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Talagrand’s two level concentration

Let ν be a symmetric exponential measure on R, i.e. the
probability measure with the density 1

2e−|x | and for 1 ≤ p ≤ ∞,

Bn
p =

{
x ∈ Rn : ‖x‖p = (

n∑
i=1

|xi |p)1/p ≤ 1
}

Theorem (Talagrand 1991)
There exists a constant C such that for any n and Borel set A in
Rn

νn(A +
√

tBn
2 + tBn

1 ) ≥ 1− 1
νn(A)

e−t/C .
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Maurey’s property (τ)

In 1991 B. Maurey proposed the following definition.

Definition
Let µ be a probability measure on Rn and ϕ : Rn → [0,∞). We say
that a pair (µ, ϕ) has the property (τ) if for any bounded
measurable function f : Rn → R,∫

e−f dµ
∫

ef 2ϕdµ ≤ 1,

where
f 2ϕ(x) := inf

y
(f (y) + ϕ(x − y))

is the infimum convolution of f and ϕ.
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Basic properties

Proposition (Tensorization)

If pairs (µi , ϕi ), i = 1, . . . , k have property (τ) and
ϕ(x1, . . . , xk) = ϕ1(x1) + . . .+ ϕk(xk), then the couple
(⊗k

i=1µi , ϕ) also has property (τ).

Proposition (Transport of measure)

Suppose that (µ, ϕ) has property (τ) and T : Rn → Rm is such
that

ψ(Tx − Ty) ≤ ϕ(x − y) for all x , y ∈ Rn.

Then the pair (µ ◦ T−1, ψ) has property (τ).
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Main Maurey’s results

Proposition (Concentration of measure)

If the pair (µ, ϕ) has the property (τ) then for all t > 0,

µ(A + Bϕ(t)) ≥ 1− 1
µ(A)

e−t ,

where
Bϕ(t) := {x ∈ Rn : ϕ(x) ≤ t}.

Theorem (Maurey 1991)

Let w(x) = 1
36x2 for |x | ≤ 4 and w(x) = 2

9(|x | − 2) otherwise.
Then the pair (νn,

∑n
i=1 w(xi )) has property (τ). In particular

∀t≥0 ν
n(A + 6

√
tBn

2 + 9tBn
1 ) ≥ 1− 1

νn(A)
e−t .
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In search of a cost function

Let µ be a "nice" probability measure on Rn. What function ϕ can
we choose so (µ, ϕ) would have property (τ)?
If f (x) = 〈t, x〉 for some t ∈ Rn, then

f 2ϕ(x) = inf
y

(ϕ(y) + 〈t, x − y〉) = 〈t, x〉 − sup
y

(〈t, y〉 − ϕ(y))

= 〈t, x〉 − Lϕ(t).

Therefore ∫
ef 2ϕdµ

∫
e−f dµ = eΛµ(t)+Λµ(−t)−Lϕ(t),

where
Λµ(t) := ln

∫
e〈t,x〉dµ(x).

Hence property (τ) for (µ, ϕ) implies Lϕ(t) ≥ Λµ(t) + Λµ(−t).
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Infimum Convolution Inequality

If µ is a symmetric measure on Rn and the cost function ϕ is
convex then property (τ) for (µ, ϕ) implies Lϕ(t) ≥ 2Λµ(t), i.e.

ϕ(x) ≤ 2Λ∗µ(
x
2
),

where

Λ∗µ(x) = LΛµ(x) = sup
t

(
〈t, x〉 − ln

∫
e〈t,y〉dµ(y)

)
.

This motivates the following

Definition
We say that a symmetric probability measure µ on Rn satisfies the
infimum convolution inequality with a constant C (IC(C ) in short)
if the pair (µ,Λ∗µ(C−1x)) has property (τ), i.e. for all bounded
measurable functions f ,∫

e−f dµ
∫

ef 2Λ∗µ(C−1·)dµ ≤ 1.
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Rephrased Maurey’s results

Proposition (Tensorization)

If µi satisfy IC(Ci ) for i = 1, . . . , k, then ⊗k
i=1µi satisfies IC(C )

with C = maxi Ci .

Theorem
The measure νn satisfies IC(C ) with universal C .

Proof. Standard calculation shows that Λν(t) = 1
1−t2 for |t| < 1

and Λ∗ν(x) ∼ min(|x |, x2). The assertion follows by Maurey’s
theorem.
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Questions

Which other measures on R satisfy IC?
Which nice (nonproduct) measures on Rn satisfy IC (with
constant not dependending on dimension)?
What kind of concentration is implied by IC?
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Level sets

How look the sets

Bµ(u) := {x ∈ Rn : Λ∗µ(x) ≤ u}?

Definition
Let µ be a symmetric probability measure on Rn and p ≥ 1 be
such that

∫
|xi |pdµ <∞ for all i . We set

Mµ(p) :=
{

t ∈ Rn :

∫
|〈t, x〉|pdµ(x) ≤ 1

}
and

Zµ(p) := (Mµ(p))◦

= {y ∈ Rn : |〈t, y〉|p ≤ E|〈t, x〉|pdµ(x) for all t ∈ Rn}
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Regular measures

Definition
We say that a measure µ on Rn is α-regular if for all p ≥ q ≥ 2
and all t ∈ Rn,( ∫

|〈t, x〉|pdµ(x)
)1/p

≤ α
p
q

( ∫
|〈t, x〉|qdµ(x)

)1/q
.

Proposition
All symmetric logconcave measures are 1-regular.

Proposition
Suppose that µ is a symmetric, isotropic α-regular measure on Rn.
Then

Bµ(t) ∼α

{ √
tBn

2 0 ≤ t ≤ 2
Zµ(t) t ≥ 2.
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Concentration Inequality

Definition
We say that a propability measure µ on Rn satisfy the
concentration inequality with constant C (CI(C ) in short) if for all
t ≥ 2 and all Borel sets A,

µ(A + CZµ(t)) ≥ 1− 1
µ(A)

e−t . (1)

Remark. The condition (1) is equivalent to the condition

µ(A + CZµ(t)) ≥ min(etµ(A),
1
2
)

for all t ≥ 2 and Borel sets A.
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Equivalence between IC and CI inequalities

Proposition
If µ is α-regular symmetric, then IC(C ) implies CI(CαC ).

Definition
We say that a measure µ satisfies the Cheeger’s inequality with
constant κ if

µ+(A) ≥ κmin(µ(A), 1− µ(A)),

where µ+(A) := lim infu→0+
µ(A+tBn

2 )−µ(A)
t .

Proposition
If µ is an α-regular symmetric and satisfies Cheeger’s inequality
with constant κ, then CI(C ) implies IC(C (α, κ,C )).
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Weak and strong moments

For which measures µ on Rn weak and strong moments are
comparable in the sense that for all p ≥ 2,( ∫

‖x‖pdµ
)1/p

≤
( ∫

‖x‖2dµ
)1/2

+C sup
‖x∗‖≤1

( ∫
|x∗(x)|pdµ

)1/p
.

(2)

Definition
We will say that µ has property WSM(C ) if (2) holds for all p ≥ 2.

If µ is logconcave, isotropic and satisfies WSM(C ) then we get for
all p ≥ 2, ( ∫

‖x‖p
2dµ

)1/p
≤
√

n + Cp.

(comp. Klartag CLT and Paouris Concentration of mass)

Infimum convolution p. 27 of 41



Weak and strong moments

For which measures µ on Rn weak and strong moments are
comparable in the sense that for all p ≥ 2,( ∫

‖x‖pdµ
)1/p

≤
( ∫

‖x‖2dµ
)1/2

+C sup
‖x∗‖≤1

( ∫
|x∗(x)|pdµ

)1/p
.

(2)

Definition
We will say that µ has property WSM(C ) if (2) holds for all p ≥ 2.

If µ is logconcave, isotropic and satisfies WSM(C ) then we get for
all p ≥ 2, ( ∫

‖x‖p
2dµ

)1/p
≤
√

n + Cp.

(comp. Klartag CLT and Paouris Concentration of mass)

Infimum convolution p. 28 of 41



WCM for IC measures

Proposition
For any measure µ, CI(C ) implies WCM(KC ).

The proof is based on standard integration by parts argument.
Remark. For any measure µ on Rn and p ≥ n,( ∫

‖x‖pdµ
)1/p

≤ 10 sup
‖x∗‖≤1

( ∫
|x∗(x)|p

)1/p
.
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Product measures

Theorem
Every symmetric logconcave measure on R satisfies IC(C ) with
universal constant C.

Proof is based on transport of measure and Maurey’s result for
exponential measure.

Corollary
Every symmetric product logconcave measure on Rn satisfies
IC(C1), CI(C2) and WSM(C3) with universal constants Ci .
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Uniform measures on Bn
p

Let µp,n denote the uniform distribution on n1/pBn
p , i.e.

µp,n(A) =
vol(A ∩ n1/pBn

p )

vol(n1/pBn
p )

.

Theorem
Measures µp,n, 1 ≤ p ≤ ∞, n = 1, 2 . . . satisfy IC(C ) with a
universal constant C not depending on p and n.
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Sketch of the proof

Suppose that 1 ≤ p ≤ 2, then µp,n satisfies Cheeger’s inequality
with some universal κ (Sodin), so it is enough to show that µp,n
satisfy CI(C ). For t ≥ n, Zt(µp,n) ∼ n1/pBn

p and for 2 ≤ t ≤ n,
Zt(µp,n) ∼

√
tBn

2 + t1/pBn
p . We need to show that for 2 ≤ t ≤ n,

µp,n(A + C
√

tBn
2 + Ct1/pBn

p ) ≥ min(etµ(A),
1
2
). (3)

Let νp,n be the probability measure on Rn with the density
cn

p exp(−‖x‖p
p). This measure is product logconcave, so it satisfies

IC(C ), so CI(C ) and it is easy to check that for all t ≥ 2,
Zt(νp,n) ∼

√
tBn

2 + t1/pBn
p . Hence (3) holds with µp,n replaced by

νp,n.
There exists T = Tp,n : Rn → Rn of the form Tx = x

‖x‖p
fp,n(‖x‖p)

that transports νp,n onto µp,n. It is easy to check that
‖Tx −Ty‖p ≤ C‖x − y‖p. However T is not Lipschitz with respect
to Euclidean norm.
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Sketch of the proof ctd

One can however show that T is Lipschitz on C
√

nBn
2 \ 1

C n1/pBn
p .

We have νp,n(
1
C n1/pBn

p ) ≤ e−n and we can easily deal with it.
Unfortunately

νp,n

(
Rn \ C

√
nBn

2

)
is of order the exp(−np/2) >> exp(−n). To treat this case we need
a slightly improved Talagrand’s inequality

Proposition

Suppose that (A + 10tBn
1 ) ∩ 4

√
nBn

2 = ∅, then

νn(A + 10tBn
1 ) ≥ etνn(A).

This inequality may be transported to νp,n (tBn
1 would be replaced

by t1/pBn
p ) and then to µp,n.
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Convex versions

One may also consider concex IC and convex CI. We say µ has
convex IC(C ) if for all convex functions f∫

e−f dµ
∫

ef 2Λ∗µ(C−1·)dµ ≤ 1.

And µ has convex CI(C ) if for all Borel convex sets A

µ(A + CZµ(t)) ≥ 1− 1
µ(A)

e−t .

For example uniform distrinution on {−1, 1}n has convex CI(C )
(Talagrand) and convex IC(C ) (Maurey).
Convex CI is equivalent to convex IC for uniform measures.
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Open questions

Characterization of IC(C ) measures on R.
Does uniform distributions on Orlicz Balls satisfy IC?
Uniform distribution on 1-symmetric convex sets?
Logconcave measures?
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