From the Mahler conjecture to Gauss linking forms

Greg Kuperberg (UC Davis)

arXiv:math.MG/0610904 arXiv:math.MG/9811119

The Mahler conjecture

Let $K = -K \subseteq \mathbb{R}^n$ be a symmetric convex body. Then

$$K^{\circ} = \{ \vec{y} \mid \forall \vec{x} \in K, \ \vec{x} \cdot \vec{y} \le 1 \}.$$

is its *polar body*. The *Mahler volume*

$$v(K) = (\text{Vol } K)(\text{Vol } K^{\circ})$$

is affinely invariant.

Conjecture 1 (Mahler) v(K) is maximized by the ℓ^2 -ball B_n . It is minimized by the cube C_n .

Actually, K need only be pointed $(\vec{0} \in K)$. Then the conjectured minimum is the simplex Δ_n .

Prior results

Theorem 2 (Blaschke, Santaló, Saint-Raymond) For all K, there exists $\vec{0} \in K$ such that

 $v(K) \leq v(B_n),$

with equality if and only if K is an ellipsoid E.

Theorem 3 (Bourgain-Milman) There exists c > 0 such that $v(K) \ge c^n v(E).$

The Bourgain-Milman theorem is part of a great family of results due to V. Milman and many others.

The Mahler conjecture implies $c = \frac{2}{\pi}$ if K = -K, and $c = \frac{e}{2\pi}$ in general.

The new result

Theorem 4 (K.) If K = -K, then

$$v(K) \ge \frac{2^n}{\binom{2n}{n}}v(E).$$

So our $c = \frac{1}{2}$, and the Mahler conjecture holds up to $\left(\frac{\pi}{4}\right)^n$. This bound is false when $K \neq -K$, because $\pi > e$.

Corollary 5 Even if $K \neq -K$, then

$$v(K) \ge \frac{4^n}{\binom{2n}{n}^2}v(E).$$

Here $c = \frac{1}{4}$; the asymmetric Mahler conjecture holds up to $\left(\frac{\pi}{2e}\right)^n$.

The bottleneck conjecture

What I really prove is a theorem in indefinite geometry.

Theorem 6 Let H^{\pm} be the unit pseudospheres of indefinite geometry $\mathbb{R}^{(a,b)}$. Let N^{\pm} be necks (spacelike and timelike cores), and let

$$N^{\diamondsuit} = \overline{N^+ * N^-}$$

be their filled join. Then Vol N^{\diamondsuit} is minimized when $N^+ \perp N^-$.

From 1987 to 2006 this was the "bottleneck conjecture" (name due to W. Kuperberg).

 N^+ is *spacelike* means that $\vec{v} \in T_{\vec{x}}N^+$ is a positive (or spacelike) vector; likewise N^- .

A picture of the bottleneck problem

6

From Mahler to necks

Let

$$K^{\pm} = \{ (\vec{x}, \vec{y}) \in K \times K^{\circ} \mid \vec{x} \cdot \vec{y} = \pm 1 \}.$$

They are subsets of pseudospheres of $\mathbb{R}^n \times \mathbb{R}^n$,

$$H^{\pm} = \{ (\vec{x}, \vec{y}) \in \mathbb{R}^n \times \mathbb{R}^n \mid \vec{x} \cdot \vec{y} = \pm 1 \},\$$

with respect to a signature (n, n) inner product.

$$(\vec{x}_1, \vec{y}_1) \cdot (\vec{x}_2, \vec{y}_2) = \frac{\vec{x}_1 \cdot \vec{y}_2 + \vec{x}_2 \cdot \vec{y}_1}{2}$$

Note that

$$H^{\pm} \cong S^{n-1} \times \mathbb{R}^n \qquad K^{\pm} \cong S^{n-1}$$

Because, K^+ is pairs $\vec{x} \in \partial K$ and $\vec{y} \in \partial K^\circ$ such that \vec{y} (as a dual vector) supports K at \vec{x} .

From Mahler to necks

For example, if $K = C_2$, then K^+ is a non-planar octagon.

In addition, if K and K° are positively curved:

- K^+ is spacelike and K^- is timelike.
- K^{\pm} is a topological core of H^{\pm} .
- The geometric join $K^+ * K^-$ is boundary-starlike.
- Thus

$$K^{\diamondsuit} = \overline{K^+ * K^-} \subseteq K \times K^{\circ} \quad \text{Vol } K^{\diamondsuit} \leq v(K).$$

From Mahler to necks

The volume

$$v(K) = \operatorname{Vol} K \times K^{\circ}$$

is maximized when K is an ellipsoid, which is when Vol K^{\diamondsuit} is minimized. If f(K) is maximized by ellipsoids, we obtain a lower bound by proving that $g(K) \leq f(K)$ is minimized by ellipsoids.

How good is the bound? If $K = B_n$, then

$$B_n^{\diamondsuit} = \sqrt{2}B_n * \sqrt{2}B_n$$
 Vol $B_n^{\diamondsuit} = \frac{2^n}{\binom{2n}{n}} (\text{Vol } B_n)^2.$

At the other end, if $K = C_n = [-1, 1]^n$, then $K^{\diamondsuit} = K \times K^{\circ}$.

9

Again, the real result concerns $N^{\pm} \subset H^{\pm} \subset \mathbb{R}^{(a,b)}$. Once again $N^{+} * N^{-}$ is boundary-starlike and $N^{\diamondsuit} = \overline{N^{+} * N^{-}}$. Then

$$\text{Vol } N^{\diamondsuit} = \frac{\int_{N^+ \times N^-} \vec{x} \wedge \vec{y} \wedge d\vec{x}^{\wedge a - 1} \wedge d\vec{y}^{\wedge b - 1}}{ab \binom{a + b}{a}}.$$

(That is, $(\vec{x}, \vec{y}) \in N^+ \times N^-$. The integrand is a "double wedge" in the algebra $\Lambda^*(\mathbb{R}^{(a,b)}) \otimes \Omega^*(\mathbb{R}^{(a,b)})$.)

The idea is just to divide N^{\diamondsuit} into slices subtended by $\vec{0}$ and infinitesimal simplices at \vec{x} and \vec{y} . The slices are thin simplices; the integrand is a determinant.

The integral resembles the Gauss linking integral in \mathbb{R}^3 :

$$\mathsf{lk}(K_1, K_2) = \int_{K_1 \times K_2} \frac{(\vec{x} - \vec{y}) \wedge d\vec{x} \wedge d\vec{y}}{4\pi |\vec{x} - \vec{y}|^3}.$$

It even more resembles the SO(4)-invariant linking integral in S^3 (DeTurck-Gluck, K.):

$$\mathsf{lk}(K_1, K_2) = \int_{K_1 \times K_2} \phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d\vec{x} \wedge d\vec{y},$$

where

$$\phi(\cos\alpha) = \frac{(\pi - \alpha)(\cos\alpha) + (\sin\alpha)}{4\pi^2(\sin\alpha^3)}$$

If we compactify H^{\pm} to make $S^{2n-1} = \overline{H^+ \cup H^-}$, then $lk(N^+, N^-) = 1$ always.

There is an SO(a, b)-invariant linking form on $H^+ \cup H^-$. Let

$$\omega = \phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d\vec{x}^{\wedge a-1} \wedge d\vec{y}^{\wedge b-1}.$$

The main necessary condition is that $\omega(\vec{x}, \vec{y})$ is a "weak cycle":

$$d_x d_y \omega = -d_y d_x \omega = 0.$$

It is also sufficient if ω is SO(a, b)-invariant. The weak cycle condition yields the ODE

$$f'' + (a+b)(\tanh \alpha)f' + abf = 0,$$

where

$$f(\alpha) = \phi(\sinh \alpha).$$

12

The ODE for $f(\alpha)$ is a damped harmonic oscillator, whose even solutions look like this:

End of the proof

So $\phi(t) \leq 1$. Moreover, $\vec{x} \wedge \vec{y} \wedge d\vec{x}^{\wedge a-1} \wedge d\vec{y}^{\wedge b-1} > 0$, because N^{\pm} have spacelike and timelike points and tangencies.

Finally
$$l(N^+, N^-) \leq w(N^+, N^-)$$
, where

$$l(N^+, N^-) = \int_{N^+ \times N^-} \phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d\vec{x}^{\wedge a - 1} \wedge d\vec{y}^{\wedge b - 1}$$

$$w(N^+, N^-) = \int_{N^+ \times N^-} \vec{x} \wedge \vec{y} \wedge d\vec{x}^{\wedge a - 1} \wedge d\vec{y}^{\wedge b - 1},$$

with equality when $\vec{x} \cdot \vec{y} = 0$ on all of $N^+ \times N^-$. But

$$l(N^+, N^-) \propto lk(N^+, N^-) = 1$$

is constant, while

Vol
$$N^{\diamondsuit} \propto w(N^+, N^-).$$

Thus N^{\diamondsuit} is minimized when $N^+ \perp N^-$.

Where the proof came from

The proof came from the following picture, when b = 1. Let π be the projection perpendicular to N^- (which is just two points).

Vol $N^{\diamondsuit} = (\text{Vol } \overline{N^-})(\text{Vol } \overline{\pi(N^+)})/a$. Since $\pi(N^+)$ encircles the hole of $\pi(H^+)$, the result follows. This encirclement is a baby linking number.

More table-turning?

There are some interesting loose ends, like whether K^{\diamondsuit} is always convex. (N^{\diamondsuit} need not be.)

The most ambitious question is another example of table-turning.

Conjecture 7 The probabilistic expectation

$$E_{K \times K^{\circ}} \Big[(\vec{x} \cdot \vec{y})^2 \Big]$$

is maximized by ellipsoids.

This conjecture is well-known to imply the famous isotropic constant conjecture, that L_K is universally bounded. My point is that if we view Conjecture 7 as an *exact* maximization problem, using the symmetry of ellipsoids, it may be within reach. (If it is true!)