A simple proof of the functional Santaló inequality

Joseph Lehec
Université Paris-Est

June 28, 2007

The Blaschke-Santaló inequality

Let K be a convex body in \mathbb{R}^{n}, there exists $z \in \mathbb{R}^{n}$ such that

$$
\left|K_{z}\right|_{n}\left|\left(K_{z}\right)^{\circ}\right|_{n} \leq|D|_{n}\left|D^{\circ}\right|_{n}=v_{n}^{2},
$$

where $|\cdot|_{n}$ stands for the volume, $K_{z}=K+z,\left(K_{z}\right)^{\circ}$ is its polar body, D the Euclidean ball and v_{n} its volume.

Remark
It is well known that one can choose z such that $\left(K_{z}\right)^{\circ}$ has its centroid at 0 . Hence we can rewrite the inequality as follows: if K is such that K° has its center of mass at 0 then

$$
|K|_{n}\left|K^{\circ}\right|_{n} \leq v_{n}^{2}
$$

Notation

If g is a non-negative function such that both g and $N g$ are integrable

$$
\operatorname{bar}(g)=\frac{\int g(x) x d x}{\int g(x) d x}
$$

denotes its center of mass (or barycenter). The center of mass (or centroid) of convex body is by definition the barycenter of its indicator function.

Let us define a functional analogue of the polar body:
Definition
Let f be a non-negative function on \mathbb{R}^{n}, integrable with respect to the Lebesgue measure. We define the polar function of f by

$$
f^{\circ}: x \longrightarrow \inf _{y \in \mathbb{R}^{n}} \frac{\mathrm{e}^{-x \cdot y}}{f(y)}
$$

Remark
$\left(\mathrm{e}^{-|x|^{2} / 2}\right)^{\circ}=\mathrm{e}^{-|x|^{2} / 2}$.

Equivalently:

$$
\left(\mathrm{e}^{-\phi}\right)^{\circ}=\mathrm{e}^{-\mathcal{L} \phi}
$$

where $\mathcal{L} \phi$ is the Legendre transform of ϕ :

$$
\mathcal{L} \phi(x)=\sup _{y \in \mathbb{R}^{n}}\{x \cdot y-\phi(y)\} .
$$

The function f° is log-concave and moreover $f=\left(f^{\circ}\right)^{\circ}$ iff f is log-concave.

The functional Santaló inequality [AKM, 2004]

Let f be a non-negative integrable function on \mathbb{R}^{n}, there exists $z \in \mathbb{R}^{n}$ such that

$$
\int f_{z}(x) d x \int\left(f_{z}\right)^{\circ}(y) d y \leq\left(\int \mathrm{e}^{-|x|^{2} / 2} d x\right)^{2}=(2 \pi)^{n}
$$

where $f_{z}(x)=f(x-z)$.

Remark

Again the theorem can be formulated the following way: if f is such that $\operatorname{bar}\left(f^{\circ}\right)=0$ then

$$
\int f(x) d x \int f^{\circ}(y) d y \leq(2 \pi)^{n}
$$

This implies the usual Santaló inequality: if K is a convex body we write $f_{K}=\mathrm{e}^{-N_{K}^{2} / 2}$, where N_{K} is the gauge of K. One has

$$
\left(f_{K}\right)^{\circ}=f_{K^{\circ}}
$$

Besides $\forall K$:

$$
\int f_{K}=c_{n}|K|_{n}
$$

with c_{n} depending only on the dimension, it can be computed by taking $K=D$ the Euclidean ball. Note also that $\left(f_{K}\right)_{z}=f_{\left(K_{z}\right)}$.

Theorem

Let f and g be non-negative Borel functions on \mathbb{R}^{n} satisfying

$$
\forall x, y \quad f(x) g(y) \leq \mathrm{e}^{-x \cdot y}
$$

Let H be an affine hyperplane, H_{+}, H_{-}the two half-spaces separated by H and let $\lambda \in[0,1]$ be defined by $\lambda \int_{\mathbb{R}^{n}} f=\int_{H_{+}} f$. There exists $z \in H$ such that

$$
\int f(x) d x \int g(y) \mathrm{e}^{y \cdot z} d y \leq \frac{1}{4 \lambda(1-\lambda)}(2 \pi)^{n}
$$

In particular, there exists $z \in \mathbb{R}^{n}$ such that

$$
\int f(x) d x \int g(y) \mathrm{e}^{y \cdot z} d y \leq(2 \pi)^{n}
$$

This theorem yields the following functional Santaló inequality:
Corollary
Let f and g satisfy

$$
\forall x, y \quad f(x) g(y) \leq \mathrm{e}^{-x \cdot y}
$$

If f (or g) has its barycenter at 0 then

$$
\int f(x) d x \int g(y) d y \leq(2 \pi)^{n}
$$

Remark

In Artstein, Klartag and Milman's result, one has to assume that the function that has its barycenter at 0 is log-concave.

Proof of the corollary.

Suppose for example that $\operatorname{bar}(g)=0$. Let us define

$$
h: z \in \mathbb{R}^{n} \rightarrow \int_{\mathbb{R}^{n}} g(x) \mathrm{e}^{x \cdot z} d x
$$

The function h attains its minimum at 0 . On the other hand, by the preceding theorem, there exists z such that

$$
\int f(x) d x \int g(x) \mathrm{e}^{x \cdot z} d x \leq(2 \pi)^{n}
$$

We recall the Prékopa-Leindler inequality: if f, g, h are non-negative function on \mathbb{R}^{n} satisfying

$$
f(x)^{\lambda} g(y)^{1-\lambda} \leq h(\lambda x+(1-\lambda) y)
$$

for all x, y in \mathbb{R}^{n} and for some fixed $\lambda \in(0,1)$, then

$$
\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{\lambda}\left(\int_{\mathbb{R}^{n}} g(y) d y\right)^{1-\lambda} \leq \int_{\mathbb{R}^{n}} h(z) d z
$$

Lemma

Let ϕ_{1}, ϕ_{2}, ρ be non-negative Borel functions on \mathbb{R}_{+}, with ρ integrable. If

$$
\forall s, t>0, \quad \phi_{1}(s) \phi_{2}(t) \leq \rho(\sqrt{s t})^{2}
$$

then

$$
\int_{\mathbb{R}_{+}} \phi_{1}(s) d s \int_{\mathbb{R}_{+}} \phi_{2}(t) d t \leq\left(\int_{\mathbb{R}_{+}} \rho(r) d r\right)^{2}
$$

Proof.
Apply the Prékopa-Leindler inequality (with $\lambda=1 / 2$) to

$$
\begin{aligned}
f(x) & =\phi_{1}\left(\mathrm{e}^{x}\right) \mathrm{e}^{x} \\
g(y) & =\phi_{2}\left(\mathrm{e}^{y}\right) \mathrm{e}^{y} \\
h(z) & =\rho\left(\mathrm{e}^{z}\right) \mathrm{e}^{z} .
\end{aligned}
$$

Remark
When $\rho(r)=\mathrm{e}^{-r^{2} / 2}$ this lemma becomes: if

$$
\forall s, t>0, \quad \phi_{1}(s) \phi_{2}(t) \leq \mathrm{e}^{-s t}
$$

then

$$
\int_{\mathbb{R}_{+}} \phi_{1}(s) d s \int_{\mathbb{R}_{+}} \phi_{2}(t) d t \leq \frac{\pi}{2}
$$

Proof of the theorem (case $\lambda=1 / 2$)

In dimension 1: assume $\int f=1$, let r be a median of f. We apply the preceding inequality to $\phi_{1}(s)=f(s+r)$ and $\phi_{2}(t)=g(t) \mathrm{e}^{r t}$.
We get

$$
\int_{r}^{\infty} f(s) d s \int_{0}^{\infty} g(t) \mathrm{e}^{r t} d t \leq \frac{\pi}{2}
$$

hence

$$
\int_{0}^{\infty} g(t) \mathrm{e}^{r t} d t \leq \pi
$$

Similarly, working with $\phi_{1}(s)=f(-s+r)$ and $\phi_{2}(t)=g(-t) \mathrm{e}^{-r t}$, we obtain

$$
\int_{-\infty}^{0} g(t) \mathrm{e}^{r t} d t \leq \pi
$$

Adding the last two inequalities yields the result in dimension 1.

We define

$$
b_{+}=\operatorname{bar}\left(f_{\mid H_{+}}\right) \quad \text { and } \quad b_{-}=\operatorname{bar}\left(f_{\mid H_{-}}\right) .
$$

We are going to prove that

$$
\int_{\mathbb{R}^{n}} g(x) \mathrm{e}^{z \cdot x} d x \leq(2 \pi)^{n}
$$

Let L be the hyperplane parallel to H passing through 0 and e_{1}, \ldots, e_{n} an orthonormal basis such that $\operatorname{span}\left(e_{1} \ldots e_{n-1}\right)=L$. We define

$$
v_{+}=\frac{b_{+}-z}{\left(b_{+}-z\right) \cdot e_{n}}
$$

and

$$
F_{+}: y \in L \rightarrow \int_{\mathbb{R}_{+}} f\left(z+y+s v_{+}\right) d s
$$

Using the linear map A defined by

$$
\begin{aligned}
e_{i} & \rightarrow e_{i}, \quad i=1 \ldots n-1 \\
e_{n} & \rightarrow v_{+}
\end{aligned}
$$

one gets

$$
\int_{L} F_{+}(y) d y=\int_{H_{+}} f(x) d x=\frac{1}{2}
$$

and

$$
\operatorname{bar}\left(F_{+}\right)=\pi\left(b_{+}-z\right)=0,
$$

where π is the projection with image L and kernel $\mathbb{R} v_{+}$.

Defining $B=\left(A^{-1}\right)^{t}$ and

$$
G_{+}: y^{\prime} \in L \rightarrow \int_{\mathbb{R}_{+}} g\left(B y^{\prime}+t e_{n}\right) \mathrm{e}^{z \cdot\left(B y^{\prime}+t e_{n}\right)} d t
$$

we have

$$
\left(y+s v_{+}\right) \cdot\left(B y^{\prime}+t e_{n}\right)=y \cdot y^{\prime}+s t
$$

for all $s, t \in \mathbb{R}$ and $y, y^{\prime} \in L$. Hence

$$
f\left(z+y+s v_{+}\right) g\left(B y^{\prime}+t e_{n}\right) \mathrm{e}^{z \cdot\left(B y^{\prime}+t e_{n}\right)} \leq \mathrm{e}^{-s t-y \cdot y^{\prime}} .
$$

Applying the lemma to

$$
\begin{aligned}
\phi_{1}(s) & =f\left(z+y+s v_{+}\right) \\
\phi_{2}(t) & =g\left(B y^{\prime}+t e_{n}\right) \mathrm{e}^{z \cdot\left(B y^{\prime}+t e_{n}\right)+y \cdot y^{\prime}}
\end{aligned}
$$

we get

$$
F_{+}(y) G_{+}\left(y^{\prime}\right) \leq \frac{\pi}{2} \mathrm{e}^{-y \cdot y^{\prime}}
$$

for every $y, y^{\prime} \in L$. Then, by the induction assumption,

$$
\int_{L} F_{+}(y) d y \int_{L} G_{+}\left(y^{\prime}\right) d y^{\prime} \leq \frac{\pi}{2}(2 \pi)^{n-1}
$$

which yields

$$
\int_{L_{+}} g(B x) \mathrm{e}^{z \cdot B x} d x \leq \frac{1}{2}(2 \pi)^{n}
$$

Similarly, working with

$$
\begin{aligned}
& F_{-}: y \in L \quad \rightarrow \int_{\mathbb{R}_{+}} f\left(y-s v_{+}\right) d s \quad \text { and } \\
& G_{-}: y^{\prime} \in L \rightarrow \int_{\mathbb{R}_{+}} g\left(B y^{\prime}-t e_{n}\right) \mathrm{e}^{z \cdot\left(B y^{\prime}-t e_{n}\right)} d t
\end{aligned}
$$

we would obtain

$$
\int_{L_{-}} g(B x) \mathrm{e}^{z \cdot B x} d x \leq \frac{1}{2}(2 \pi)^{n}
$$

We get

$$
\int_{\mathbb{R}^{n}} g(B x) \mathrm{e}^{z \cdot B x} d x \leq(2 \pi)^{n}
$$

which is the result since B has determinant 1 .

The Fradelizi-Meyer inequality

Let f be a non-negative Borel function on \mathbb{R}^{n}, there exists $z \in \mathbb{R}^{n}$ such that for any non-negative Borel functions g, ρ defined respectively on \mathbb{R}^{n} and \mathbb{R}_{+}and satisfying

$$
\forall x, y \in \mathbb{R}^{n},(x \cdot y \geq 0) \Rightarrow f(z+x) g(y) \leq \rho(\sqrt{x \cdot y})^{2}
$$

we have

$$
\int_{\mathbb{R}^{n}} f(x) d x \int_{\mathbb{R}^{n}} g(y) d y \leq\left(\int_{\mathbb{R}^{n}} \rho\left(|x|_{2}\right) d x\right)^{2}
$$

Such a point z is called a Santaló point for the function f.

Clearly in dimension 1 any median for f is a Santaló point. In dimension 2 the following construction gives a Santaló point.

For dimension 3 and beyond it is more complicated. We use a construction due to Yao and Yao:

Definition

Let f be a non-negative Borel function on \mathbb{R}^{n}. We say that $c \in \mathbb{R}^{n}$ is a projective center if the following alternative holds

- if $n=1$ then c is the median of f
- if $n>1$ then the horizontal hyperplane H containing c is median for f and there exists $u \in \mathbb{S}_{+}^{n-1}$ such that c is a projective center for both

$$
F_{+}: y \in H \rightarrow \int_{\mathbb{R}_{+}} f(y+t u) d t
$$

and

$$
F_{-}: y \in H \rightarrow \int_{\mathbb{R}_{+}} f(y-t u) d t
$$

Copying the proof of the preceding theorem one can prove:
Theorem
Let f be a non-negative Borel integrable function on \mathbb{R}^{n}, any projective center for f is also a Santaló point.

