# A simple proof of the functional Santaló inequality

Joseph Lehec Université Paris-Est

June 28, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## The Blaschke-Santaló inequality

Let K be a convex body in  $\mathbb{R}^n$ , there exists  $z \in \mathbb{R}^n$  such that

$$|K_z|_n |(K_z)^{\circ}|_n \le |D|_n |D^{\circ}|_n = v_n^2,$$

where  $|\cdot|_n$  stands for the volume,  $K_z = K + z$ ,  $(K_z)^\circ$  is its polar body, D the Euclidean ball and  $v_n$  its volume.

#### Remark

It is well known that one can choose z such that  $(K_z)^\circ$  has its centroid at 0. Hence we can rewrite the inequality as follows: if K is such that  $K^\circ$  has its center of mass at 0 then

 $|K|_n |K^\circ|_n \le v_n^2.$ 

### Notation

If g is a non-negative function such that both g and Ng are integrable

$$\operatorname{bar}(g) = \frac{\int g(x) x \, dx}{\int g(x) \, dx}$$

denotes its center of mass (or barycenter). The center of mass (or centroid) of convex body is by definition the barycenter of its indicator function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us define a functional analogue of the polar body:

## Definition

Let f be a non-negative function on  $\mathbb{R}^n$ , integrable with respect to the Lebesgue measure. We define the polar function of f by

$$f^{\circ}: x \longrightarrow \inf_{y \in \mathbb{R}^n} \frac{\mathrm{e}^{-x \cdot y}}{f(y)}$$

Remark  $(e^{-|x|^2/2})^\circ = e^{-|x|^2/2}.$ 

Equivalently:

$$\left(\mathrm{e}^{-\phi}\right)^{\circ} = \mathrm{e}^{-\mathcal{L}\phi},$$

where  $\mathcal{L}\phi$  is the Legendre transform of  $\phi$ :

$$\mathcal{L}\phi(x) = \sup_{y \in \mathbb{R}^n} \{x \cdot y - \phi(y)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The function  $f^{\circ}$  is log-concave and moreover  $f = (f^{\circ})^{\circ}$  iff f is log-concave.

## The functional Santaló inequality [AKM,2004]

Let f be a non-negative integrable function on  $\mathbb{R}^n$ , there exists  $z \in \mathbb{R}^n$  such that

$$\int f_z(x) \, dx \, \int (f_z)^{\circ}(y) \, dy \, \leq \, \left(\int e^{-|x|^2/2} \, dx\right)^2 = (2\pi)^n,$$

where  $f_z(x) = f(x - z)$ .

#### Remark

Again the theorem can be formulated the following way: if f is such that  $bar(f^{\circ}) = 0$  then

$$\int f(x) \, dx \, \int f^{\circ}(y) \, dy \, \leq \, (2\pi)^n.$$

This implies the usual Santaló inequality: if K is a convex body we write  $f_K = e^{-N_K^2/2}$ , where  $N_K$  is the gauge of K. One has

$$(f_K)^\circ = f_{K^\circ}$$

Besides  $\forall K$ :

$$\int f_K = c_n |K|_n$$

with  $c_n$  depending only on the dimension, it can be computed by taking K = D the Euclidean ball. Note also that  $(f_K)_z = f_{(K_z)}$ .

#### Theorem

Let f and g be non-negative Borel functions on  $\mathbb{R}^n$  satisfying

$$\forall x, y \quad f(x)g(y) \leq e^{-x \cdot y}$$

Let H be an affine hyperplane,  $H_+$ ,  $H_-$  the two half-spaces separated by H and let  $\lambda \in [0, 1]$  be defined by  $\lambda \int_{\mathbb{R}^n} f = \int_{H_+} f$ . There exists  $z \in H$  such that

$$\int f(x) dx \int g(y) e^{y \cdot z} dy \leq \frac{1}{4\lambda(1-\lambda)} (2\pi)^n.$$

In particular, there exists  $z \in \mathbb{R}^n$  such that

$$\int f(x) dx \int g(y) e^{y \cdot z} dy \leq (2\pi)^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

This theorem yields the following functional Santaló inequality: Corollary Let f and g satisfy

$$\forall x, y \quad f(x)g(y) \leq e^{-x \cdot y}$$

If f (or g) has its barycenter at 0 then

$$\int f(x) \, dx \, \int g(y) \, dy \, \leq \, (2\pi)^n.$$

#### Remark

In Artstein, Klartag and Milman's result, one has to assume that the function that has its barycenter at 0 is log-concave.

#### Proof of the corollary.

Suppose for example that bar(g) = 0. Let us define

$$h: z \in \mathbb{R}^n \to \int_{\mathbb{R}^n} g(x) \mathrm{e}^{x \cdot z} \, dx,$$

The function h attains its minimum at 0. On the other hand, by the preceding theorem, there exists z such that

$$\int f(x)\,dx\int g(x)\,\mathrm{e}^{x\cdot z}\,dx\leq (2\pi)^n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We recall the Prékopa-Leindler inequality: if f, g, h are non-negative function on  $\mathbb{R}^n$  satisfying

$$f(x)^{\lambda}g(y)^{1-\lambda} \leq h(\lambda x + (1-\lambda)y)$$

for all x, y in  $\mathbb{R}^n$  and for some fixed  $\lambda \in (0, 1)$ , then

$$\left(\int_{\mathbb{R}^n} f(x)\,dx\right)^\lambda \left(\int_{\mathbb{R}^n} g(y)\,dy\right)^{1-\lambda} \leq \int_{\mathbb{R}^n} h(z)\,dz.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Let  $\phi_1, \phi_2, \rho$  be non-negative Borel functions on  $\mathbb{R}_+$ , with  $\rho$  integrable. If

$$orall s,t>0, \quad \phi_1(s)\phi_2(t)\leq 
ho(\sqrt{st})^2$$

then

$$\int_{\mathbb{R}_+} \phi_1(s) \, ds \int_{\mathbb{R}_+} \phi_2(t) \, dt \leq \left(\int_{\mathbb{R}_+} 
ho(r) \, dr
ight)^2.$$

#### Proof.

Apply the Prékopa-Leindler inequality (with  $\lambda = 1/2$ ) to

$$f(x) = \phi_1(e^x)e^x$$
  

$$g(y) = \phi_2(e^y)e^y$$
  

$$h(z) = \rho(e^z)e^z. \square$$

Remark When  $ho(r) = e^{-r^2/2}$  this lemma becomes: if  $orall s, t > 0, \quad \phi_1(s)\phi_2(t) \le e^{-st}$ 

then

$$\int_{\mathbb{R}_+} \phi_1(s) \, ds \int_{\mathbb{R}_+} \phi_2(t) \, dt \leq rac{\pi}{2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Proof of the theorem (case $\lambda = 1/2$ )

In dimension 1: assume  $\int f = 1$ , let r be a median of f. We apply the preceding inequality to  $\phi_1(s) = f(s+r)$  and  $\phi_2(t) = g(t)e^{rt}$ . We get

$$\int_r^\infty f(s)\,ds\,\int_0^\infty g(t)\mathrm{e}^{rt}\,dt\leq \frac{\pi}{2}$$

hence

$$\int_0^\infty g(t) \mathrm{e}^{rt} \, dt \le \pi.$$

Similarly, working with  $\phi_1(s) = f(-s+r)$  and  $\phi_2(t) = g(-t)e^{-rt}$ , we obtain

$$\int_{-\infty}^0 g(t) \mathrm{e}^{rt} \, dt \leq \pi.$$

Adding the last two inequalities yields the result in dimension 1.

うせん 御 (前) (日) (日) (日)



$$b_+ = bar(f_{|H_+})$$
 and  $b_- = bar(f_{|H_-})$ .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

We are going to prove that

$$\int_{\mathbb{R}^n} g(x) \mathrm{e}^{z \cdot x} \, dx \leq (2\pi)^n.$$

Let *L* be the hyperplane parallel to *H* passing through 0 and  $e_1, \ldots, e_n$  an orthonormal basis such that  $\operatorname{span}(e_1 \ldots e_{n-1}) = L$ . We define

$$v_+ = \frac{b_+ - z}{(b_+ - z) \cdot e_n}$$

and

$$F_+: y \in L \rightarrow \int_{\mathbb{R}_+} f(z+y+sv_+) ds.$$

Using the linear map A defined by

$$e_i \rightarrow e_i, \quad i = 1 \dots n - 1$$
  
 $e_n \rightarrow v_+$ 

one gets

$$\int_L F_+(y)\,dy = \int_{H_+} f(x)\,dx = \frac{1}{2}.$$

and

$$\operatorname{bar}(F_+) = \pi(b_+ - z) = 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where  $\pi$  is the projection with image L and kernel  $\mathbb{R}v_+$ .

Defining 
$$B = (A^{-1})^t$$
 and  $G_+: y' \in L o \int_{\mathbb{R}_+} g(By' + te_n) \mathrm{e}^{z \cdot (By' + te_n)} \, dt,$ 

we have

$$(y + sv_+) \cdot (By' + te_n) = y \cdot y' + st$$

for all  $s, t \in \mathbb{R}$  and  $y, y' \in L$ . Hence

$$f(z+y+sv_+)g(By'+te_n)e^{z\cdot(By'+te_n)} \leq e^{-st-y\cdot y'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Applying the lemma to

$$\begin{aligned} \phi_1(s) &= f(z+y+sv_+) \\ \phi_2(t) &= g(By'+te_n) \mathrm{e}^{z \cdot (By'+te_n)+y \cdot y'} \end{aligned}$$

we get

$$F_+(y) G_+(y') \leq rac{\pi}{2} \operatorname{e}^{-y \cdot y'}$$

for every  $y, y' \in L$ . Then, by the induction assumption,

$$\int_{L} F_{+}(y) \, dy \, \int_{L} G_{+}(y') \, dy' \, \leq \, \frac{\pi}{2} (2\pi)^{n-1}.$$

which yields

$$\int_{L_+} g(Bx) e^{z \cdot Bx} dx \leq \frac{1}{2} (2\pi)^n.$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Similarly, working with

$$\begin{array}{ll} F_-: y \in L & \to & \int_{\mathbb{R}_+} f(y - sv_+) \, ds \quad \text{and} \\ G_-: y' \in L & \to & \int_{\mathbb{R}_+} g(By' - te_n) \, \mathrm{e}^{z \cdot (By' - te_n)} \, dt \end{array}$$

we would obtain

$$\int_{L_{-}} g(Bx) e^{z \cdot Bx} dx \leq \frac{1}{2} (2\pi)^n.$$

We get

$$\int_{\mathbb{R}^n} g(Bx) e^{z \cdot Bx} \, dx \le (2\pi)^n$$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

which is the result since B has determinant 1.

### The Fradelizi-Meyer inequality

Let f be a non-negative Borel function on  $\mathbb{R}^n$ , there exists  $z \in \mathbb{R}^n$ such that for any non-negative Borel functions  $g, \rho$  defined respectively on  $\mathbb{R}^n$  and  $\mathbb{R}_+$  and satisfying

$$\forall x, y \in \mathbb{R}^n, \ \left(x \cdot y \ge 0\right) \ \Rightarrow \ f(z+x)g(y) \ \le \ 
ho \left(\sqrt{x \cdot y}
ight)^2,$$

we have

$$\int_{\mathbb{R}^n} f(x) \, dx \, \int_{\mathbb{R}^n} g(y) \, dy \, \leq \, \big( \int_{\mathbb{R}^n} \rho(|x|_2) \, dx \big)^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Such a point z is called a Santaló point for the function f.

Clearly in dimension 1 any median for f is a Santaló point. In dimension 2 the following construction gives a Santaló point.



For dimension 3 and beyond it is more complicated. We use a construction due to Yao and Yao:

## Definition

Let f be a non-negative Borel function on  $\mathbb{R}^n$ . We say that  $c \in \mathbb{R}^n$  is a projective center if the following alternative holds

- if n = 1 then c is the median of f
- if n > 1 then the horizontal hyperplane H containing c is median for f and there exists u ∈ S<sup>n-1</sup><sub>+</sub> such that c is a projective center for both

$$F_+: y \in H \to \int_{\mathbb{R}_+} f(y+tu) dt$$

and

$$F_-: y \in H \to \int_{\mathbb{R}_+} f(y-tu) dt.$$

Copying the proof of the preceding theorem one can prove:

## Theorem

Let f be a non-negative Borel integrable function on  $\mathbb{R}^n$ , any projective center for f is also a Santaló point.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @