From the Mahler conjecture to Gauss linking forms

> Greg Kuperberg (UC Davis)

arXiv:math.MG/0610904
arXiv:math.MG/9811119

The Mahler conjecture

Let $K=-K \subseteq \mathbb{R}^{n}$ be a symmetric convex body. Then

$$
K^{\circ}=\{\vec{y} \mid \forall \vec{x} \in K, \vec{x} \cdot \vec{y} \leq 1\} .
$$

is its polar body. The Mahler volume

$$
v(K)=(\operatorname{Vol} K)\left(\text { Vol } K^{\circ}\right)
$$

is affinely invariant.
Conjecture 1 (Mahler) $v(K)$ is maximized by the ℓ^{2}-ball B_{n}. It is minimized by the cube C_{n}.

Actually, K need only be pointed $(\overrightarrow{0} \in K)$. Then the conjectured minimum is the simplex Δ_{n}.

Prior results

Theorem 2 (Blaschke, Santaló, Saint-Raymond) For all K, there exists $\overrightarrow{0} \in K$ such that

$$
v(K) \leq v\left(B_{n}\right)
$$

with equality if and only if K is an ellipsoid E.
Theorem 3 (Bourgain-Milman) There exists $c>0$ such that

$$
v(K) \geq c^{n} v(E)
$$

The Bourgain-Milman theorem is part of a great family of results due to V. Milman and many others.

The Mahler conjecture implies $c=\frac{2}{\pi}$ if $K=-K$, and $c=\frac{e}{2 \pi}$ in general.

The new result

Theorem 4 (K.) If $K=-K$, then

$$
v(K) \geq \frac{2^{n}}{\binom{2 n}{n}} v(E)
$$

So our $c=\frac{1}{2}$, and the Mahler conjecture holds up to $\left(\frac{\pi}{4}\right)^{n}$. This bound is false when $K \neq-K$, because $\pi>e$.

Corollary 5 Even if $K \neq-K$, then

$$
v(K) \geq \frac{4^{n}}{\binom{2 n}{n}^{2}} v(E)
$$

Here $c=\frac{1}{4}$; the asymmetric Mahler conjecture holds up to $\left(\frac{\pi}{2 e}\right)^{n}$.

The bottleneck conjecture

What I really prove is a theorem in indefinite geometry.
Theorem 6 Let $H^{ \pm}$be the unit pseudospheres of indefinite geometry $\mathbb{R}^{(a, b)}$. Let $N^{ \pm}$be necks (spacelike and timelike cores), and let

$$
N^{\diamond}=\overline{N^{+} * N^{-}}
$$

be their filled join. Then $\operatorname{Vol} N^{\diamond}$ is minimized when $N^{+} \perp N^{-}$.

From 1987 to 2006 this was the "bottleneck conjecture" (name due to W. Kuperberg).
N^{+}is spacelike means that $\vec{v} \in T_{\vec{x}} N^{+}$is a positive (or spacelike) vector; likewise N^{-}.

A picture of the bottleneck problem

From Mahler to necks

Let

$$
K^{ \pm}=\left\{(\vec{x}, \vec{y}) \in K \times K^{\circ} \mid \vec{x} \cdot \vec{y}= \pm 1\right\}
$$

They are subsets of pseudospheres of $\mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
H^{ \pm}=\left\{(\vec{x}, \vec{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \mid \vec{x} \cdot \vec{y}= \pm 1\right\}
$$

with respect to a signature (n, n) inner product.

$$
\left(\vec{x}_{1}, \vec{y}_{1}\right) \cdot\left(\vec{x}_{2}, \vec{y}_{2}\right)=\frac{\vec{x}_{1} \cdot \vec{y}_{2}+\vec{x}_{2} \cdot \vec{y}_{1}}{2}
$$

Note that

$$
H^{ \pm} \cong S^{n-1} \times \mathbb{R}^{n} \quad K^{ \pm} \cong S^{n-1}
$$

Because, K^{+}is pairs $\vec{x} \in \partial K$ and $\vec{y} \in \partial K^{\circ}$ such that \vec{y} (as a dual vector) supports K at \vec{x}.

From Mahler to necks

For example, if $K=C_{2}$, then K^{+}is a non-planar octagon.

In addition, if K and K° are positively curved:

- K^{+}is spacelike and K^{-}is timelike.
- $K^{ \pm}$is a topological core of $H^{ \pm}$.
- The geometric join $K^{+} * K^{-}$is boundary-starlike.
- Thus

$$
K^{\diamond}=\overline{K^{+} * K^{-}} \subseteq K \times K^{\circ} \quad \text { Vol } K^{\diamond} \leq v(K)
$$

From Mahler to necks

The volume

$$
v(K)=\operatorname{Vol} K \times K^{\circ}
$$

is maximized when K is an ellipsoid, which is when $\mathrm{Vol} K^{\diamond}$ is minimized. If $f(K)$ is maximized by ellipsoids, we obtain a lower bound by proving that $g(K) \leq f(K)$ is minimized by ellipsoids.

How good is the bound? If $K=B_{n}$, then

$$
B_{n}^{\diamond}=\sqrt{2} B_{n} * \sqrt{2} B_{n} \quad \text { Vol } B_{n}^{\diamond}=\frac{2^{n}}{\binom{2 n}{n}}\left(\operatorname{Vol} B_{n}\right)^{2}
$$

At the other end, if $K=C_{n}=[-1,1]^{n}$, then

$$
K^{\diamond}=K \times K^{\circ}
$$

From necks to linking forms

Again, the real result concerns $N^{ \pm} \subset H^{ \pm} \subset \mathbb{R}^{(a, b)}$. Once again $N^{+} * N^{-}$is boundary-starlike and $N^{\diamond}=\overline{N^{+} * N^{-}}$. Then

$$
\text { Vol } N^{\diamond}=\frac{\int_{N^{+} \times N^{-}} \vec{x} \wedge \vec{y} \wedge d \vec{x}^{\wedge a-1} \wedge d \vec{y}^{\wedge b-1}}{a b\binom{a+b}{a}}
$$

(That is, $(\vec{x}, \vec{y}) \in N^{+} \times N^{-}$. The integrand is a "double wedge" in the algebra $\Lambda^{*}\left(\mathbb{R}^{(a, b)}\right) \otimes \Omega^{*}\left(\mathbb{R}^{(a, b)}\right)$.)

The idea is just to divide $N \diamond$ into slices subtended by $\overrightarrow{0}$ and infinitesimal simplices at \vec{x} and \vec{y}. The slices are thin simplices; the integrand is a determinant.

From necks to linking forms

The integral resembles the Gauss linking integral in \mathbb{R}^{3} :

$$
\operatorname{Ik}\left(K_{1}, K_{2}\right)=\int_{K_{1} \times K_{2}} \frac{(\vec{x}-\vec{y}) \wedge d \vec{x} \wedge d \vec{y}}{4 \pi|\vec{x}-\vec{y}|^{3}}
$$

It even more resembles the $\mathrm{SO}(4)$-invariant linking integral in S^{3} (DeTurck-Gluck, K.):

$$
\operatorname{Ik}\left(K_{1}, K_{2}\right)=\int_{K_{1} \times K_{2}} \phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d \vec{x} \wedge d \vec{y}
$$

where

$$
\phi(\cos \alpha)=\frac{(\pi-\alpha)(\cos \alpha)+(\sin \alpha)}{4 \pi^{2}\left(\sin \alpha^{3}\right)}
$$

If we compactify $H^{ \pm}$to make $S^{2 n-1}=\overline{H^{+} \cup H^{-}}$, then $\operatorname{lk}\left(N^{+}, N^{-}\right)=1$ always.

From necks to linking forms

There is an $\mathrm{SO}(a, b)$-invariant linking form on $H^{+} \cup H^{-}$. Let

$$
\omega=\phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d \vec{x}^{\wedge a-1} \wedge d \vec{y}^{\wedge b-1}
$$

The main necessary condition is that $\omega(\vec{x}, \vec{y})$ is a "weak cycle":

$$
d_{x} d_{y} \omega=-d_{y} d_{x} \omega=0
$$

It is also sufficient if ω is $\mathrm{SO}(a, b)$-invariant. The weak cycle condition yields the ODE

$$
f^{\prime \prime}+(a+b)(\tanh \alpha) f^{\prime}+a b f=0
$$

where

$$
f(\alpha)=\phi(\sinh \alpha)
$$

From necks to linking forms

The ODE for $f(\alpha)$ is a damped harmonic oscillator, whose even solutions look like this:

End of the proof

So $\phi(t) \leq 1$. Moreover, $\vec{x} \wedge \vec{y} \wedge d \vec{x}^{\wedge a-1} \wedge d \vec{y}^{\wedge b-1}>0$, because $N^{ \pm}$ have spacelike and timelike points and tangencies.

Finally $l\left(N^{+}, N^{-}\right) \leq w\left(N^{+}, N^{-}\right)$, where

$$
\begin{aligned}
l\left(N^{+}, N^{-}\right) & =\int_{N^{+} \times N^{-}} \phi(\vec{x} \cdot \vec{y}) \vec{x} \wedge \vec{y} \wedge d \vec{x}^{\wedge a-1} \wedge d \vec{y}^{\wedge b-1} \\
w\left(N^{+}, N^{-}\right) & =\int_{N^{+} \times N^{-}} \vec{x} \wedge \vec{y} \wedge d \vec{x}^{\wedge a-1} \wedge d \vec{y}^{\wedge b-1}
\end{aligned}
$$

with equality when $\vec{x} \cdot \vec{y}=0$ on all of $N^{+} \times N^{-}$. But

$$
l\left(N^{+}, N^{-}\right) \propto \operatorname{lk}\left(N^{+}, N^{-}\right)=1
$$

is constant, while

$$
\operatorname{Vol} N^{\diamond} \propto w\left(N^{+}, N^{-}\right)
$$

Thus N^{\diamond} is minimized when $N^{+} \perp N^{-}$.

Where the proof came from
The proof came from the following picture, when $b=1$. Let π be the projection perpendicular to N^{-}(which is just two points).

Vol $N^{\diamond}=\left(\operatorname{Vol} \overline{N^{-}}\right)\left(\operatorname{Vol} \overline{\pi\left(N^{+}\right)}\right) / a$. Since $\pi\left(N^{+}\right)$encircles the hole of $\pi\left(H^{+}\right)$, the result follows. This encirclement is a baby linking number.

More table-turning?

There are some interesting loose ends, like whether K^{\diamond} is always convex. (N^{\diamond} need not be.)

The most ambitious question is another example of table-turning.
Conjecture 7 The probabilistic expectation

$$
E_{K \times K^{\circ}}\left[(\vec{x} \cdot \vec{y})^{2}\right]
$$

is maximized by ellipsoids.

This conjecture is well-known to imply the famous isotropic constant conjecture, that L_{K} is universally bounded. My point is that if we view Conjecture 7 as an exact maximization problem, using the symmetry of ellipsoids, it may be within reach. (If it is true!)

