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The Blaschke-Santaló inequality

Let K be a convex body in R
n, there exists z ∈ R

n such that

|Kz |n |(Kz)
◦|n ≤ |D|n|D◦|n = v2

n ,

where | · |n stands for the volume, Kz = K + z, (Kz)
◦ is its polar

body, D the Euclidean ball and vn its volume.

Remark
It is well known that one can choose z such that (Kz)

◦ has its
centroid at 0. Hence we can rewrite the inequality as follows: if K
is such that K ◦ has its center of mass at 0 then

|K |n |K ◦|n ≤ v2
n .



Notation
If g is a non-negative function such that both g and Ng are
integrable

bar(g) =

∫

g(x)x dx
∫

g(x) dx

denotes its center of mass (or barycenter). The center of mass (or
centroid) of convex body is by definition the barycenter of its
indicator function.



Let us define a functional analogue of the polar body:

Definition
Let f be a non-negative function on R

n, integrable with respect to
the Lebesgue measure. We define the polar function of f by

f ◦ : x −→ inf
y∈Rn

e−x ·y

f (y)

Remark
(

e−|x |2/2
)◦

= e−|x |2/2.



Equivalently:
(

e−φ
)◦

= e−Lφ,

where Lφ is the Legendre transform of φ:

Lφ(x) = sup
y∈Rn

{x · y − φ(y)}.

The function f ◦ is log-concave and moreover f = (f ◦)◦ iff f is
log-concave.



The functional Santaló inequality [AKM,2004]

Let f be a non-negative integrable function on R
n, there exists

z ∈ R
n such that
∫

fz(x) dx

∫

(fz)
◦(y) dy ≤

(

∫

e−|x |2/2 dx
)2

= (2π)n,

where fz(x) = f (x − z).

Remark
Again the theorem can be formulated the following way: if f is
such that bar(f ◦) = 0 then

∫

f (x) dx

∫

f ◦(y) dy ≤ (2π)n.



This implies the usual Santaló inequality: if K is a convex body we
write fK = e−N2

K
/2, where NK is the gauge of K . One has

(fK )◦ = fK◦

Besides ∀K :
∫

fK = cn|K |n

with cn depending only on the dimension, it can be computed by
taking K = D the Euclidean ball. Note also that (fK )z = f(Kz ).



Theorem
Let f and g be non-negative Borel functions on R

n satisfying

∀x , y f (x)g(y) ≤ e−x ·y

Let H be an affine hyperplane, H+, H− the two half-spaces
separated by H and let λ ∈ [0, 1] be defined by λ

∫

Rn f =
∫

H+
f .

There exists z ∈ H such that
∫

f (x) dx

∫

g(y) ey ·z dy ≤ 1

4λ(1 − λ)
(2π)n.

In particular, there exists z ∈ R
n such that

∫

f (x) dx

∫

g(y)ey ·z dy ≤ (2π)n.



This theorem yields the following functional Santaló inequality:

Corollary

Let f and g satisfy

∀x , y f (x)g(y) ≤ e−x ·y

If f (or g) has its barycenter at 0 then

∫

f (x) dx

∫

g(y) dy ≤ (2π)n.

Remark
In Artstein, Klartag and Milman’s result, one has to assume that
the function that has its barycenter at 0 is log-concave.



Proof of the corollary.

Suppose for example that bar(g) = 0. Let us define

h : z ∈ R
n →

∫

Rn

g(x)ex ·z dx ,

The function h attains its minimum at 0. On the other hand, by
the preceding theorem, there exists z such that

∫

f (x) dx

∫

g(x) ex ·zdx ≤ (2π)n.



We recall the Prékopa-Leindler inequality: if f , g , h are
non-negative function on R

n satisfying

f (x)λg(y)1−λ ≤ h(λx + (1 − λ)y)

for all x , y in R
n and for some fixed λ ∈ (0, 1), then

(

∫

Rn

f (x) dx
)λ(

∫

Rn

g(y) dy
)1−λ

≤
∫

Rn

h(z) dz .



Lemma
Let φ1, φ2, ρ be non-negative Borel functions on R+, with ρ
integrable. If

∀s, t > 0, φ1(s)φ2(t) ≤ ρ(
√

st)2

then
∫

R+

φ1(s) ds

∫

R+

φ2(t) dt ≤
(

∫

R+

ρ(r) dr
)2

.

Proof.
Apply the Prékopa-Leindler inequality (with λ = 1/2) to

f (x) = φ1(e
x)ex

g(y) = φ2(e
y )ey

h(z) = ρ(ez)ez .



Remark
When ρ(r) = e−r2/2 this lemma becomes: if

∀s, t > 0, φ1(s)φ2(t) ≤ e−st

then
∫

R+

φ1(s) ds

∫

R+

φ2(t) dt ≤ π

2
.



Proof of the theorem (case λ = 1/2)

In dimension 1: assume
∫

f = 1, let r be a median of f . We apply
the preceding inequality to φ1(s) = f (s + r) and φ2(t) = g(t)ert .
We get

∫ ∞

r

f (s) ds

∫ ∞

0
g(t)ert dt ≤ π

2

hence
∫ ∞

0
g(t)ert dt ≤ π.

Similarly, working with φ1(s) = f (−s + r) and φ2(t) = g(−t)e−rt ,
we obtain

∫ 0

−∞
g(t)ert dt ≤ π.

Adding the last two inequalities yields the result in dimension 1.



H

b−

b+

v+
en

z

We define

b+ = bar(f|H+
) and b− = bar(f|H−

).



We are going to prove that

∫

Rn

g(x)ez·x dx ≤ (2π)n.

Let L be the hyperplane parallel to H passing through 0 and
e1, . . . , en an orthonormal basis such that span(e1 . . . en−1) = L.
We define

v+ =
b+ − z

(b+ − z) · en

and

F+ : y ∈ L →
∫

R+

f (z + y + sv+) ds.



Using the linear map A defined by

ei → ei , i = 1 . . . n − 1

en → v+

one gets
∫

L

F+(y) dy =

∫

H+

f (x) dx =
1

2
.

and
bar(F+) = π(b+ − z) = 0,

where π is the projection with image L and kernel Rv+.



Defining B = (A−1)t and

G+ : y ′ ∈ L →
∫

R+

g(By ′ + ten)e
z·(By ′+ten) dt,

we have
(y + sv+) · (By ′ + ten) = y · y ′ + st

for all s, t ∈ R and y , y ′ ∈ L. Hence

f (z + y + sv+)g(By ′ + ten)e
z·(By ′+ten) ≤ e−st−y ·y ′

.



Applying the lemma to

φ1(s) = f (z + y + sv+)

φ2(t) = g(By ′ + ten)e
z·(By ′+ten)+y ·y ′

we get

F+(y)G+(y ′) ≤ π

2
e−y ·y ′

for every y , y ′ ∈ L. Then, by the induction assumption,

∫

L

F+(y) dy

∫

L

G+(y ′) dy ′ ≤ π

2
(2π)n−1.

which yields
∫

L+

g(Bx) ez·Bx dx ≤ 1

2
(2π)n.



Similarly, working with

F− : y ∈ L →
∫

R+

f (y − sv+) ds and

G− : y ′ ∈ L →
∫

R+

g(By ′ − ten) ez·(By ′−ten) dt

we would obtain
∫

L−

g(Bx) ez·Bx dx ≤ 1

2
(2π)n.

We get
∫

Rn

g(Bx) ez·Bx dx ≤ (2π)n

which is the result since B has determinant 1.



The Fradelizi-Meyer inequality

Let f be a non-negative Borel function on R
n, there exists z ∈ R

n

such that for any non-negative Borel functions g , ρ defined
respectively on R

n and R+ and satisfying

∀x , y ∈ R
n,

(

x · y ≥ 0
)

⇒ f (z + x)g(y) ≤ ρ
(√

x · y
)2

,

we have
∫

Rn

f (x) dx

∫

Rn

g(y) dy ≤
(

∫

Rn

ρ(|x |2) dx
)2

.

Such a point z is called a Santaló point for the function f .



Clearly in dimension 1 any median for f is a Santaló point. In
dimension 2 the following construction gives a Santaló point.

1/4
1/4

1/4
1/4

H

u



For dimension 3 and beyond it is more complicated. We use a
construction due to Yao and Yao:

Definition
Let f be a non-negative Borel function on R

n. We say that c ∈ R
n

is a projective center if the following alternative holds

- if n = 1 then c is the median of f

- if n > 1 then the horizontal hyperplane H containing c is
median for f and there exists u ∈ S

n−1
+ such that c is a

projective center for both

F+ : y ∈ H →
∫

R+

f (y + tu) dt

and

F− : y ∈ H →
∫

R+

f (y − tu) dt.



Copying the proof of the preceding theorem one can prove:

Theorem
Let f be a non-negative Borel integrable function on R

n, any
projective center for f is also a Santaló point.


