
“Vertex index of convex bodies and

asymmetry of convex polytopes”

(based on joint works with

K. Bezdek and E.D. Gluskin)

1



Motivation

Conjecture. Every d-dimensional convex body

can be covered by 2d smaller positively homo-

thetic copies of itself.

In other words, for every convex body K ⊂ Rd

there exists 0 < λ < 1 and points xi ∈ Rd,

i ≤ 2d, such that

K ⊂
2d⋃

i=1

(xi + λK)

Remarks 1. One needs exactly 2d translations

in the case of d-dimensional cube (for every

1/2 ≤ λ < 1).

2. The best known result is Cd ln d 2d.
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Let K be a convex body in Rd.

Def. 1. A p ∈ Rd \K illuminates a boundary

point q of K if the ray emanating from p and

passing through q intersects the interior of K

(after the point q).

Def. 2. A family of exterior points of K,

{p1, p2, . . . , pm} ⊂ Rd \K, illuminates K if each

boundary point of K is illuminated by at least

one of pi’s.

Boltyanski-Hadwiger conjecture. Every d-

dimensional convex body can be illuminated by

2d points.

Remarks 1. Clearly, we need 2d points to

illuminate the d-dimensional cube.

2. Two conjectures above are equivalent.
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Although computing the smallest number of

points illuminating a given body is very impor-

tant, it does not provide any quantitative infor-

mation on points of illumination. In particular,

one can take such poins to be very far from

the body. To control that, in 1992 K. Bezdek

introduced the illumination parameter, ill(K),

of K as follows:

ill(K) = inf

∑
i

‖pi‖K | {pi}i illuminates K

 .

Here ‖x‖K denotes the gauge (or Minkowsky

functional) of K, i.e.

‖x‖K = inf{λ > 0 | x ∈ λK}.

This insures that far-away points of illumina-

tion are penalized.
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K. Bezdek posed the problem of finding the up-

per bound for the illumination parameter. He

also provided some estimates and conjectured

that ill(Bd
2) = 2d3/2 and ill(K) ≥ 2d for every

0-symmetric body K.

Motivated by the notion of the illumination

parameter in 2004 Swanepoel introduced the

covering parameter, of a convex body K,

cov(K) = inf
{∑

i

1

1− λi
|

K ⊂
⋃
i

(xi + λiK),0 < λi < 1, xi ∈ Rd
}
.

In this way homothets almost as large as K are

penalized. Swanepoel obtained the following

inequality.

Theorem. There exists an absolute constant

C > 0 such that for every d and every 0-symmetric

convex body K in Rd one has

ill(K) ≤ 2 cov(K) ≤ C 2dd2 ln d.
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Vertex Index of a convex body.

Idea. To measure the smallest possible close-

ness to 0 of the vertex set of a polytope con-

taining K. In other words, we want to inscribe

a (0-symmetric) convex body into a polytope

with small number of vertices which are not far

away from the origin.

Let K be a 0-symmetric convex body in Rd.

Let K ⊂ P = conv {pi}i≤m. We introduce the

vertex index of K as follows:

vein(K) = inf

∑
i

‖pi‖K | K ⊂ conv {pi}i

 .
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Claim 1. For any 0-symmetric convex body K

in Rd and any invertible linear operator T one

has

vein(K) = vein(TK).

Claim 2. Let K and L be 0-symmetric convex

bodies in Rd. Then

vein(K) ≤ d (K,L) · vein(L),

where d(·, ·) denotes the Banach-Mazur dis-

tance.

Claim 3. For any convex body K in Rd one

has

vein(K) ≤ ill(K).

Moreover, if K is smooth then

vein(K) = ill(K).

Remark. Note that ill(Bd
∞) = 2d, while below

we will see that vein(K) ≤ Cd3/2 ln d.

7



Theorem. There are absolute positive con-

stants c and C such that for every 0-symmetric

convex body K in Rd one has

d3/2
√

2πe ovr(K)
≤ vein(K) ≤ C d3/2 ln(2d).

Here ovr(K) is the outer volume ratio of K,

ovr(K) = inf

(
vol (E)
vol (K)

)1/d

where the infimum is taken over all ellipsoids

E ⊃ K and vol (·) denotes the volume.

Remark. There exists a body K such that

ovr(K) ≥ c

√
d

ln d
and vein(K) ≥ c

d3/2

ln(2d)
.
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Theorem. For every d one has

d3/2
√

2πe
≤ vein(Bd

2) ≤ 2d3/2

and

d3/2

πe
≤ vein(Bd

∞) ≤ 5d3/2.

Moreover,

vein(Bd
1) = 2d.

Conjecture.

vein(Bd
2) = 2d3/2.

Theorem. The conjecture is true in dimen-

sions 2 and 3.
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Asymmetry of convex polytopes.

One of natural ways to measure the asymmetry

of a convex body K is the following parameter

∂(K) = inf
a∈K

sup
x∈K

‖ − x‖K−a.

It is not difficult to see that ∂(K) is equivalent

(up to the constant 2) to the minimal possi-

ble Banach-Mazur distance between K and a

symmetric convex body. It is also known that

for every convex body K one has

∂(K) ≤ d.
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In 2001 with Gluskin we investigated the be-

havior of ∂(K) when K is a polytope with small

number of vertices. More precisely, we investi-

gated the following function

f(k, d) = inf ∂(K),

where the infimum is taken over all non-degene-

rated convex polytopes in Rd with d + k ver-

tices (1 ≤ k ≤ d).

Clearly, f(k, d) = 1 for k = d (take the octahe-

dron). On the other hand, it is known that

f(1, d) = d = sup
{
∂(K) | K ⊂ Rd

}
i.e. a d-dimensional simplex is the most asym-

metric body. It is very natural to ask how fast

f(·, d) decreases. We proved that

d/k ≤ f(k, d) ≤ dd/ke,

where dae denotes the smallest integer larger

than or equal to a.
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If K is a convex polytope with vertices xi then

∂(K) = inf
a∈K

max
i

‖ − xi‖K−a.

Thus the functional ∂(·) takes into account
only one (the worst) vertex of K. Here we sug-
gest another averaging-type functional to mea-
sure asymmetry. Namely, given convex poly-
tope K with m vertices xi’s we consider

φ(K) = inf
a∈K

1

m

m∑
i=1

‖ − xi‖K−a

and the function g(k, d) = inf φ(K), where the
infimum is taken over all non-degenerated con-
vex polytopes in Rd with d + k vertices (k ≤ d).

Clearly, g(k, d) ≤ f(k, d). We show that

g(k, d) ≥ d/(2k) (so g(k, d) ≥ f(k, d)/4).

More precisely, we proved

Theorem. Let K ⊂ Rd be a polytope with
d + k verices, where 1 ≤ k ≤ d. Then

inf
a∈K

d+k∑
i=1

‖ − xi‖K−a ≥ max

{
2d,

d(d + k)

2k

}
.
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An application.

Theorem. Let K = −K ⊂ Rd. Then

ill(K) ≥ vein(K) ≥ 2d.

Remark. Note that ill(Bd
1) = vein(Bd

1) = 2d.

Proof: Let K ⊂ L = conv {pi}i≤m. WLOG

we can assume that ‖pi‖K ≥ 1 for every i. If

m ≥ 2d then we trivially have

m∑
i=1

‖pi‖K ≥ m ≥ 2d.

Assume m < 2d. Since K = −K ⊂ L, we have

‖ − x‖L ≤ ‖x‖K for every x ∈ Rd. Therefore,

applying our Theorem, we obtain

m∑
i=1

‖pi‖K ≥
m∑

i=1

‖ − pi‖L ≥ 2d,

which completes the proof. 2
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Now we outline the proof of the estimate. First

we need the following Proposition.

Proposition 1 Let T = {tij} be m×m matrix

and λ1, λ2, . . . , λm be eigenvalues of T . Then

m∑
j=1

|λj| ≤
m∑

i,j=1

|tij|.

Proof: As usual, let sj’s denote the singular

values of T . By Weil’s Theorem,

m∑
j=1

|λj| ≤
m∑

j=1

|sj| = γ(T ) ≤
m∑

i,j=1

|tij|γ(Eij),

where Eij is the marix with 1 in ith row jh

column and 0 otherwise. Clearly, γ(Eij) = 1,

which completes the proof. 2
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Lemma. Let Λ = {λij} be m × m matrix of

rank k ≥ 1 with non-negative entries such that

λii ≥ 1 for every i ≤ m. Then

m∑
i,j=1

λij ≥ 3m− 2k.

Moreover, if m ≥ 2k then

m∑
i,j=1

λij ≥
m(m− 1)

2k − 1
+ m ≥

m2

2k
+ m.

Remark. Note that the estimate of the Lemma

is asymptotically sharp. Indeed, consider a

block-diagonal matrix with k blocks [m/k] ×
[m/k] or dm/ke × dm/ke of rank one, such that

each block has entries 1 only. Then we have

m∑
i,j=1

λij ≤
m2

k
+

k

4
.
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First, WLOG, we assume that λii = 1 for every
i (otherwise pass to the matrix {λij/λii}ij).

Consider T = Λ − I, where I is the identity
and denote its entries by tij. Clearly, tij ≥ 0
and tii = 0 for every i, j ≤ m. By λ1, λ2, . . . , λm

denote the eigenvalues of T .

Since Λ is of rank k, at least m−k of eigenval-
ues of T are equal to −1 (indeed, T = −I on
KerΛ). Since

0 =
m∑

i=1

tii = TraceT =
m∑

i=1

λi,

we obtain
m∑

i=1

|λi| ≥ 2m− 2k.

Proposition 1 implies

m∑
i,j=1

tij ≥ 2m− 2k,

which shows
m∑

i,j=1

λij ≥ 3m− 2k.
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Now we assume that m ≥ 2k. Let σ ⊂ {1,2, . . . , m}
be of cardinality l for some 2k ≤ l ≤ m. Let

Λ̄ =
{
λij

}
i,j∈σ

.

Clearly the rank of Λ̄ does not exceed k, so, by

the first part, we have∑
i,j∈σ

λij ≥ 3l − 2k.

Using averaging argument, we obtain

m∑
i,j=1

λij = m +
m∑

i,j=1
i6=j

λij

= m +
(m− 2

l − 2

)−1 ∑
σ⊂{1,2,...,m}

|σ|=l

∑
i,j∈σ
i6=j

λij

≥ m +
(m− 2

l − 2

)−1(m
l

)
(2l − 2k)

= m + 2
m(m− 1)

l(l − 1)
(l − k) .

The choice l = 2k completes the proof. 2
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Theorem 1 Let 1 ≤ k ≤ d and m = k + d. Let

K be a convex polytope in Rd with m vertices

x1, x2, . . ., xm. Then

m∑
i=1

‖ − xi‖K ≥
m2

2k
≥ max

{
2d,

md

2k

}
.

Proof: Consider the operator T : Rm → Rd

defined by Tei = xi. Denote the kernel of T

by L. Clearly, L is a k-dimensional subspace

of Rm. The orthogonal projection onto L⊥ we

denote by P .

A :=
m∑

i=1

‖ − xi‖K =

m∑
i=1

sup
{
〈f,−xi〉 | f ∈ Rd,

〈
f, xj

〉
≤ 1 ∀j ≤ m

}
.

Using 〈f, xi〉 = 〈f, Tei〉 = 〈T ∗f, ei〉, we get A =

m∑
i=1

sup
{
〈h,−ei〉 | h ∈ Rm ∩ L⊥,

〈
h, ej

〉
≤ 1 ∀j ≤ m

}
.
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Now denote

S := {h ∈ Rm |
〈
h, ej

〉
≤ 1 ∀j ≤ m}

and for every i ≤ m denote

Qi := {h ∈ Rm | 〈h, ei〉 ≥ −1}.

Then

S0 = {h ∈ Rm | 0 ≤
〈
h, ej

〉
∀j ≤ m,

m∑
j=1

〈
h, ej

〉
≤ 1}

and

Q0
i = {h ∈ Rm | −1 ≤ 〈h, ei〉 ≤ 0,

〈
h, ej

〉
= 0 ∀j 6= i}.

19



Using duality and our notation, we observe

A =
m∑

i=1

sup
h∈S∩L⊥

〈h,−ei〉 =
m∑

i=1

sup
h∈S∩L⊥

‖h‖Qi

=
m∑

i=1

sup
h∈Q0

i

‖h‖PS0 =
m∑

i=1

‖ − ei‖PS0.

Note

‖z‖S0 :=

{ ∑m
j=1

〈
z, ej

〉
if

〈
z, ej

〉
≥ 0 ∀j ≤ m,

∞ otherwise,

which implies

‖z‖PS0 = inf
y∈L

‖z + y‖S0 = inf
m∑

j=1

〈
z + y, ej

〉
where the last infimum is taken over all y ∈ L

satisfying
〈
y, ej

〉
≥ −

〈
z, ej

〉
∀j ≤ m.

Thus

A =
m∑

i=1

inf

 m∑
j=1

〈
y, ej

〉
− 1

 ,

where the infimum (which depends on i) is

taken over all y ∈ L satisfying 〈y, ei〉 ≥ 1 and〈
y, ej

〉
≥ 0 ∀j ≤ m.
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Assume it attains on yi ∈ L, i ≤ m. Denoting

yij :=
〈
yi, ej

〉
, we observe that yij ≥ 0 and

yii ≥ 1, for every i, j ≤ m, and that the matrix

{yij} has rank at most k. Since m = d+k ≥ 2k,

applying Lemma, we obtain

A =
m∑

i=1

m∑
j=1

yij −m ≥
m(m− 1)

2k − 1
≥

m2

2k
.

2
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