Contracting Clusters of Critical Percolation

Itai Benjamini, Ori Gurel-Gurevich and Gady Kozma (speaker)

Phenomena in High Dimensions, Samos 2007

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Previous model Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

► Let G be any infinite graph. Let 0 ≤ p ≤ 1. Consider the random graph G_p that one gets by keeping every edge of G with probability p, independently for each edge.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Previous model Our model The results

Proof — log log

Tools Diagrammatic bounds

- ▶ Let G be any infinite graph. Let 0 ≤ p ≤ 1. Consider the random graph G_p that one gets by keeping every edge of G with probability p, independently for each edge.
- Let ψ(p) be the probability that G_p has an infinite component. ψ(p) is obviously an increasing function of p.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- ► Let G be any infinite graph. Let 0 ≤ p ≤ 1. Consider the random graph G_p that one gets by keeping every edge of G with probability p, independently for each edge.
- Let ψ(p) be the probability that G_p has an infinite component. ψ(p) is obviously an increasing function of p.
- ► Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore ψ(p) is either 0 or 1.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

- ▶ Let G be any infinite graph. Let 0 ≤ p ≤ 1. Consider the random graph G_p that one gets by keeping every edge of G with probability p, independently for each edge.
- Let ψ(p) be the probability that G_p has an infinite component. ψ(p) is obviously an increasing function of p.
- ► Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore ψ(p) is either 0 or 1.
- ► Therefore there exists some p_c, depending on G, such that ψ(p) = 0 for p < p_c and ψ(p) = 1 for p > p_c.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Our model The results

Proof — log log

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Previous model Our model The results

Proof - log log

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

Tools Diagrammatic bounds

▲ロト ▲母ト ▲ヨト ▲ヨト 三回 のなの

Simple examples

• for $G = \mathbb{Z}$, $p_c = 1$ and $\psi(p_c) = 1$ (exercise).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Simple examples

• for $G = \mathbb{Z}$, $p_c = 1$ and $\psi(p_c) = 1$ (exercise).

▶ for G a d-regular tree, $p_c = \frac{1}{d-1}$ and $\psi(p_c) = 0$. This is equivalent to a Galton-Watson branching process.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Simple examples

• for $G = \mathbb{Z}$, $p_c = 1$ and $\psi(p_c) = 1$ (exercise).

▶ for G a d-regular tree, $p_c = \frac{1}{d-1}$ and $\psi(p_c) = 0$. This is equivalent to a Galton-Watson branching process.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

► The complete graph on *n* vertices exhibits similar behvior (even though it is finite) with "*p_c* = ¹/_n" and "ψ(*p_c*) = 0", Erdős & Rényi (1959).

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

$p \neq p_c$

► In the subcritical case, component sizes decay exponentially in the volume, i.e. for every p < p_c there exist some λ > 0 such that

$$\mathbb{P}(|\mathcal{C}| > n) \leq e^{-\lambda n}$$

where C is the cluster containing the origin. Menshikov (1986), Aizenman & Barsky (1987).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Proof — log log

$p \neq p_c$

► In the subcritical case, component sizes decay exponentially in the volume, i.e. for every p < p_c there exist some λ > 0 such that

 $\mathbb{P}(|\mathcal{C}| > n) \le e^{-\lambda n}$

where C is the cluster containing the origin. Menshikov (1986), Aizenman & Barsky (1987).

 In the supercritical case there exists one infinite cluster (Burton & Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every p > p_c there exists some λ such that

$$\mathbb{P}(n < |\mathcal{C}| < \infty) \le e^{-\lambda n^{(d-1)/d}}$$

Grimmett & Marstrand (1990), Kesten & Zhang (1990).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

$p \neq p_c$

► In the subcritical case, component sizes decay exponentially in the volume, i.e. for every p < p_c there exist some λ > 0 such that

 $\mathbb{P}(|\mathcal{C}| > n) \le e^{-\lambda n}$

where C is the cluster containing the origin. Menshikov (1986), Aizenman & Barsky (1987).

 In the supercritical case there exists one infinite cluster (Burton & Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every p > p_c there exists some λ such that

$$\mathbb{P}(n < |\mathcal{C}| < \infty) \le e^{-\lambda n^{(d-1)/d}}$$

Grimmett & Marstrand (1990), Kesten & Zhang (1990).

 In most senses, the supercritical cluster "looks like a stretched-out grid".

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Some conjectures coming from the physics literature:

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロト ・日下・・日下・・日下・ シック・

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p.

CCCP

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ▲ ● ▲ ●

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially**, i.e.

 $\mathbb{P}(|\mathcal{C}| > n) \approx n^{-1/\delta}$

for some δ .

CCCP

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous model Our model The results

Proof — log log

Tools Diagrammatic bounds

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへ⊙

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially**, i.e.

 $\mathbb{P}(|\mathcal{C}| > n) \approx n^{-1/\delta}$

for some δ .

(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_c).

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially**, i.e.

 $\mathbb{P}(|\mathcal{C}| > n) \approx n^{-1/\delta}$

for some δ .

(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_c).

(d).
$$\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2.$$

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially**, i.e.

 $\mathbb{P}(|\mathcal{C}| > n) \approx n^{-1/\delta}$

for some δ .

- (c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_c).
- (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$. *In d = 6 there are logarithmic corrections.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially**, i.e.

 $\mathbb{P}(|\mathcal{C}| > n) \approx n^{-1/\delta}$

for some δ .

- (c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_c).
- (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$. *In d = 6 there are logarithmic corrections. The conjecture for the value $\frac{91}{5}$ is related to a conjecture that the distribution of large finite clusters is conformally invariant.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially* (c). Universality: δ depends only on the dimension. (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Our model The results

Proof — log log

Tools Diagrammatic bounds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some conjectures coming from the physics literature: (a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially* (c). Universality: δ depends only on the dimension. (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$. What has been proved?

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Proof — log log

The results

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Some conjectures coming from the physics literature:

(a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially* (c). Universality: δ depends only on the dimension. (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$.

What has been proved?

 d = 2: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm & Werner (2001).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Proof — log log

Some conjectures coming from the physics literature:

(a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially* (c). Universality: δ depends only on the dimension. (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$.

What has been proved?

 ▶ d = 2: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm & Werner (2001).

▶ d > 6: "a, b, c, d" Hara & Slade (1990).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Proof — log log

Some conjectures coming from the physics literature:

(a). For d > 1 there is no infinite cluster at the critical p. (b). The size of the critical cluster decays *polynomially* (c). Universality: δ depends only on the dimension. (d). $\frac{91}{5} = \delta_2 > \delta_3 > \cdots > \delta_6 = \delta_7 = \cdots = 2$.

What has been proved?

 ▶ d = 2: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm & Werner (2001).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Proof — log log

► Take some p > p_c and let C be the infinite cluster, conditioned on 0 ∈ C. Examine random walk on C starting from 0.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

- Take some p > p_c and let C be the infinite cluster, conditioned on 0 ∈ C. Examine random walk on C starting from 0.
- Properties that hold for almost any C are called "quenched". Properties that hold after averaging on the environment are called "annealed".

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

- ► Take some p > p_c and let C be the infinite cluster, conditioned on 0 ∈ C. Examine random walk on C starting from 0.
- Properties that hold for almost any C are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein & Wick (1989).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

- ► Take some p > p_c and let C be the infinite cluster, conditioned on 0 ∈ C. Examine random walk on C starting from 0.
- Properties that hold for almost any C are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein & Wick (1989).
- So does the quenched, Sidoravicius & Sznitman (2004), Barlow (2004), Berger & Biskup (2006), Mathieu & Piatnitski (2006).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

- ► Take some p > p_c and let C be the infinite cluster, conditioned on 0 ∈ C. Examine random walk on C starting from 0.
- Properties that hold for almost any C are called "quenched". Properties that hold after averaging on the environment are called "annealed".
- The annealed process has a central limit theorem, De Masi, Ferrari, Goldstein & Wick (1989).
- So does the quenched, Sidoravicius & Sznitman (2004), Barlow (2004), Berger & Biskup (2006), Mathieu & Piatnitski (2006).
- Results of the type "C is like a grid".

СССР

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

Random walk on the incipient infinite cluster

► Take critical percolation, and condition on the cluster of the origin C to satisfy |C| > n. Take n → ∞. It turns out that the distributions of C converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt & Járai (2004). This limit is called the incipient infinite cluster.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Random walk on the incipient infinite cluster

- ► Take critical percolation, and condition on the cluster of the origin C to satisfy |C| > n. Take n → ∞. It turns out that the distributions of C converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt & Járai (2004). This limit is called the incipient infinite cluster.
- Random walk on the IIC is (like on all fractals), subdiffusive, that is

 $\mathbb{E}(R(n)) \leq C n^{1/2-\epsilon}$

Kesten (1986), Barlow, Járai, Kumagai & Slade (2007).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

Random walk on the incipient infinite cluster

- ► Take critical percolation, and condition on the cluster of the origin C to satisfy |C| > n. Take n → ∞. It turns out that the distributions of C converge in the appropriate sense to a limit, Kesten (1986), van der Hofstadt & Járai (2004). This limit is called the incipient infinite cluster.
- Random walk on the IIC is (like on all fractals), subdiffusive, that is

$$\mathbb{E}(R(n)) \leq C n^{1/2-\epsilon}$$

Kesten (1986), Barlow, Járai, Kumagai & Slade (2007).
In d > 6, the exact exponent is ¹/₃.

СССР

Percolation

Generalities Euclidean grids

Random walk in random environment

Previous models

Our model The results

Proof — log log

No edges are removed, edges are only colored in two colors.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

The results

Proof — log log

Tools Diagrammatic bounds

#
Take a black cluster and replace it with a single vertex.

CCCP

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous models Our model

The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Connect it to all edges which used to connect to the cluster.

CCCP

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous models Our model

The results

Proof - log log

Tools Diagrammatic bounds

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ● ● ●

Note that this can create loops and multiple edges.

CCCP

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous models Our model

The results

Proof - log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Repeat for all clusters.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

The results

Proof - log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_p.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_p.
- ► If p > p_c then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_p.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_p.
- ► If p > p_c then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_p.
- ▶ If p < p_c the contracted clusters are small and do not affect the random walk on CCP_p significantly. This case would be amenable to the same techniques used to analyze random walk on the supercritical cluster.

ссср

Percolation

Generalities Euclidean grids

Random walk ir random environment Previous models Our model The results

Proof — log log

- Formally, for every edge, independently and with probability p, identify its two end points. Call the resulting graph CCP_p.
- ► If p > p_c then the infinite cluster becomes a point with infinite degree. Hence it is not clear what how to even define random walk on CCP_p.
- ▶ If p < p_c the contracted clusters are small and do not affect the random walk on CCP_p significantly. This case would be amenable to the same techniques used to analyze random walk on the supercritical cluster.
- ► Hence we will focus on p = p_c, in which case we will call the graph CCCP.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Geometry

We have results for both d = 2 and d > 6, but in this lecture we will focus on d > 6.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

The results

Proof — log log

Tools Diagrammatic bounds

うせん 明 ふゆやんゆやんり

Geometry

We have results for both d = 2 and d > 6, but in this lecture we will focus on d > 6.

For any two x, y ∈ Z^d, let d(x,y) denote the graph distance between x and y, i.e. the length of the shortest path in our graph. Then

$$d(x,y)\approx \log \log |x-y|$$

For comparison, on a supercritical cluster, $d(x,y) \approx |x-y|$, while on the IIC $d(x,y) \approx |x-y|^2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Geometry

We have results for both d = 2 and d > 6, but in this lecture we will focus on d > 6.

For any two x, y ∈ Z^d, let d(x,y) denote the graph distance between x and y, i.e. the length of the shortest path in our graph. Then

$$d(x,y) \approx \log \log |x-y|$$

For comparison, on a supercritical cluster, $d(x, y) \approx |x - y|$, while on the IIC $d(x, y) \approx |x - y|^2$. The graph satisfies the same *isoperimetric inequality* as

 \mathbb{Z}^d , i.e. for any finite $A \subset G$

$$|\partial A| \ge c |A|^{(d-1)/d}$$

where $|\partial A|$ is the number of edges going out of A, and $|A| = \sum_{v \in A} \deg v$ i.e. the total number of edges going out of vertices of A. $\frac{d-1}{d}$ is sharp.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y) pprox \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d} *$	$ \partial A \geq 1$

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \geq A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$

▶ The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

 $\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$\underline{\mathbb{A}} \ \underline{\mathbb{A}} \ \underline{\mathbb{A}}$

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \geq A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$

► The speed of the random walk on the graph, measured in the Euclidean distance, is √n log n i.e.

 $\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}.$

\land \land \land

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d} *$	$ \partial A \geq 1$

▶ The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

 $\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}.$

\land \land \land

► The spectral gap of the Laplacian on a ball of radius R is between ^c/_{R²} and ^{C log R}/_{R²}. This precision is not enough to determine whether CCCP is Liouville or not!

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \geq A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$

▶ The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

 $\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}.$

\land \land \land

- ► The spectral gap of the Laplacian on a ball of radius R is between ^c/_{R²} and ^{C log R}/_{R²}. This precision is not enough to determine whether CCCP is Liouville or not!
- When d > 12 this spectral gap is concentrated near its average.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d} *$	$ \partial A \geq 1$

▶ The speed of the random walk on the graph, measured in the Euclidean distance, is $\sqrt{n \log n}$ i.e.

 $\mathbb{E}(|R(n)|) \approx \sqrt{n \log n}.$

\land \land \land

- ► The spectral gap of the Laplacian on a ball of radius R is between ^c/_{R²} and ^{C log R}/_{R²}. This precision is not enough to determine whether CCCP is Liouville or not!
- When d > 12 this spectral gap is concentrated near its average. Uses the concentration property of Lipschitz functions.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y) pprox \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \geq A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d} *$	$ \partial A \geq 1$
$\mathbb{E}(R(n)) pprox \sqrt{n \log n}$	$\mathbb{E}(R(n)) \approx \sqrt{n}$	$\mathbb{E}(R(n)) \approx n^{1/3}$
$rac{c}{R^2} \leq \lambda_1 \leq rac{C \log R}{R^2}$	$\lambda_1 \approx \frac{c}{R^2}$	$\lambda_1 \approx \frac{c}{R^4}$
???	Liouville	Liouville

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Tools Diagrammatic bounds

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$
$\mathbb{E}(R(n)) \approx \sqrt{n \log n}$	$\mathbb{E}(R(n)) \approx \sqrt{n}$	$\mathbb{E}(R(n)) \approx n^{1/3}$
$rac{c}{R^2} \leq \lambda_1 \leq rac{C \log R}{R^2}$	$\lambda_1 \approx \frac{c}{R^2}$	$\lambda_1 \approx \frac{c}{R^4}$
???	Liouville	Liouville

> The supercritical cluster behaves like the usual grid.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

<□> <□> <□> <□> <=> <=> <=> <=> <<

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$
$\mathbb{E}(R(n)) \approx \sqrt{n \log n}$	$\mathbb{E}(R(n)) \approx \sqrt{n}$	$\mathbb{E}(R(n)) \approx n^{1/3}$
$rac{c}{R^2} \leq \lambda_1 \leq rac{C \log R}{R^2}$	$\lambda_1 \approx \frac{c}{R^2}$	$\lambda_1 \approx \frac{c}{R^4}$
???	Liouville	Liouville

- The supercritical cluster behaves like the usual grid.
- The incipient infinite cluster behaves like a critical branching tree, embedded into Z^d randomly (this is known as "integrated superbrownian excursion").

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP	Supercritical cluster	IIC
$d(x,y)\approx \log \log x-y $	$d(x,y)\approx x-y $	$d(x,y)\approx x-y ^2$
$ \partial A \ge A ^{(d-1)/d}$	$ \partial A \ge A ^{(d-1)/d}$ *	$ \partial A \geq 1$
$\mathbb{E}(R(n)) \approx \sqrt{n \log n}$	$\mathbb{E}(R(n)) \approx \sqrt{n}$	$\mathbb{E}(R(n)) \approx n^{1/3}$
$rac{c}{R^2} \leq \lambda_1 \leq rac{C \log R}{R^2}$	$\lambda_1 \approx \frac{c}{R^2}$	$\lambda_1 \approx \frac{c}{R^4}$
???	Liouville	Liouville

- The supercritical cluster behaves like the usual grid.
- The incipient infinite cluster behaves like a critical branching tree, embedded into Z^d randomly (this is known as "integrated superbrownian excursion").
- CCCP behaves in strange and unexpected ways. We don't have in mind any simple model that would reproduce all data above.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

We are now going to sketch some of the ideas that went into the proof of $d(x, y) \approx \log \log |x - y|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971). For example,

$$\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y)\mathbb{P}(y \leftrightarrow z)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971). For example,

 $\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y)\mathbb{P}(y \leftrightarrow z)$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

 Any two events that happen on distinct vertice sets are negatively correlated, van den Berg & Kesten (1985).

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971). For example,

 $\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y)\mathbb{P}(y \leftrightarrow z)$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

 Any two events that happen on distinct vertice sets are negatively correlated, van den Berg & Kesten (1985).
 For example,

 $\mathbb{P}(\exists \text{two disjoint paths between } x \text{ and } y) \leq \mathbb{P}(x \leftrightarrow y)^2$

うつつ 川 ふかく エット キョッ ふうく

СССР

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971). For example,

 $\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y)\mathbb{P}(y \leftrightarrow z)$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

 Any two events that happen on distinct vertice sets are negatively correlated, van den Berg & Kesten (1985).
 For example,

 $\mathbb{P}(\exists \text{two disjoint paths between } x \text{ and } y) \leq \mathbb{P}(x \leftrightarrow y)^2$

These two are general and hold in any graph

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

 Any two increasing events are positively correlated, Fortuin, Kasteleyn & Ginibre (1971). For example,

 $\mathbb{P}(x \leftrightarrow y, y \leftrightarrow z) \geq \mathbb{P}(x \leftrightarrow y)\mathbb{P}(y \leftrightarrow z)$

where $x \leftrightarrow y$ is the event that x and y belong to the same cluster.

 Any two events that happen on distinct vertice sets are negatively correlated, van den Berg & Kesten (1985).
 For example,

 $\mathbb{P}(\exists \text{two disjoint paths between } x \text{ and } y) \leq \mathbb{P}(x \leftrightarrow y)^2$

These two are general and hold in any graph

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Let x, y ∈ Z^d, and assume for simplicity that d = 8. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, [1/2 d] - 2 moves)?

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● のへぐ

- Let x, y ∈ Z^d, and assume for simplicity that d = 8. What is the probability that one can jump from x to y by no more than 2 moves in CCCP (in general, [1/2 d] - 2 moves)?
- ► This is equivalent to the existence of an edge (v, w) such that x ↔ v, w ↔ y.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- ► This is equivalent to the existence of an edge (v, w) such that x ↔ v, w ↔ y. Denote by L the number of such edges.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

Our model The results

Proof — log log

- ► This is equivalent to the existence of an edge (v, w) such that x ↔ v, w ↔ y. Denote by L the number of such edges.
- We can estimate EL using the FKG inequality:

$$\mathbb{E}L = \sum_{(v,w)} \mathbb{P}(x \leftrightarrow v, w \leftrightarrow y)$$

 $\geq \sum_{(v,w)} \mathbb{P}(x \leftrightarrow v) \cdot \mathbb{P}(w \leftrightarrow y)$

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- ► This is equivalent to the existence of an edge (v, w) such that x ↔ v, w ↔ y. Denote by L the number of such edges.
- We can estimate $\mathbb{E}L$ using the FKG inequality:

$$\mathbb{E}L = \sum_{(v,w)} \mathbb{P}(x \leftrightarrow v, w \leftrightarrow y)$$

$$\geq \sum_{(v,w)} \mathbb{P}(x \leftrightarrow v) \cdot \mathbb{P}(w \leftrightarrow y)$$

$$\geq c|x - y|^8 \cdot (|x - y|^{-6})^2 = c|x - y|^{-4}$$

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model The results

Proof — log log

Tools Diagrammatic bounds

◆ロ > ◆母 > ◆母 > ◆母 > ○ 母 - ○ ○ ○

Second moment

▶ Let now x_1 , x_2 , y_1 and $y_2 \in \mathbb{Z}^d$, and assume they are all $\approx r$ apart. Let L_i be, as before, the number of edges (v_i, w_i) such that $x_i \leftrightarrow v_i$ and $w_i \leftrightarrow y_i$. We want to upper-bound $\mathbb{E}L_1L_2 - \mathbb{E}L_1\mathbb{E}L_2$.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロット 4回ット 4回ット 4回ット 4日ッ

Second moment

- ▶ Let now x_1 , x_2 , y_1 and $y_2 \in \mathbb{Z}^d$, and assume they are all $\approx r$ apart. Let L_i be, as before, the number of edges (v_i, w_i) such that $x_i \leftrightarrow v_i$ and $w_i \leftrightarrow y_i$. We want to upper-bound $\mathbb{E}L_1L_2 \mathbb{E}L_1\mathbb{E}L_2$.
- L_i are increasing, so by the FKG inequality,

 $\mathbb{E}L_1L_2 \geq \mathbb{E}L_1\mathbb{E}L_2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

СССР

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

Second moment

- ▶ Let now x_1 , x_2 , y_1 and $y_2 \in \mathbb{Z}^d$, and assume they are all $\approx r$ apart. Let L_i be, as before, the number of edges (v_i, w_i) such that $x_i \leftrightarrow v_i$ and $w_i \leftrightarrow y_i$. We want to upper-bound $\mathbb{E}L_1L_2 \mathbb{E}L_1\mathbb{E}L_2$.
- L_i are increasing, so by the FKG inequality,

 $\mathbb{E}L_1L_2 \geq \mathbb{E}L_1\mathbb{E}L_2$

By the BK inequality,

$$\begin{split} \mathbb{E}L_1L_2 &= \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ occur disjointly}} + \\ &+ \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ do not occur disjointly}} \leq \\ &\leq \mathbb{E}L_1\mathbb{E}L_2 + \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ do not occur disjointly}}. \end{split}$$

СССР

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロト ・西ト ・ヨト ・ヨー うへぐ
Second moment

- ▶ Let now x_1 , x_2 , y_1 and $y_2 \in \mathbb{Z}^d$, and assume they are all $\approx r$ apart. Let L_i be, as before, the number of edges (v_i, w_i) such that $x_i \leftrightarrow v_i$ and $w_i \leftrightarrow y_i$. We want to upper-bound $\mathbb{E}L_1L_2 \mathbb{E}L_1\mathbb{E}L_2$.
- L_i are increasing, so by the FKG inequality,

 $\mathbb{E}L_1L_2 \geq \mathbb{E}L_1\mathbb{E}L_2$

By the BK inequality,

$$\begin{split} \mathbb{E}L_1L_2 &= \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ occur disjointly}} + \\ &+ \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ do not occur disjointly}} \leq \\ &\leq \mathbb{E}L_1\mathbb{E}L_2 + \mathbb{E}L_1L_2\mathbf{1}_{L_1 \text{ and } L_2 \text{ do not occur disjointly}}. \end{split}$$

► To estimate the last summand, assume for simplicity that it is the connections w₁ ↔ y₁ and w₂ ↔ y₂ that occur non-disjointly.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Second moment ||

Examine the event that $w_1 \leftrightarrow y_1$ and $w_2 \leftrightarrow y_2$ occur non-disjointly. This must be as in the following picture: v_1

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロト・西ト・山田・山田・山下

Second moment ${\sf II}$

Examine the event that $w_1 \leftrightarrow y_1$ and $w_2 \leftrightarrow y_2$ occur non-disjointly. This must be as in the following picture: v_1

Formally: there must exist a and b such that $w_i \leftrightarrow a$, $a \leftrightarrow b$, $b \leftrightarrow y_i$ all disjointly.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Second moment ${\sf II}$

Examine the event that $w_1 \leftrightarrow y_1$ and $w_2 \leftrightarrow y_2$ occur non-disjointly. This must be as in the following picture: v_1

Formally: there must exist a and b such that $w_i \leftrightarrow a$, $a \leftrightarrow b$, $b \leftrightarrow y_i$ all disjointly. We use the BK inequality again and get that for each tupple $(v_1, v_2, w_1, w_2, a, b)$ the probability is $\leq (|x_1 - v_1| \cdot \cdots \cdot |b - y_2|)^{-6}$.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Second moment II

Examine the event that $w_1 \leftrightarrow y_1$ and $w_2 \leftrightarrow y_2$ occur non-disjointly. This must be as in the following picture: v_1

Formally: there must exist a and b such that $w_i \leftrightarrow a$, $a \leftrightarrow b$, $b \leftrightarrow y_i$ all disjointly. We use the BK inequality again and get that for each tupple $(v_1, v_2, w_1, w_2, a, b)$ the probability is $\leq (|x_1 - v_1| \cdot \cdots \cdot |b - y_2|)^{-6}$. It is now simple to sum over all tupples and get that the total is $\leq (r^8)^4 \cdot (r^{-6})^7 = r^{-10}$.

◆ロ ▶ ◆ 御 ▶ ◆ 善 ▶ ◆ 個 ▶ ◆ 日 ▶

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof - log log

Second moment III

• Recapitulating, we got that $\mathbb{E}L \approx r^{-4}$ while $\operatorname{cov}(L_1, L_2) \approx r^{-10}$.

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Second moment III

- Recapitulating, we got that $\mathbb{E}L \approx r^{-4}$ while $\operatorname{cov}(L_1, L_2) \approx r^{-10}$.
- ► Therefore if we have two large clusters at scale r, each has size ≈ r⁴ and therefore the expected number of connections is ≈ (r⁴)² · r⁻⁴ = r⁴ while the variance is only ≈ (r⁴)⁴ · r⁻¹⁰ = r⁶. We get that they are connected with probability > 1 cr⁻².

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

The results

Proof — log log

Second moment III

- Recapitulating, we got that $\mathbb{E}L \approx r^{-4}$ while $\operatorname{cov}(L_1, L_2) \approx r^{-10}$.
- ► Therefore if we have two large clusters at scale r, each has size ≈ r⁴ and therefore the expected number of connections is ≈ (r⁴)² · r⁻⁴ = r⁴ while the variance is only ≈ (r⁴)⁴ · r⁻¹⁰ = r⁶. We get that they are connected with probability > 1 cr⁻².
- Similar diagrammatic bounds show the whole log log result. Roughly we show that at scale r there are clusters which go as far as r², so you can move between scales with a bounded number of jumps. We omit all further details.

ссср

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models Our model

CCCP

Percolation

Generalities Euclidean grids

Random walk in random environment Previous models

Our model The results

Proof — log log

Tools Diagrammatic bounds

Thank you

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●