On the infimum convolution inequality

Rafał Latała (joint work with Jakub Wojtaszczyk)

Warsaw University

Samos, June 25 2007

Infimum convolution p. 1 of 41

Let ν be a symmetric exponential measure on \mathbb{R} , i.e. the probability measure with the density $\frac{1}{2}e^{-|x|}$ and for $1 \le p \le \infty$,

$$B_p^n = \left\{ x \in \mathbb{R}^n \colon \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \le 1 \right\}$$

Theorem (Talagrand 1991)

There exists a constant C such that for any n and Borel set A in \mathbb{R}^n

$$u^n(A + \sqrt{t}B_2^n + tB_1^n) \ge 1 - \frac{1}{\nu^n(A)}e^{-t/C}$$

In 1991 B. Maurey proposed the following definition.

Definition

Let μ be a probability measure on \mathbb{R}^n and $\varphi \colon \mathbb{R}^n \to [0, \infty)$. We say that a pair (μ, φ) has the property (τ) if for any bounded measurable function $f \colon \mathbb{R}^n \to \mathbb{R}$,

$$\int e^{-f} d\mu \int e^{f \Box \varphi} d\mu \leq 1,$$

where

$$f \Box \varphi(x) := \inf_{y} (f(y) + \varphi(x - y))$$

is the infimum convolution of f and φ .

Proposition (Tensorization)

If pairs
$$(\mu_i, \varphi_i)$$
, $i = 1, ..., k$ have property (τ) and $\varphi(x_1, ..., x_k) = \varphi_1(x_1) + ... + \varphi_k(x_k)$, then the couple $(\bigotimes_{i=1}^k \mu_i, \varphi)$ also has property (τ) .

Proposition (Transport of measure)

Suppose that (μ, φ) has property (τ) and $T : \mathbb{R}^n \to \mathbb{R}^m$ is such that

$$\psi(Tx - Ty) \le \varphi(x - y)$$
 for all $x, y \in \mathbb{R}^n$.

Then the pair $(\mu \circ T^{-1}, \psi)$ has property (τ) .

Proposition (Tensorization)

If pairs
$$(\mu_i, \varphi_i)$$
, $i = 1, ..., k$ have property (τ) and $\varphi(x_1, ..., x_k) = \varphi_1(x_1) + ... + \varphi_k(x_k)$, then the couple $(\bigotimes_{i=1}^k \mu_i, \varphi)$ also has property (τ) .

Proposition (Transport of measure)

Suppose that (μ, φ) has property (τ) and $T : \mathbb{R}^n \to \mathbb{R}^m$ is such that

$$\psi(\mathsf{T} x - \mathsf{T} y) \leq \varphi(x - y)$$
 for all $x, y \in \mathbb{R}^n$.

Then the pair $(\mu \circ T^{-1}, \psi)$ has property (τ) .

Proposition (Concentration of measure)

If the pair $(\mu, arphi)$ has the property (au) then for all t > 0,

$$\mu(A+B_{\varphi}(t))\geq 1-\frac{1}{\mu(A)}e^{-t},$$

where

$$B_{\varphi}(t) := \{x \in \mathbb{R}^n \colon \varphi(x) \le t\}.$$

Theorem (Maurey 1991)

Let $w(x) = \frac{1}{36}x^2$ for $|x| \le 4$ and $w(x) = \frac{2}{9}(|x| - 2)$ otherwise. Then the pair $(\nu^n, \sum_{i=1}^n w(x_i))$ has property (τ) . In particular

$$\forall_{t\geq 0} \ \nu^n (A + 6\sqrt{t}B_2^n + 9tB_1^n) \geq 1 - rac{1}{
u^n(A)}e^{-t}.$$

Proposition (Concentration of measure)

If the pair $(\mu, arphi)$ has the property (au) then for all t > 0,

$$\mu(A+B_{\varphi}(t))\geq 1-\frac{1}{\mu(A)}e^{-t},$$

where

$$B_{\varphi}(t) := \{x \in \mathbb{R}^n \colon \varphi(x) \le t\}.$$

Theorem (Maurey 1991)

Let $w(x) = \frac{1}{36}x^2$ for $|x| \le 4$ and $w(x) = \frac{2}{9}(|x| - 2)$ otherwise. Then the pair $(\nu^n, \sum_{i=1}^n w(x_i))$ has property (τ) . In particular

$$\forall_{t\geq 0} \ \nu^n (A + 6\sqrt{t}B_2^n + 9tB_1^n) \geq 1 - \frac{1}{\nu^n(A)}e^{-t}.$$

In search of a cost function

Let μ be a "nice" probability measure on \mathbb{R}^n . What function φ can we choose so (μ, φ) would have property (τ) ? If $f(x) = \langle t, x \rangle$ for some $t \in \mathbb{R}^n$, then

$$f \Box \varphi(x) = \inf_{y} (\varphi(y) + \langle t, x - y \rangle) = \langle t, x \rangle - \sup_{y} (\langle t, y \rangle - \varphi(y))$$
$$= \langle t, x \rangle - \mathcal{L}\varphi(t).$$

Therefore

$$\int e^{f \Box \varphi} d\mu \int e^{-f} d\mu = e^{\Lambda_{\mu}(t) + \Lambda_{\mu}(-t) - \mathcal{L}\varphi(t)},$$

where

$$\Lambda_{\mu}(t) := \ln \int e^{\langle t, x \rangle} d\mu(x).$$

Hence property (τ) for (μ, φ) implies $\mathcal{L}\varphi(t) \ge \Lambda_{\mu}(t) + \Lambda_{\mu}(-t)$.

In search of a cost function

Let μ be a "nice" probability measure on \mathbb{R}^n . What function φ can we choose so (μ, φ) would have property (τ) ? If $f(x) = \langle t, x \rangle$ for some $t \in \mathbb{R}^n$, then

$$egin{aligned} &f \Box arphi(x) = \inf_y (arphi(y) + \langle t, x - y
angle) = \langle t, x
angle - \sup_y (\langle t, y
angle - arphi(y)) \ &= \langle t, x
angle - \mathcal{L} arphi(t). \end{aligned}$$

Therefore

$$\int e^{f \Box \varphi} d\mu \int e^{-f} d\mu = e^{\Lambda_{\mu}(t) + \Lambda_{\mu}(-t) - \mathcal{L}\varphi(t)},$$

where

$$\Lambda_{\mu}(t) := \ln \int e^{\langle t,x
angle} d\mu(x).$$

Hence property (τ) for (μ, φ) implies $\mathcal{L}\varphi(t) \ge \Lambda_{\mu}(t) + \Lambda_{\mu}(-t)$.

In search of a cost function

Let μ be a "nice" probability measure on \mathbb{R}^n . What function φ can we choose so (μ, φ) would have property (τ) ? If $f(x) = \langle t, x \rangle$ for some $t \in \mathbb{R}^n$, then

$$egin{aligned} &f \Box arphi(x) = \inf_y (arphi(y) + \langle t, x - y
angle) = \langle t, x
angle - \sup_y (\langle t, y
angle - arphi(y)) \ &= \langle t, x
angle - \mathcal{L} arphi(t). \end{aligned}$$

Therefore

$$\int e^{f \Box \varphi} d\mu \int e^{-f} d\mu = e^{\Lambda_{\mu}(t) + \Lambda_{\mu}(-t) - \mathcal{L}\varphi(t)},$$

where

$$\Lambda_{\mu}(t) := \ln \int e^{\langle t,x
angle} d\mu(x).$$

Hence property (τ) for (μ, φ) implies $\mathcal{L}\varphi(t) \ge \Lambda_{\mu}(t) + \Lambda_{\mu}(-t)$.

Infimum Convolution Inequality

If μ is a symmetric measure on \mathbb{R}^n and the cost function φ is convex then property (τ) for (μ, φ) implies $\mathcal{L}\varphi(t) \ge 2\Lambda_{\mu}(t)$, i.e.

$$\varphi(x) \leq 2\Lambda^*_{\mu}(\frac{x}{2}),$$

where

$$\Lambda^*_\mu(x) = \mathcal{L} \Lambda_\mu(x) = \sup_t \Big(\langle t,x
angle - \ln \int e^{\langle t,y
angle} d\mu(y) \Big).$$

This motivates the following

Definition

We say that a symmetric probability measure μ on \mathbb{R}^n satisfies the infimum convolution inequality with a constant C (IC(C) in short) if the pair $(\mu, \Lambda^*_{\mu}(C^{-1}x))$ has property (τ) , i.e. for all bounded measurable functions f,

$$\int e^{-f} d\mu \int e^{f \Box \Lambda_{\mu}^*(C^{-1} \cdot)} d\mu \leq 1.$$

Infimum Convolution Inequality

If μ is a symmetric measure on \mathbb{R}^n and the cost function φ is convex then property (τ) for (μ, φ) implies $\mathcal{L}\varphi(t) \ge 2\Lambda_{\mu}(t)$, i.e.

$$\varphi(x) \leq 2\Lambda^*_{\mu}(\frac{x}{2}),$$

where

$$\Lambda^*_{\mu}(x) = \mathcal{L}\Lambda_{\mu}(x) = \sup_t \Big(\langle t, x \rangle - \ln \int e^{\langle t, y \rangle} d\mu(y) \Big).$$

This motivates the following

Definition

We say that a symmetric probability measure μ on \mathbb{R}^n satisfies the infimum convolution inequality with a constant C (IC(C) in short) if the pair (μ , $\Lambda^*_{\mu}(C^{-1}x)$) has property (τ), i.e. for all bounded measurable functions f,

$$\int e^{-f} d\mu \int e^{f \Box \Lambda^*_\mu(C^{-1} \cdot)} d\mu \leq 1.$$

Proposition (Tensorization)

If μ_i satisfy IC(C_i) for i = 1, ..., k, then $\bigotimes_{i=1}^k \mu_i$ satisfies IC(C) with $C = \max_i C_i$.

Theorem

The measure ν^n satisfies IC(C) with universal C.

Proof. Standard calculation shows that $\Lambda_{\nu}(t) = \frac{1}{1-t^2}$ for |t| < 1 and $\Lambda_{\nu}^*(x) \sim \min(|x|, x^2)$. The assertion follows by Maurey's theorem.

Proposition (Tensorization)

If μ_i satisfy IC(C_i) for i = 1, ..., k, then $\bigotimes_{i=1}^k \mu_i$ satisfies IC(C) with $C = \max_i C_i$.

Theorem

The measure ν^n satisfies IC(C) with universal C.

Proof. Standard calculation shows that $\Lambda_{\nu}(t) = \frac{1}{1-t^2}$ for |t| < 1 and $\Lambda_{\nu}^*(x) \sim \min(|x|, x^2)$. The assertion follows by Maurey's theorem.

- \bullet Which other measures on $\mathbb R$ satisfy $\operatorname{IC} ?$
- Which nice (nonproduct) measures on \mathbb{R}^n satisfy IC (with constant not dependending on dimension)?
- What kind of concentration is implied by IC?

Level sets

How look the sets

$$B_{\mu}(u) := \{x \in \mathbb{R}^n \colon \Lambda^*_{\mu}(x) \le u\}?$$

Definition

Let μ be a symmetric probability measure on \mathbb{R}^n and $p \ge 1$ be such that $\int |x_i|^p d\mu < \infty$ for all *i*. We set

$$\mathcal{M}_{\mu}(p):=\left\{t\in\mathbb{R}^{n}\colon\int|\langle t,x
angle|^{p}d\mu(x)\leq1
ight\}$$

and

$$\begin{aligned} \mathcal{Z}_{\mu}(p) &:= (\mathcal{M}_{\mu}(p))^{\circ} \\ &= \{ y \in \mathbb{R}^{n} \colon |\langle t, y \rangle|^{p} \leq \mathbf{E} |\langle t, x \rangle|^{p} d\mu(x) \text{ for all } t \in \mathbb{R}^{n} \} \end{aligned}$$

Level sets

How look the sets

$$B_{\mu}(u) := \{x \in \mathbb{R}^n \colon \Lambda^*_{\mu}(x) \le u\}$$
?

Definition

Let μ be a symmetric probability measure on \mathbb{R}^n and $p \ge 1$ be such that $\int |x_i|^p d\mu < \infty$ for all *i*. We set

$$\mathcal{M}_{\mu}(p) := \left\{ t \in \mathbb{R}^n \colon \int |\langle t, x
angle|^p d\mu(x) \leq 1
ight\}$$

and

 $egin{aligned} &\mathcal{Z}_{\mu}(p) := (\mathcal{M}_{\mu}(p))^{\circ} \ &= \{y \in \mathbb{R}^n \colon |\langle t,y
angle|^p \leq \mathbf{E} |\langle t,x
angle|^p d\mu(x) ext{ for all } t \in \mathbb{R}^n \} \end{aligned}$

Level sets

How look the sets

$$B_{\mu}(u) := \{x \in \mathbb{R}^n \colon \Lambda^*_{\mu}(x) \le u\}$$
?

Definition

Let μ be a symmetric probability measure on \mathbb{R}^n and $p \ge 1$ be such that $\int |x_i|^p d\mu < \infty$ for all *i*. We set

$$\mathcal{M}_{\mu}(p) := \left\{ t \in \mathbb{R}^n \colon \int |\langle t, x
angle|^p d\mu(x) \leq 1
ight\}$$

and

$$egin{aligned} \mathcal{Z}_{\mu}(p) &:= (\mathcal{M}_{\mu}(p))^{\circ} \ &= \{y \in \mathbb{R}^n \colon |\langle t,y
angle|^p \leq \mathbf{E} |\langle t,x
angle|^p d\mu(x) ext{ for all } t \in \mathbb{R}^n \} \end{aligned}$$

We say that a measure μ on \mathbb{R}^n is α -regular if for all $p \ge q \ge 2$ and all $t \in \mathbb{R}^n$,

$$\left(\int |\langle t,x\rangle|^p d\mu(x)\right)^{1/p} \leq \alpha \frac{p}{q} \left(\int |\langle t,x\rangle|^q d\mu(x)\right)^{1/q}$$

Proposition

All symmetric logconcave measures are 1-regular.

Proposition

Suppose that μ is a symmetric, isotropic α -regular measure on \mathbb{R}^n . Then

$$B_{\mu}(t)\sim_{lpha} \left\{ egin{array}{cc} \sqrt{t}B_2^n & 0\leq t\leq 2\ \mathcal{Z}_{\mu}(t) & t\geq 2. \end{array}
ight.$$

We say that a measure μ on \mathbb{R}^n is α -regular if for all $p \ge q \ge 2$ and all $t \in \mathbb{R}^n$,

$$\left(\int |\langle t,x\rangle|^p d\mu(x)\right)^{1/p} \leq \alpha \frac{p}{q} \left(\int |\langle t,x\rangle|^q d\mu(x)\right)^{1/q}$$

Proposition

All symmetric logconcave measures are 1-regular.

Proposition

Suppose that μ is a symmetric, isotropic α -regular measure on \mathbb{R}^n . Then

$$B_\mu(t)\sim_lpha \left\{egin{array}{cc} \sqrt{t}B_2^n & 0\leq t\leq 2\ \mathcal{Z}_\mu(t) & t\geq 2. \end{array}
ight.$$

We say that a measure μ on \mathbb{R}^n is α -regular if for all $p \ge q \ge 2$ and all $t \in \mathbb{R}^n$,

$$\left(\int |\langle t,x\rangle|^p d\mu(x)\right)^{1/p} \leq \alpha \frac{p}{q} \left(\int |\langle t,x\rangle|^q d\mu(x)\right)^{1/q}$$

Proposition

All symmetric logconcave measures are 1-regular.

Proposition

Suppose that μ is a symmetric, isotropic α -regular measure on \mathbb{R}^n . Then

$$egin{aligned} & B_\mu(t)\sim_lpha \left\{egin{aligned} & \sqrt{t}B_2^n & 0\leq t\leq 2\ & \mathcal{Z}_\mu(t) & t\geq 2. \end{aligned}
ight. \end{aligned}$$

We say that a propability measure μ on \mathbb{R}^n satisfy the concentration inequality with constant C (CI(C) in short) if for all $t \ge 2$ and all Borel sets A,

$$\mu(A+C\mathcal{Z}_{\mu}(t))\geq 1-\frac{1}{\mu(A)}e^{-t}. \tag{1}$$

Remark. The condition (1) is equivalent to the condition

$$\mu(A + C\mathcal{Z}_{\mu}(t)) \geq \min(e^{t}\mu(A), \frac{1}{2})$$

for all $t \ge 2$ and Borel sets A.

We say that a propability measure μ on \mathbb{R}^n satisfy the concentration inequality with constant C (CI(C) in short) if for all $t \ge 2$ and all Borel sets A,

$$\mu(A+C\mathcal{Z}_{\mu}(t))\geq 1-\frac{1}{\mu(A)}e^{-t}. \tag{1}$$

Remark. The condition (1) is equivalent to the condition

$$\mu(A + C\mathcal{Z}_{\mu}(t)) \geq \min(e^{t}\mu(A), \frac{1}{2})$$

for all $t \ge 2$ and Borel sets A.

Equivalence between IC and CI inequalities

Proposition

If μ is α -regular symmetric, then IC(C) implies CI($C_{\alpha}C$).

Definition

We say that a measure μ satisfies the Cheeger's inequality with constant κ if

$$\mu^+(A) \ge \kappa \min(\mu(A), 1 - \mu(A)),$$

where $\mu^+(A) := \liminf_{u \to 0+} \frac{\mu(A+tB_2^n) - \mu(A)}{t}$.

Proposition

If μ is an α -regular symmetric and satisfies Cheeger's inequality with constant κ , then CI(C) implies IC(C(α, κ, C)).

Proposition

If μ is α -regular symmetric, then IC(C) implies CI($C_{\alpha}C$).

Definition

We say that a measure μ satisfies the Cheeger's inequality with constant κ if

$$\mu^+(A) \ge \kappa \min(\mu(A), 1 - \mu(A)),$$

where $\mu^+(A) := \liminf_{u \to 0+} \frac{\mu(A+tB_2^n) - \mu(A)}{t}$.

Proposition

If μ is an α -regular symmetric and satisfies Cheeger's inequality with constant κ , then CI(C) implies IC(C(α, κ, C)).

Proposition

If μ is α -regular symmetric, then IC(C) implies CI($C_{\alpha}C$).

Definition

We say that a measure μ satisfies the Cheeger's inequality with constant κ if

$$\mu^+(A) \ge \kappa \min(\mu(A), 1 - \mu(A)),$$

where $\mu^+(A) := \liminf_{u \to 0+} \frac{\mu(A+tB_2^n) - \mu(A)}{t}$.

Proposition

If μ is an α -regular symmetric and satisfies Cheeger's inequality with constant κ , then CI(C) implies IC($C(\alpha, \kappa, C)$).

Weak and strong moments

For which measures μ on \mathbb{R}^n weak and strong moments are comparable in the sense that for all $p \geq 2$,

$$\left(\int \|x\|^{p} d\mu\right)^{1/p} \leq \left(\int \|x\|^{2} d\mu\right)^{1/2} + C \sup_{\|x^{*}\| \leq 1} \left(\int |x^{*}(x)|^{p} d\mu\right)^{1/p}.$$
(2)

Definition

We will say that μ has property WSM(C) if (2) holds for all $p \ge 2$.

If μ is logconcave, isotropic and satisfies WSM(C) then we get for all $p \geq 2$,

$$\left(\int \|x\|_2^p d\mu\right)^{1/p} \le \sqrt{n} + Cp.$$

(comp. Klartag CLT and Paouris Concentration of mass)

Weak and strong moments

For which measures μ on \mathbb{R}^n weak and strong moments are comparable in the sense that for all $p \geq 2$,

$$\left(\int \|x\|^{p} d\mu\right)^{1/p} \leq \left(\int \|x\|^{2} d\mu\right)^{1/2} + C \sup_{\|x^{*}\| \leq 1} \left(\int |x^{*}(x)|^{p} d\mu\right)^{1/p}.$$
(2)

Definition

We will say that μ has property WSM(C) if (2) holds for all $p \ge 2$.

If μ is logconcave, isotropic and satisfies WSM(C) then we get for all $p \ge 2$,

$$\left(\int \|x\|_2^p d\mu\right)^{1/p} \leq \sqrt{n} + Cp.$$

(comp. Klartag CLT and Paouris Concentration of mass)

Proposition

For any measure μ , CI(C) implies WCM(KC).

The proof is based on standard integration by parts argument. Remark. For any measure μ on \mathbb{R}^n and $p \ge n$,

$$\left(\int ||x||^{p} d\mu\right)^{1/p} \leq 10 \sup_{||x^{*}|| \leq 1} \left(\int |x^{*}(x)|^{p}\right)^{1/p}$$

Proposition

For any measure μ , CI(C) implies WCM(KC).

The proof is based on standard integration by parts argument. **Remark.** For any measure μ on \mathbb{R}^n and $p \ge n$,

$$\left(\int \|x\|^p d\mu\right)^{1/p} \le 10 \sup_{\|x^*\| \le 1} \left(\int |x^*(x)|^p\right)^{1/p}$$

Theorem

Every symmetric logconcave measure on \mathbb{R} satisfies IC(C) with universal constant C.

Proof is based on transport of measure and Maurey's result for exponential measure.

Corollary

Every symmetric product logconcave measure on \mathbb{R}^n satisfies $IC(C_1)$, $CI(C_2)$ and $WSM(C_3)$ with universal constants C_i .

Let $\mu_{p,n}$ denote the uniform distribution on $n^{1/p}B_p^n$, i.e.

$$\mu_{p,n}(A) = \frac{\operatorname{vol}(A \cap n^{1/p} B_p^n)}{\operatorname{vol}(n^{1/p} B_p^n)}.$$

Theorem

Measures $\mu_{p,n}$, $1 \le p \le \infty$, n = 1, 2... satisfy IC(C) with a universal constant C not depending on p and n.

Suppose that $1 \le p \le 2$, then $\mu_{p,n}$ satisfies Cheeger's inequality with some universal κ (Sodin), so it is enough to show that $\mu_{p,n}$ satisfy CI(C). For $t \ge n$, $Z_t(\mu_{p,n}) \sim n^{1/p} B_p^n$ and for $2 \le t \le n$, $Z_t(\mu_{p,n}) \sim \sqrt{t} B_2^n + t^{1/p} B_p^n$. We need to show that for $2 \le t \le n$,

$$\mu_{p,n}(A + C\sqrt{t}B_2^n + Ct^{1/p}B_p^n) \ge \min(e^t\mu(A), \frac{1}{2}).$$
(3)

Let $\nu_{p,n}$ be the probability measure on \mathbb{R}^n with the density $c_p^n \exp(-\|x\|_p^p)$. This measure is product logconcave, so it satisfies $\operatorname{IC}(C)$, so $\operatorname{CI}(C)$ and it is easy to check that for all $t \geq 2$, $\mathcal{Z}_t(\nu_{p,n}) \sim \sqrt{t}B_2^n + t^{1/p}B_p^n$. Hence (3) holds with $\mu_{p,n}$ replaced by $\nu_{p,n}$. There exists $T = T_{p,n} \colon \mathbb{R}^n \to \mathbb{R}^n$ of the form $Tx = \frac{x}{\|x\|_p} f_{p,n}(\|x\|_p)$ that transports $\nu_{p,n}$ onto $\mu_{p,n}$. It is easy to check that $\|Tx - Ty\|_p \leq C \|x - y\|_p$. However T is not Lipschitz with respect to Euclidean norm.

Suppose that $1 \le p \le 2$, then $\mu_{p,n}$ satisfies Cheeger's inequality with some universal κ (Sodin), so it is enough to show that $\mu_{p,n}$ satisfy CI(*C*). For $t \ge n$, $\mathcal{Z}_t(\mu_{p,n}) \sim n^{1/p} B_p^n$ and for $2 \le t \le n$, $\mathcal{Z}_t(\mu_{p,n}) \sim \sqrt{t} B_2^n + t^{1/p} B_p^n$. We need to show that for $2 \le t \le n$,

$$\mu_{p,n}(A + C\sqrt{t}B_2^n + Ct^{1/p}B_p^n) \ge \min(e^t\mu(A), \frac{1}{2}).$$
(3)

Let $\nu_{p,n}$ be the probability measure on \mathbb{R}^n with the density $c_p^n \exp(-\|x\|_p^p)$. This measure is product logconcave, so it satisfies $\operatorname{IC}(C)$, so $\operatorname{CI}(C)$ and it is easy to check that for all $t \geq 2$, $\mathcal{Z}_t(\nu_{p,n}) \sim \sqrt{t}B_2^n + t^{1/p}B_p^n$. Hence (3) holds with $\mu_{p,n}$ replaced by $\nu_{p,n}$. There exists $T = T_{p,n} \colon \mathbb{R}^n \to \mathbb{R}^n$ of the form $Tx = \frac{x}{\|x\|_p} f_{p,n}(\|x\|_p)$ that transports $\nu_{p,n}$ onto $\mu_{p,n}$. It is easy to check that $\|Tx - Ty\|_p \leq C \|x - y\|_p$. However T is not Lipschitz with respect to Euclidean norm.

Suppose that $1 \le p \le 2$, then $\mu_{p,n}$ satisfies Cheeger's inequality with some universal κ (Sodin), so it is enough to show that $\mu_{p,n}$ satisfy CI(*C*). For $t \ge n$, $\mathcal{Z}_t(\mu_{p,n}) \sim n^{1/p} B_p^n$ and for $2 \le t \le n$, $\mathcal{Z}_t(\mu_{p,n}) \sim \sqrt{t} B_2^n + t^{1/p} B_p^n$. We need to show that for $2 \le t \le n$,

$$\mu_{p,n}(A + C\sqrt{t}B_2^n + Ct^{1/p}B_p^n) \ge \min(e^t\mu(A), \frac{1}{2}).$$
(3)

Let $\nu_{p,n}$ be the probability measure on \mathbb{R}^n with the density $c_p^n \exp(-||x||_p^p)$. This measure is product logconcave, so it satisfies IC(C), so CI(C) and it is easy to check that for all $t \ge 2$, $\mathcal{Z}_t(\nu_{p,n}) \sim \sqrt{t}B_2^n + t^{1/p}B_p^n$. Hence (3) holds with $\mu_{p,n}$ replaced by $\nu_{p,n}$.

There exists $T = T_{p,n} \colon \mathbb{R}^n \to \mathbb{R}^n$ of the form $Tx = \frac{x}{\|x\|_p} f_{p,n}(\|x\|_p)$ that transports $\nu_{p,n}$ onto $\mu_{p,n}$. It is easy to check that $\|Tx - Ty\|_p \leq C \|x - y\|_p$. However T is not Lipschitz with respect to Euclidean norm.

Suppose that $1 \le p \le 2$, then $\mu_{p,n}$ satisfies Cheeger's inequality with some universal κ (Sodin), so it is enough to show that $\mu_{p,n}$ satisfy CI(C). For $t \ge n$, $\mathcal{Z}_t(\mu_{p,n}) \sim n^{1/p} B_p^n$ and for $2 \le t \le n$, $\mathcal{Z}_t(\mu_{p,n}) \sim \sqrt{t} B_2^n + t^{1/p} B_p^n$. We need to show that for $2 \le t \le n$,

$$\mu_{p,n}(A + C\sqrt{t}B_2^n + Ct^{1/p}B_p^n) \ge \min(e^t\mu(A), \frac{1}{2}).$$
(3)

Let $\nu_{p,n}$ be the probability measure on \mathbb{R}^n with the density $c_p^n \exp(-\|x\|_p^p)$. This measure is product logconcave, so it satisfies IC(C), so CI(C) and it is easy to check that for all $t \ge 2$, $\mathcal{Z}_t(\nu_{p,n}) \sim \sqrt{t}B_2^n + t^{1/p}B_p^n$. Hence (3) holds with $\mu_{p,n}$ replaced by $\nu_{p,n}$. There exists $T = T_{p,n} \colon \mathbb{R}^n \to \mathbb{R}^n$ of the form $Tx = \frac{x}{\|x\|_p} f_{p,n}(\|x\|_p)$ that transports $\nu_{p,n}$ onto $\mu_{p,n}$. It is easy to check that $\|Tx - Ty\|_p \le C \|x - y\|_p$. However T is not Lipschitz with respect to Euclidean norm.

One can however show that T is Lipschitz on $C\sqrt{n}B_2^n \setminus \frac{1}{C}n^{1/p}B_p^n$. We have $\nu_{p,n}(\frac{1}{C}n^{1/p}B_p^n) \leq e^{-n}$ and we can easily deal with it. Unfortunately

$$u_{p,n}\left(\mathbb{R}^n\setminus C\sqrt{n}B_2^n\right)$$

is of order the $\exp(-n^{p/2}) >> \exp(-n)$. To treat this case we need a slightly improved Talagrand's inequality

Proposition

Suppose that $(A + 10tB_1^n) \cap 4\sqrt{n}B_2^n = \emptyset$, then

$$\nu^n(A+10tB_1^n) \ge e^t \nu^n(A).$$

This inequality may be transported to $\nu_{p,n}$ (tB_1^n would be replaced by $t^{1/p}B_p^n$) and then to $\mu_{p,n}$.

One can however show that T is Lipschitz on $C\sqrt{n}B_2^n \setminus \frac{1}{C}n^{1/p}B_p^n$. We have $\nu_{p,n}(\frac{1}{C}n^{1/p}B_p^n) \leq e^{-n}$ and we can easily deal with it. Unfortunately

$$u_{p,n}\left(\mathbb{R}^n\setminus C\sqrt{n}B_2^n\right)$$

is of order the $\exp(-n^{p/2}) >> \exp(-n)$. To treat this case we need a slightly improved Talagrand's inequality

Proposition

Suppose that
$$(A + 10tB_1^n) \cap 4\sqrt{n}B_2^n = \emptyset$$
, then

$$\nu^n(A+10tB_1^n) \ge e^t \nu^n(A).$$

This inequality may be transported to $\nu_{p,n}$ (tB_1^n would be replaced by $t^{1/p}B_p^n$) and then to $\mu_{p,n}$.

One can however show that T is Lipschitz on $C\sqrt{n}B_2^n \setminus \frac{1}{C}n^{1/p}B_p^n$. We have $\nu_{p,n}(\frac{1}{C}n^{1/p}B_p^n) \leq e^{-n}$ and we can easily deal with it. Unfortunately

$$u_{p,n}\left(\mathbb{R}^n\setminus C\sqrt{n}B_2^n\right)$$

is of order the $\exp(-n^{p/2}) >> \exp(-n)$. To treat this case we need a slightly improved Talagrand's inequality

Proposition

Suppose that
$$(A + 10tB_1^n) \cap 4\sqrt{n}B_2^n = \emptyset$$
, then

$$\nu^n(A+10tB_1^n) \ge e^t \nu^n(A).$$

This inequality may be transported to $\nu_{p,n}$ (tB_1^n would be replaced by $t^{1/p}B_p^n$) and then to $\mu_{p,n}$.

One may also consider concex IC and convex CI. We say μ has convex IC(*C*) if for all *convex* functions *f*

$$\int e^{-f} d\mu \int e^{f \Box \Lambda_{\mu}^* (C^{-1} \cdot)} d\mu \leq 1.$$

And μ has convex CI(C) if for all Borel convex sets A

$$\mu(A+C\mathcal{Z}_{\mu}(t))\geq 1-rac{1}{\mu(A)}e^{-t}.$$

For example uniform distribution on $\{-1,1\}^n$ has convex CI(C) (Talagrand) and convex IC(C) (Maurey).

Convex CI is equivalent to convex IC for uniform measures.

- Characterization of IC(C) measures on \mathbb{R} .
- Does uniform distributions on Orlicz Balls satisfy IC?
- Uniform distribution on 1-symmetric convex sets?
- Logconcave measures?