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Definition of p,

» Let G be any infinite graph. Let 0 < p < 1. Consider
the random graph G, that one gets by keeping every
edge of G with probability p, independently for each
edge.

> Let ¢)(p) be the probability that G, has an infinite
component. 1(p) is obviously an increasing function of
p.

» Changing any finite set of edges cannot destroy or create
an infinite cluster. Therefore 1(p) is either 0 or 1.

» Therefore there exists some p., depending on G, such
that ¢(p) = 0 for p < p. and ¥(p) =1 for p > pe.
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Simple examples ceee

» for G =7, pc =1 and ¢(pc) =1 (exercise).

» for G a d-regular tree, p. = 11 and ¢(pc) = 0. This is
equivalent to a Galton-Watson branching process.

» The complete graph on n vertices exhibits similar
behvior (even though it is finite) with “p. = 1" and

“(pc) = 0", Erdés & Reényi (1959).
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exist some A > 0 such that
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P(IC| > n) < e

where C is the cluster containing the origin. Menshikov
(1986), Aizenman & Barsky (1987).

> In the supercritical case there exists one infinite cluster
(Burton & Keane, 1989). The sizes of the finite clusters
decay exponentially in the surface area, i.e. for every
p > pc there exists some A such that

P(n < |C| < 00) < e~ M7V

Grimmett & Marstrand (1990), Kesten & Zhang (1990).
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» In the subcritical case, component sizes decay
exponentially in the volume, i.e. for every p < p. there
exist some A > 0 such that
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P(IC| > n) < e

where C is the cluster containing the origin. Menshikov
(1986), Aizenman & Barsky (1987).

> In the supercritical case there exists one infinite cluster
(Burton & Keane, 1989). The sizes of the finite clusters
decay exponentially in the surface area, i.e. for every
p > pc there exists some A such that

P(n < |C| < 00) < e~ M7V

Grimmett & Marstrand (1990), Kesten & Zhang (1990).

> In most senses, the supercritical cluster “looks like a
stretched-out grid”.
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Some conjectures coming from the physics literature: .
Euclidean grids

(a). For d > 1 there is no infinite cluster at the critical p.

(b). The size of the critical cluster decays polynomially*, i.e.
P(|C| > n) ~ n~ /0

for some 4.

(c). Universality: 0 depends only on the dimension, and not
on the specific grid (unlike, say, p¢).

(d). 95_1:52>53>...>56:57:...:2, ¥Ind =6
there are logarithmic corrections. The conjecture for the
value 95—1 is related to a conjecture that the distribution

of large finite clusters is conformally invariant.
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Some conjectures coming from the physics literature:

(a). For d > 1 there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: 6 depends only on the dimension.

d). 2=6>0G>>6=0= =2

What has been proved?

» d =2: a, Kesten (1980), “b, d” Smirnov (2001); Lawler,

Schramm & Werner (2001).
» d > 6: “a, b, ¢, d’ Hara & Slade (1990).
» d =3,4,5,6: not even a.
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» Take some p > p. and let C be the infinite cluster,
conditioned on 0 € C. Examine random walk on C
starting from 0.

Previous models

» Properties that hold for almost any C are called
“quenched”. Properties that hold after averaging on the
environment are called “annealed”.

» The annealed process has a central limit theorem, De
Masi, Ferrari, Goldstein & Wick (1989).

» So does the quenched, Sidoravicius & Sznitman (2004),
Barlow (2004), Berger & Biskup (2006), Mathieu &
Piatnitski (2006).

» Results of the type “C is like a grid".
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Hofstadt & Jarai (2004). This limit is called the
incipient infinite cluster.
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Random walk on the incipient infinite cluster ceep

» Take critical percolation, and condition on the cluster of
the origin C to satisfy |C| > n. Take n — oo. It turns
out that the distributions of C converge in the
appropriate sense to a limit, Kesten (1986), van der
Hofstadt & Jarai (2004). This limit is called the
incipient infinite cluster.

Previous models

» Random walk on the IIC is (like on all fractals),
subdiffusive, that is

E(R(n)) < Cn'/?~

Kesten (1986), Barlow, Jarai, Kumagai & Slade (2007).

» In d > 6, the exact exponent is %
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Take a black cluster and replace it with a single vertex.
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Connect it to all edges which used to connect to the cluster.
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Note that this can create loops and multiple edges.
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Repeat for all clusters.
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Which p?

» Formally, for every edge, independently and with
probability p, identify its two end points. Call the
resulting graph CCP,,.

Our model

» If p > p. then the infinite cluster becomes a point with
infinite degree. Hence it is not clear what how to even
define random walk on CCP,,.

» If p < p. the contracted clusters are small and do not
affect the random walk on CCP,, significantly. This case
would be amenable to the same techniques used to
analyze random walk on the supercritical cluster.

» Hence we will focus on p = pc, in which case we will call
the graph CCCP.
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Geometry

We have results for both d = 2 and d > 6, but in this lecture
we will focus on d > 6.

» For any two x, y € Z9, let d(x,y) denote the graph
distance between x and y, i.e. the length of the shortest
path in our graph. Then

The results

d(x,y) = loglog|x — y|.
For comparison, on a supercritical cluster,
d(x,y) = |x — y|, while on the IIC d(x,y) ~ |x — y|?.
» The graph satisfies the same isoperimetric inequality as
749, i.e. for any finite AC G

|0A] > c|A[=D/d

where |0A| is the number of edges going out of A, and
|A| =) ,cadegv i.e. the total number of edges going
out of vertices of A. % is sharp.
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Random walks

CCCP Supercritical cluster 1C
d(x,y) = loglog |x — y| d(x,y) =~ |x — y| d(x,y) = |x —y|?
|0A] > |A|d-D/d [DA] > |A(=D/d * [DA] > 1

» The speed of the random walk on the graph, measured
in the Euclidean distance, is \/nlogn i.e.

E(|R(n)|) ~ v/nlog n.

VY. -\

» The spectral gap of the Laplacian on a ball of radius R

is between % and C';gR. This precision is not enough

to determine whether CCCP is Liouville or not!

» When d > 12 this spectral gap is concentrated near its
average. Uses the concentration property of Lipschitz
functions.
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» The supercritical cluster behaves like the usual grid.

» The incipient infinite cluster behaves like a critical
branching tree, embedded into 74 randomly (this is
known as “integrated superbrownian excursion”).
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Summary of results

CCCP Supercritical cluster 1C
d(x,y) = loglog |x — y| d(x,y) =~ |x — y| d(x,y) = |x —y|?
0A] > |A[-1/9 [0A] > |A[—D/ = |0A| > 1
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» The supercritical cluster behaves like the usual grid.

» The incipient infinite cluster behaves like a critical
branching tree, embedded into 74 randomly (this is
known as “integrated superbrownian excursion”).

» CCCP behaves in strange and unexpected ways. We
don’t have in mind any simple model that would
reproduce all data above.
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Percolation tools

» Any two increasing events are positively correlated,
Fortuin, Kasteleyn & Ginibre (1971). For example,

P(x = y,y = 2) 2 P(x = y)P(y < 2)

where x < y is the event that x and y belong to the
same cluster.

» Any two events that happen on distinct vertice sets are
negatively correlated, van den Berg & Kesten (1985).
For example,

P(3two disjoint paths between x and y) < P(x < y)?

These two are general and hold in any graph

» For d > 6, P(x < y) =~ |x — y|>~9. Hara, van der
Hofstad & Slade (2003).

Tools
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> Let x, y € Z9, and assume for simplicity that d = 8.
What is the probability that one can jump from x to y
by no more than 2 moves in CCCP (in general,

L%dJ — 2 moves)?

» This is equivalent to the existence of an edge (v, w)
such that x <> v, w < y. Denote by L the number of
such edges.

» We can estimate EL using the FKG inequality:

EL = ZP(XHV,WH}/)
(v,w)

>Z (x = v) -P(w < y)

(v,w)
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> Let x, y € Z9, and assume for simplicity that d = 8.
What is the probability that one can jump from x to y
by no more than 2 moves in CCCP (in general,
L%dJ — 2 moves)?
» This is equivalent to the existence of an edge (v, w)
such that x <> v, w < y. Denote by L the number of
such edges. Dingrammatic

bounds

» We can estimate EL using the FKG inequality:

EL = ZP(XHV,WH}/)
(v,w)

>Z (x = v) -P(w < y)

(v,w)
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+ ELI L21L1 and Ly do not occur disjointly <
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» By the BK inequality,

IEL] L2 = IE[—1 [—21L1 and Ly occur disjointly +
+ ELI L21L1 and Ly do not occur disjointly <
< IELIEL2 + IEL] L21L1 and L» do not occur disjointly-

» To estimate the last summand, assume for simplicity
that it is the connections wy <> y; and wy < y», that
occur non-disjointly.
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Examine the event that wy < y; and wy < y» occur

non-disjointly. This must be as in the following picture:
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Examine the event that wy < y; and wy < y» occur
non-disjointly. This must be as in the following picture:
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Formally: there must exist a and b such that w; < a, a < b,
b < y; all disjointly.
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Formally: there must exist a and b such that w; < a, a < b,
b < y; all disjointly. We use the BK inequality again and get
that for each tupple (v1, v, wi, wa, a, b) the probability is
<(ba—w|- - - [b= )"
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Examine the event that wy < y; and wy < y» occur
non-disjointly. This must be as in the following picture:
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Formally: there must exist a and b such that w; < a, a < b,
b < y; all disjointly. We use the BK inequality again and get
that for each tupple (v1, v, wi, wa, a, b) the probability is

<(jx1 —vi|- --- -|b—yn|)7°. It is now simple to sum over
all tupples and get that the total is < (r8)4 . (r_6)7 =r10
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> Recapitulating, we got that EL ~ r—* while
cov(Ly, L) ~ r~10.
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> Recapitulating, we got that EL ~ r—* while
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» Therefore if we have two large clusters at scale r, each

has size ~ r* and therefore the expected number of

) . 2 _ : : )
connections is ~ (r4) - r—% = r* while the variance is
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connected with probability > 1 — ¢cr=2.
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> Recapitulating, we got that EL ~ r—* while
cov(Ly, L) ~ r~10.

» Therefore if we have two large clusters at scale r, each
has size ~ r* and therefore the expected number of

) . 2 _ : : )
connections is ~ (r4) - r—% = r* while the variance is

Diagrammatic

4
only ~ (r*)" - r=10 = r® We get that they are banss

connected with probability > 1 — ¢cr=2.

» Similar diagrammatic bounds show the whole loglog
result. Roughly we show that at scale r there are
clusters which go as far as r, so you can move between
scales with a bounded number of jumps. We omit all
further details.



Thank yOu
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