there exists one infinite cluster (Burton \& Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every $p>p_{c}$ there exists some λ such that

$$
\mathbb{P}(n<|\mathcal{C}|<\infty) \leq e^{-\lambda n^{(d-1) / d}}
$$

Grimmett \& Marstrand (1990), Kesten \& Zhang (1990).

- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the supercritical case there exists one infinite cluster (Burton \& Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every $p>p_{c}$ there exists some λ such that

$$
\mathbb{P}(n<|\mathcal{C}|<\infty) \leq e^{-\lambda n^{(d-1) / d}}
$$

Grimmett \& Marstrand (1990), Kesten \& Zhang (1990).

- In most senses, the supercritical cluster "looks like a stretched-out grid".

$p=p_{c}$

Some conjectures coming from the physics literature:
Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.

Percolation

Generalities
Euclidean grids
Random walk ir
random
environment
Previous models
Our model
The results
Proof - log log
Tools
Diagrammatic

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.

Percolation

Generalities

Euclidean grids
Random walk ir
random
environment
Previous models
Our model
The results

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2 .^{*} \ln d=6$ there are logarithmic corrections.

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2 .{ }^{*} \ln d=6$ there are logarithmic corrections. The conjecture for the value $\frac{91}{5}$ is related to a conjecture that the distribution of large finite clusters is conformally invariant.

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

Generalities

Euclidean grids
random
environment
Previous models
Our model
The results

Tools
Diagrammatic

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

Generalities

Euclidean grids
random
environment
Previous models
Our model
The results

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=$ 2: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=2$: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).
- $d>6$: "a, b, c, d" Hara \& Slade (1990).

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=2$: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).
- $d>6$: "a, b, c, d" Hara \& Slade (1990).
- $d=3,4,5,6$: not even a.

Random walk on a supercritical cluster

- Take some $p>p_{c}$ and let \mathcal{C} be the infinite cluster, conditioned on $0 \in \mathcal{C}$. Examine random walk on \mathcal{C} starting from 0 .

Percolation

Generalities

Euclidean grids
Random walk in random

Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic

Random walk on a supercritical cluster

- Take some $p>p_{c}$ and let \mathcal{C} be the infinite cluster, conditioned on $0 \in \mathcal{C}$. Examine random walk on \mathcal{C} starting from 0.
- Properties that hold for almost any \mathcal{C} are called "quenched". Properties that hold after averaging on the environment are called "annealed".

Random walk on a supercritical cluster

- Take some $p>p_{c}$ and let \mathcal{C} be the infinite cluster, conditioned on $0 \in \mathcal{C}$. Examine random walk on \mathcal{C} starting from 0.
- Properties that hold for almost any \mathcal{C} are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein \& Wick (1989).

Random walk on a supercritical cluster

- Take some $p>p_{c}$ and let \mathcal{C} be the infinite cluster, conditioned on $0 \in \mathcal{C}$. Examine random walk on \mathcal{C} starting from 0.
- Properties that hold for almost any \mathcal{C} are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein \& Wick (1989).
- So does the quenched, Sidoravicius \& Sznitman (2004), Barlow (2004), Berger \& Biskup (2006), Mathieu \& Piatnitski (2006).

Random walk on a supercritical cluster

- Take some $p>p_{c}$ and let \mathcal{C} be the infinite cluster, conditioned on $0 \in \mathcal{C}$. Examine random walk on \mathcal{C} starting from 0.
- Properties that hold for almost any \mathcal{C} are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein \& Wick (1989).
- So does the quenched, Sidoravicius \& Sznitman (2004), Barlow (2004), Berger \& Biskup (2006), Mathieu \& Piatnitski (2006).
- Results of the type " \mathcal{C} is like a grid".

Random walk on the incipient infinite cluster

- Take critical percolation, and condition on the cluster of the origin \mathcal{C} to satisfy $|\mathcal{C}|>n$. Take $n \rightarrow \infty$. It turns out that the distributions of \mathcal{C} converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt \& Járai (2004). This limit is called the incipient infinite cluster.

Random walk on the incipient infinite cluster

- Take critical percolation, and condition on the cluster of the origin \mathcal{C} to satisfy $|\mathcal{C}|>n$. Take $n \rightarrow \infty$. It turns out that the distributions of \mathcal{C} converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt \& Járai (2004). This limit is called the incipient infinite cluster.
- Random walk on the IIC is (like on all fractals), subdiffusive, that is

$$
\mathbb{E}(R(n)) \leq C n^{1 / 2-\epsilon}
$$

Kesten (1986), Barlow, Járai, Kumagai \& Slade (2007).

Random walk on the incipient infinite cluster

- Take critical percolation, and condition on the cluster of the origin \mathcal{C} to satisfy $|\mathcal{C}|>n$. Take $n \rightarrow \infty$. It turns out that the distributions of \mathcal{C} converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt \& Járai (2004). This limit is called the incipient infinite cluster.
- Random walk on the IIC is (like on all fractals), subdiffusive, that is

$$
\mathbb{E}(R(n)) \leq C n^{1 / 2-\epsilon}
$$

Kesten (1986), Barlow, Járai, Kumagai \& Slade (2007).

- In $d>6$, the exact exponent is $\frac{1}{3}$.

No edges are removed, edges are only colored in two colors.

Percolation

Generalities

Euclidean grids
Random walk in
random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic
bounds

Take a black cluster and replace it with a single vertex.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic
bounds

Connect it to all edges which used to connect to the cluster.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic bounds

Note that this can create loops and multiple edges.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic bounds

Repeat for all clusters.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic bounds

Which p ?

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_{p}.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic
bounds

Which p ?

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_{p}.
- If $p>p_{c}$ then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_{p}.

Generalities
 Euclidean grids

Random walk ir

random
environment
Previous models
Our model
The results

Which p ?

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_{p}.
- If $p>p_{c}$ then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_{p}.
- If $p<p_{c}$ the contracted clusters are small and do not affect the random walk on CCP_{p} significantly. This case would be amenable to the same techniques used to analyze random walk on the supercritical cluster.

Which p ?

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_{p}.
- If $p>p_{c}$ then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_{p}.
- If $p<p_{c}$ the contracted clusters are small and do not affect the random walk on CCP_{p} significantly. This case would be amenable to the same techniques used to analyze random walk on the supercritical cluster.
- Hence we will focus on $p=p_{c}$, in which case we will call the graph CCCP.

Geometry

We have results for both $d=2$ and $d>6$, but in this lecture we will focus on $d>6$.

Geometry

We have results for both $d=2$ and $d>6$, but in this lecture we will focus on $d>6$.

- For any two $x, y \in \mathbb{Z}^{d}$, let $\mathrm{d}(\mathrm{x}, \mathrm{y})$ denote the graph distance between x and y, i.e. the length of the shortest path in our graph. Then

$$
d(x, y) \approx \log \log |x-y|
$$

For comparison, on a supercritical cluster, $d(x, y) \approx|x-y|$, while on the IIC $d(x, y) \approx|x-y|^{2}$.

Geometry

We have results for both $d=2$ and $d>6$, but in this lecture we will focus on $d>6$.

- For any two $x, y \in \mathbb{Z}^{d}$, let $\mathrm{d}(\mathrm{x}, \mathrm{y})$ denote the graph distance between x and y, i.e. the length of the shortest path in our graph. Then

$$
d(x, y) \approx \log \log |x-y|
$$

For comparison, on a supercritical cluster, $d(x, y) \approx|x-y|$, while on the IIC $d(x, y) \approx|x-y|^{2}$.

- The graph satisfies the same isoperimetric inequality as \mathbb{Z}^{d}, i.e. for any finite $A \subset G$

$$
|\partial A| \geq c|A|^{(d-1) / d}
$$

where $|\partial A|$ is the number of edges going out of A, and $|A|=\sum_{v \in A} \operatorname{deg} v$ i.e. the total number of edges going out of vertices of A. $\frac{d-1}{d}$ is sharp.

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

Percolation

Generalities
Euclidean grids
Random walk in
random
nvironment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic
bounds

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

- The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

$$
\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}
$$

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

- The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

$$
\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}
$$

五

- The spectral gap of the Laplacian on a ball of radius R is between $\frac{c}{R^{2}}$ and $\frac{C \log R}{R^{2}}$.

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

- The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

$$
\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}
$$

五 $\boldsymbol{\wedge}$

- The spectral gap of the Laplacian on a ball of radius R is between $\frac{c}{R^{2}}$ and $\frac{C \log R}{R^{2}}$. This precision is not enough to determine whether CCCP is Liouville or not!

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

- The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

$$
\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}
$$

五

- The spectral gap of the Laplacian on a ball of radius R is between $\frac{c}{R^{2}}$ and $\frac{C \log R}{R^{2}}$. This precision is not enough to determine whether CCCP is Liouville or not!
- When $d>12$ this spectral gap is concentrated near its average.

Random walks

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$

- The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

$$
\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}
$$

五

- The spectral gap of the Laplacian on a ball of radius R is between $\frac{c}{R^{2}}$ and $\frac{C \log R}{R^{2}}$. This precision is not enough to determine whether CCCP is Liouville or not!
- When $d>12$ this spectral gap is concentrated near its average. Uses the concentration property of Lipschitz functions.

Summary of results

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$
$\mathbb{E}(\|R(n)\|) \approx \sqrt{n \log n}$	$\mathbb{E}(\|R(n)\|) \approx \sqrt{n}$	$\mathbb{E}(\|R(n)\|) \approx n^{1 / 3}$
$\frac{c}{R^{2}} \leq \lambda_{1} \leq \frac{C \log R}{R^{2}}$	$\lambda_{1} \approx \frac{c}{R^{2}}$	$\lambda_{1} \approx \frac{C}{R^{4}}$
$? ? ?$	Liouville	Liouville

Previous models

Our model

The results

Summary of results

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$
$\mathbb{E}(\|R(n)\|) \approx \sqrt{n \log n}$	$\mathbb{E}(\|R(n)\|) \approx \sqrt{n}$	$\mathbb{E}(\|R(n)\|) \approx n^{1 / 3}$
$\frac{c}{R^{2}} \leq \lambda_{1} \leq \frac{C \log R}{R^{2}}$	$\lambda_{\mathbf{1}} \approx \frac{c}{R^{2}}$	$\lambda_{1} \approx \frac{C}{R^{4}}$
$? ? ?$	Liouville	Liouville

- The supercritical cluster behaves like the usual grid.

Summary of results

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$
$\mathbb{E}(\|R(n)\|) \approx \sqrt{n \log n}$	$\mathbb{E}(\|R(n)\|) \approx \sqrt{n}$	$\mathbb{E}(\|R(n)\|) \approx n^{1 / 3}$
$\frac{c}{R^{2}} \leq \lambda_{1} \leq \frac{C \log R}{R^{2}}$	$\lambda_{\mathbf{1}} \approx \frac{c}{R^{2}}$	$\lambda_{1} \approx \frac{C}{R^{4}}$
$? ? ?$	Liouville	Liouville

- The supercritical cluster behaves like the usual grid.
- The incipient infinite cluster behaves like a critical branching tree, embedded into \mathbb{Z}^{d} randomly (this is known as "integrated superbrownian excursion").

Summary of results

CCCP	Supercritical cluster	IIC
$d(x, y) \approx \log \log \|x-y\|$	$d(x, y) \approx\|x-y\|$	$d(x, y) \approx\|x-y\|^{2}$
$\|\partial A\| \geq\|A\|^{(d-1) / d}$	$\|\partial A\| \geq\|A\|^{(d-1) / d} *$	$\|\partial A\| \geq 1$
$\mathbb{E}(\|R(n)\|) \approx \sqrt{n \log n}$	$\mathbb{E}(\|R(n)\|) \approx \sqrt{n}$	$\mathbb{E}(\|R(n)\|) \approx n^{1 / 3}$
$\frac{c}{R^{2}} \leq \lambda_{1} \leq \frac{C \log R}{R^{2}}$	$\lambda_{1} \approx \frac{c}{R^{2}}$	$\lambda_{1} \approx \frac{C}{R^{4}}$
$? ? ?$	Liouville	Liouville

- The supercritical cluster behaves like the usual grid.
- The incipient infinite cluster behaves like a critical branching tree, embedded into \mathbb{Z}^{d} randomly (this is known as "integrated superbrownian excursion").
- CCCP behaves in strange and unexpected ways. We don't have in mind any simple model that would reproduce all data above.

We are now going to sketch some of the ideas that went into the proof of $d(x, y) \approx \log \log |x-y|$.

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971).

Percolation

Generalities

Euclidean grids
Random walk in

random

environment
Previous models
Our model
The results
Proof - log log
Tools
Diagrammatic

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971). For example,

$$
\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y) \mathbb{P}(y \leftrightarrow z)
$$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

Percolation
 Generalities
 Euclidean grids
 Random walk in random
 Previous models

Our model
The results

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971). For example,

$$
\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y) \mathbb{P}(y \leftrightarrow z)
$$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

- Any two events that happen on distinct vertice sets are negatively correlated, van den Berg \& Kesten (1985).

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971). For example,

$$
\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y) \mathbb{P}(y \leftrightarrow z)
$$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

- Any two events that happen on distinct vertice sets are negatively correlated, van den Berg \& Kesten (1985). For example, $\mathbb{P}(\exists$ two disjoint paths between x and $y) \leq \mathbb{P}(x \leftrightarrow y)^{2}$

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971). For example,

$$
\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y) \mathbb{P}(y \leftrightarrow z)
$$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

- Any two events that happen on distinct vertice sets are negatively correlated, van den Berg \& Kesten (1985). For example, $\mathbb{P}(\exists$ two disjoint paths between x and $y) \leq \mathbb{P}(x \leftrightarrow y)^{2}$

These two are general and hold in any graph

Percolation tools

- Any two increasing events are positively correlated, Fortuin, Kasteleyn \& Ginibre (1971). For example,

$$
\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y) \mathbb{P}(y \leftrightarrow z)
$$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

- Any two events that happen on distinct vertice sets are negatively correlated, van den Berg \& Kesten (1985). For example, $\mathbb{P}(\exists$ two disjoint paths between x and $y) \leq \mathbb{P}(x \leftrightarrow y)^{2}$

These two are general and hold in any graph

- For $d>6, \mathbb{P}(x \leftrightarrow y) \approx|x-y|^{2-d}$. Hara, van der Hofstad \& Slade (2003).

First moment

- Let $x, y \in \mathbb{Z}^{d}$, and assume for simplicity that $d=8$. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, $\left\lfloor\frac{1}{2} d\right\rfloor-2$ moves)?

First moment

- Let $x, y \in \mathbb{Z}^{d}$, and assume for simplicity that $d=8$. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, $\left\lfloor\frac{1}{2} d\right\rfloor-2$ moves)?
- This is equivalent to the existence of an edge (v, w) such that $x \leftrightarrow v, w \leftrightarrow y$.

Percolation
 Generalities
 Euclidean grids

Random walk in
random
environment
Previous models
Our model
The results

First moment

- Let $x, y \in \mathbb{Z}^{d}$, and assume for simplicity that $d=8$. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, $\left\lfloor\frac{1}{2} d\right\rfloor-2$ moves)?
- This is equivalent to the existence of an edge (v, w) such that $x \leftrightarrow v, w \leftrightarrow y$. Denote by L the number of such edges.

Percolation
 Euclidean grids
 Random walk in
 random
 Previous models

Our model
The results

First moment

- Let $x, y \in \mathbb{Z}^{d}$, and assume for simplicity that $d=8$. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, $\left\lfloor\frac{1}{2} d\right\rfloor-2$ moves)?
- This is equivalent to the existence of an edge (v, w) such that $x \leftrightarrow v, w \leftrightarrow y$. Denote by L the number of such edges.
- We can estimate $\mathbb{E} L$ using the FKG inequality:

$$
\begin{aligned}
\mathbb{E} L & =\sum_{(v, w)} \mathbb{P}(x \leftrightarrow v, w \leftrightarrow y) \\
& \geq \sum_{(v, w)} \mathbb{P}(x \leftrightarrow v) \cdot \mathbb{P}(w \leftrightarrow y)
\end{aligned}
$$

First moment

- Let $x, y \in \mathbb{Z}^{d}$, and assume for simplicity that $d=8$. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, $\left\lfloor\frac{1}{2} d\right\rfloor-2$ moves)?
- This is equivalent to the existence of an edge (v, w) such that $x \leftrightarrow v, w \leftrightarrow y$. Denote by L the number of such edges.
- We can estimate $\mathbb{E} L$ using the FKG inequality:

$$
\begin{aligned}
\mathbb{E} L & =\sum_{(v, w)} \mathbb{P}(x \leftrightarrow v, w \leftrightarrow y) \\
& \geq \sum_{(v, w)} \mathbb{P}(x \leftrightarrow v) \cdot \mathbb{P}(w \leftrightarrow y) \\
& \geq c|x-y|^{8} \cdot\left(|x-y|^{-6}\right)^{2}=c|x-y|^{-4}
\end{aligned}
$$

Second moment

- Let now x_{1}, x_{2}, y_{1} and $y_{2} \in \mathbb{Z}^{d}$, and assume they are all $\approx r$ apart. Let L_{i} be, as before, the number of edges $\left(v_{i}, w_{i}\right)$ such that $x_{i} \leftrightarrow v_{i}$ and $w_{i} \leftrightarrow y_{i}$. We want to upper-bound $\mathbb{E} L_{1} L_{2}-\mathbb{E} L_{1} \mathbb{E} L_{2}$.

Second moment

- Let now x_{1}, x_{2}, y_{1} and $y_{2} \in \mathbb{Z}^{d}$, and assume they are all $\approx r$ apart. Let L_{i} be, as before, the number of edges $\left(v_{i}, w_{i}\right)$ such that $x_{i} \leftrightarrow v_{i}$ and $w_{i} \leftrightarrow y_{i}$. We want to upper-bound $\mathbb{E} L_{1} L_{2}-\mathbb{E} L_{1} \mathbb{E} L_{2}$.
- L_{i} are increasing, so by the FKG inequality,

$$
\mathbb{E} L_{1} L_{2} \geq \mathbb{E} L_{1} \mathbb{E} L_{2}
$$

Second moment

- Let now x_{1}, x_{2}, y_{1} and $y_{2} \in \mathbb{Z}^{d}$, and assume they are all $\approx r$ apart. Let L_{i} be, as before, the number of edges $\left(v_{i}, w_{i}\right)$ such that $x_{i} \leftrightarrow v_{i}$ and $w_{i} \leftrightarrow y_{i}$. We want to upper-bound $\mathbb{E} L_{1} L_{2}-\mathbb{E} L_{1} \mathbb{E} L_{2}$.
- L_{i} are increasing, so by the FKG inequality,

$$
\mathbb{E} L_{1} L_{2} \geq \mathbb{E} L_{1} \mathbb{E} L_{2}
$$

- By the BK inequality,

$$
\begin{aligned}
\mathbb{E} L_{1} L_{2}= & \mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { occur disjointly }+ \\
& +\mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { do not occur disjointly } \leq \\
\leq & \mathbb{E} L_{1} \mathbb{E} L_{2}+\mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { do not occur disjointly. }
\end{aligned}
$$

Second moment

- Let now x_{1}, x_{2}, y_{1} and $y_{2} \in \mathbb{Z}^{d}$, and assume they are all $\approx r$ apart. Let L_{i} be, as before, the number of edges $\left(v_{i}, w_{i}\right)$ such that $x_{i} \leftrightarrow v_{i}$ and $w_{i} \leftrightarrow y_{i}$. We want to upper-bound $\mathbb{E} L_{1} L_{2}-\mathbb{E} L_{1} \mathbb{E} L_{2}$.
- L_{i} are increasing, so by the FKG inequality,

$$
\mathbb{E} L_{1} L_{2} \geq \mathbb{E} L_{1} \mathbb{E} L_{2}
$$

- By the BK inequality,

$$
\begin{aligned}
\mathbb{E} L_{1} L_{2}= & \mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { occur disjointly }+ \\
& +\mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { do not occur disjointly } \leq \\
\leq & \mathbb{E} L_{1} \mathbb{E} L_{2}+\mathbb{E} L_{1} L_{2} \mathbf{1}_{L_{1}} \text { and } L_{2} \text { do not occur disjointly. }
\end{aligned}
$$

- To estimate the last summand, assume for simplicity that it is the connections $w_{1} \leftrightarrow y_{1}$ and $w_{2} \leftrightarrow y_{2}$ that occur non-disjointly.

Second moment II

Examine the event that $w_{1} \leftrightarrow y_{1}$ and $w_{2} \leftrightarrow y_{2}$ occur non-disjointly. This must be as in the following picture:

Second moment II

Examine the event that $w_{1} \leftrightarrow y_{1}$ and $w_{2} \leftrightarrow y_{2}$ occur non-disjointly. This must be as in the following picture:

Formally: there must exist a and b such that $w_{i} \leftrightarrow a, a \leftrightarrow b$, $b \leftrightarrow y_{i}$ all disjointly.

Second moment II

Examine the event that $w_{1} \leftrightarrow y_{1}$ and $w_{2} \leftrightarrow y_{2}$ occur non-disjointly. This must be as in the following picture:

Formally: there must exist a and b such that $w_{i} \leftrightarrow a, a \leftrightarrow b$, $b \leftrightarrow y_{i}$ all disjointly. We use the BK inequality again and get that for each tupple ($\left.v_{1}, v_{2}, w_{1}, w_{2}, a, b\right)$ the probability is $\leq\left(\left|x_{1}-v_{1}\right| \cdot \cdots \cdot\left|b-y_{2}\right|\right)^{-6}$.

Second moment II

Examine the event that $w_{1} \leftrightarrow y_{1}$ and $w_{2} \leftrightarrow y_{2}$ occur non-disjointly. This must be as in the following picture:

Formally: there must exist a and b such that $w_{i} \leftrightarrow a, a \leftrightarrow b$, $b \leftrightarrow y_{i}$ all disjointly. We use the BK inequality again and get that for each tupple ($v_{1}, v_{2}, w_{1}, w_{2}, a, b$) the probability is $\leq\left(\left|x_{1}-v_{1}\right| \cdot \cdots \cdot\left|b-y_{2}\right|\right)^{-6}$. It is now simple to sum over all tupples and get that the total is $\leq\left(r^{8}\right)^{4} \cdot\left(r^{-6}\right)^{7}=r^{-10}$.

Second moment III

- Recapitulating, we got that $\mathbb{E} L \approx r^{-4}$ while $\operatorname{cov}\left(L_{1}, L_{2}\right) \approx r^{-10}$.

Percolation

Generalities

Euclidean grids
Random walk in random
environment
Previous models
Our model
The results
Proof - $\log \log$
Tools
Diagrammatic bounds

Second moment III

- Recapitulating, we got that $\mathbb{E} L \approx r^{-4}$ while $\operatorname{cov}\left(L_{1}, L_{2}\right) \approx r^{-10}$.
- Therefore if we have two large clusters at scale r, each has size $\approx r^{4}$ and therefore the expected number of connections is $\approx\left(r^{4}\right)^{2} \cdot r^{-4}=r^{4}$ while the variance is only $\approx\left(r^{4}\right)^{4} \cdot r^{-10}=r^{6}$. We get that they are connected with probability $>1-\mathrm{Cr}^{-2}$.

Second moment III

- Recapitulating, we got that $\mathbb{E} L \approx r^{-4}$ while $\operatorname{cov}\left(L_{1}, L_{2}\right) \approx r^{-10}$.
- Therefore if we have two large clusters at scale r, each has size $\approx r^{4}$ and therefore the expected number of connections is $\approx\left(r^{4}\right)^{2} \cdot r^{-4}=r^{4}$ while the variance is only $\approx\left(r^{4}\right)^{4} \cdot r^{-10}=r^{6}$. We get that they are connected with probability $>1-\mathrm{cr}^{-2}$.
- Similar diagrammatic bounds show the whole log log result. Roughly we show that at scale r there are clusters which go as far as r^{2}, so you can move between scales with a bounded number of jumps. We omit all further details.

Percolation

Generalities
Euclidean grids
Random walk in random
environment
Previous models
Our model
Thank you
The results
Proof - log log
Tools
Diagrammatic bounds

