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Global regime for sample covariance matrices

We consider a sequence of real or complex m × n matrices
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with m ∼ cn and c > 1. We suppose that these matrices are isotropic ,
that is:

for all i, j Eγ
(n)
ij = 0 and E|γ(n)

ij |2 =
1

n
·

in the complex case, we suppose moreover that E(γ
(n)
ij )2 = 0.



Eigenvalue counting measure

Denote λ1 ≤ ... ≤ λn the eigenvalues of the real symmetric (or hermitian)
n × n matrix Γ∗Γ and introduce their Normalized Counting (or empirical)
Measure Nn,m, setting for any interval ∆ ⊂ R

Nn,m(∆) = Card{ℓ ∈ [1, n] : λℓ ∈ ∆}/n.
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Let c > 1, it was shown by Marchenko and Pastur [MP] (1967) that if all
the components of the matrices are i.i.d. random variables, then there
exists a non-random probability measure N such that for any interval
∆ ⊂ R we have the convergence in probability

lim
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(b − x)(x − a), x ∈ [a, b].



Eigenvalue counting measure

Denote λ1 ≤ ... ≤ λn the eigenvalues of the real symmetric (or hermitian)
n × n matrix Γ∗Γ and introduce their Normalized Counting (or empirical)
Measure Nn,m, setting for any interval ∆ ⊂ R

Nn,m(∆) = Card{ℓ ∈ [1, n] : λℓ ∈ ∆}/n.

Let c > 1, it was shown by Marchenko and Pastur [MP] (1967) that if all
the components of the matrices are i.i.d. random variables, then there
exists a non-random probability measure N such that for any interval
∆ ⊂ R we have the convergence in probability

lim
n→∞, m→∞, m/n→c

Nn,m(∆) = N(∆)

where N is the so-called Marchenko-Pastur law.
Note: The particular case with Gaussian components is known since the
30th in statistics as the Wishart matrix.



General setting and spherical case

Let {Yα}m
α=1 be i.i.d. random vectors of Rn (or Cn) and {τα}m

α=1 be i.i.d.
random variables with common probability law σ. Set

Hn,m =
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General setting and spherical case

Let {Yα}m
α=1 be i.i.d. random vectors of Rn (or Cn) and {τα}m

α=1 be i.i.d.
random variables with common probability law σ. Set

Hn,m =

m
∑

α=1

ταYα ⊗ Yα·

Denote λ1 ≤ ... ≤ λn the eigenvalues of the real symmetric (or hermitian)
n × n matrix Hn,m and introduce their Normalized Counting (or empirical)
Measure Nn,m, setting for any interval ∆ ⊂ R

Nn,m(∆) = Card{ℓ ∈ [1, n] : λℓ ∈ ∆}/n.

It was shown by Marchenko and Pastur [MP] (1967) that if {Yα}m
α=1 are

uniformly distributed over the unit sphere of R
n (or C

n), then there exists a
non-random probability measure N such that for any interval ∆ ⊂ R we
have the convergence in probability

lim
n→∞, m→∞, m/n→c

Nn,m(∆) = N(∆).

Lα(X) = Yα ⊗ Yα(X) = (X, Yα)Yα, ∀X ∈ Rn(Cn)



Non independent entries: theℓp case

A more general but similar case as the spherical one was observed by L.
Pastur and A. P. (2004).



Non independent entries: theℓp case

Let p ≥ 1. Let {Yα}m
α=1 be uniformly distributed over a ball {∑n

1 |xi|p ≤ rp}
of the n-dimensional ℓn

p space that has been rescaled so that the matrix

Hn,m =
m

∑

α=1

ταYα ⊗ Yα·

is isotropic. Then the Marchenko-Pastur theorem is also valid.
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is isotropic. Then the Marchenko-Pastur theorem is also valid.

The proof used the Stieltjes transform method of [MP] and the fact that the
square of coordinates functionals in ℓn

p space are negatively correlated
(Anttila-Ball-Perissinaki ).

This property is very particular to the ℓp space (or of similar spaces) and is
not true in general even for unconditional space (see S. Bobkov and J. O.
Wojtaszczyk ).
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very elegant method which in fact gives more information in that case.
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with a density of the form cpe

−|t|p and the last has an exponential law. Let
X = (X1, . . . , Xn), then
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generates the Lebesgue measure on {∑n
1 |xi|p ≤ 1}.
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very elegant method which in fact gives more information in that case.

The method is based on the following result of Barthe - Guédon -
Mendelson - Naor .

Let X1, . . . , Xn and Z be independent so that the first have a distribution
with a density of the form cpe

−|t|p and the last has an exponential law. Let
X = (X1, . . . , Xn), then

X
(
∑n

1 |Xi|p + Z
)1/p

generates the Lebesgue measure on {∑n
1 |xi|p ≤ 1}.

This representation which creates almost independent entries allows to
transfer results on Wishart matrices to this case of random sampling by
bringing back to the classical Marchenko-Pastur theorem for i.i.d. entries.
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Definition of isotropic vectors. A random real vector Y ∈ Rn is called
isotropic if
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n,

where |X | denotes the Euclidean norm of X.
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Recall also that a function f : R
n → R is called log-concave if for any

θ ∈ [0, 1] and any X1, X2 ∈ R
n, then f

(

θX1 + (1− θ)X2

)

≥ f(X1)
θf(X2)

1−θ.

A measure µ on R
n with a log-concave density will be called log-concave.



Universal principle for log-concave measure
Theorem (L. Pastur and A. P.) Let {Yα}m

α=1 be i.i.d. isotropic random
vectors of Rn(or Cn) with a log-concave distribution and {τα}m

α=1 be i.i.d.
random variables with a common probability law σ. Consider random
matrices

Hn,m =
m

∑

α=1

ταYα ⊗ Yα·

Then there exist a probability measure N such that for any interval ∆ ⊂ R

we have in probability

lim
n→∞,m→∞,m/n→c∈[0,∞)

Nn,m(∆) = N(∆).

• N is uniquely determined by its Stieltjes transform which satisfies the
following equation:

f(z) = −
(

z − c

∫

R

τσ(dτ)

1 + τf(z)

)−1

. (∗)



Stieltjes transform method: [MP] (1967)

Introduce the Stieltjes transform

f(z) =

∫

R

N(dλ)

λ − z
, ℑz 6= 0

of a measure N and the resolvent of a real symmetric (hermitian) matrix A

GA(z) = (A − z)−1, ℑz 6= 0.

The use of the Stieltjes transform is based on the spectral theorem. Let
Nn,m be the Normalized Counting Measure of eigenvalues of Hn,m.
Denote

gn,m(z) =

∫

R

Nn,m(dλ)

λ − z
, ℑz 6= 0

then

gn,m(z) =
1

n
Tr (Hn,m − z)−1 :=

1

n
TrGHn,m

(z).



Stieltjes transform method (2)

The mechanism of the proof is the following.

• The expectations of the the Normalized Counting Measure of
eigenvalues of Hn,m will converge weakly to the measure, whose Stieltjes
transform solves

f(z) = −
(

z − c

∫

R

τσ(dτ)

1 + τf(z)

)−1

. (∗)

(This equation has a unique solution in the class we consider).

• The Stieltjes transform is a one-to-one correspondence between
probability measures and a certain well known class of analytic functions
and it is continuous if one consider weak convergence of measure on one
side and uniform convergence on compact subset of C \ R on the other
side.



Beginning the proof (1)

• Since for any interval ∆ ⊂ R,

Var{Nn,m(∆)} ≤ 4/n (∗∗)

it suffices to study the convergence of the Stieltjes transform fn,m of N̄n,m.

• Notation:

Gn,m = GHn,m
is the resolvent of the matrix Hn,m.

gn,m(z) = 1
nTr (Hn,m − z)−1 = 1

nTrGn,m(z) is the Stietjes transform of Nn,m

E{gn,m} = fn,m is the Stietjes transform of N̄n,m.
Lα(X) = Yα ⊗ Yα(X) = (X, Yα)Yα, ∀X ∈ Rn(Cn)



Continuing the proof: induction and equation (∗)
Forgetting the indices n, m, let G be the resolvent of Hn,m and write G for
its expectation. Denote also Gα = G|Yα=0 .

Now we write the resolvent in order to fit with our equation (∗).
We start from

G = −1

z
+

1

z

m
∑

α=1

E

{

τα

1 + τα(GαYα, Yα)
GαLα

}

and notice that E{(GαYα, Yα)} = E{n−1TrGα} ∼ fn,m ∼ f .

Take the normalized trace of Ḡ.

After all these approximations we arrive at the relation (∗) we want

f ∼ −1

z
+

1

z

m

n

∫

R

τσ(dτ)

1 + τf
f.



Continuing the proof (3)

Finally after all these approximations we arrive at the relation (∗) we want

f ∼ −1

z
+

1

z

m

n

∫

R

τσ(dτ)

1 + τf
f.

Conclusion: let

G = −1

z
+

1

z

m

n

∫

R

τσ(dτ)

1 + τf
G + R.

It suffices to show that the normalized trace of R goes to 0.

For that we first trunctate the vectors to reduce to the case when all |Yα|
are bounded by some universal constant C.

The first term that appears in R after truncation at level C is of the form

R1 =
m

∑

α=1

E{ταG(Yα ⊗ Yα)1|Yα|≥t}.
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Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

E{|Yα|q1|Yα|≥C}

for a fixed large C. For this we use the following result:

Theorem (G. Paouris) There exists C > 0 such that for any integer n ≥ 1
and any isotropic random vector Y ∈ Rn with a log-concave distribution we
have

P{|Y | ≥ Ct} ≤ exp(−t
√

n).

for every t ≥ 1.

As a consequence,

E{|Yα|21|Yα|≥C} ≤ c exp(−c′
√

n).



Continuing the proof

An other "typical" term of R is of the form:

E {|Eα{(GαYα, Yα) − fn,m|}}

which is

≤ E

{

Var
1/2
α {(GαYα, Yα)}

}

+ E {|gα − gn,m|} + Var
1/2
α {gn,m}.

with
Eα{(GαYα, Yα)} = n−1TrGα := gα

Here Eα{...} denotes the expectation only with respect to Yα.

Let us focus on the first term

E

{

Var
1/2
α {(GαYα, Yα)}

}

.

Recall: gn,m(z) = 1
nTr (Hn,m − z)−1 = 1

nTrGHn,m
(z), E{gn,m} = fn,m.



Kannan-Lovász-Simonovits type inequality
The first term again is

E

{

Var
1/2
α {(GαYα, Yα)}

}

where Gα is the resolvent of an hermitian matrix. We want to show that it
goes to 0 with n, m.

We can reformulate the question: estimate

Var{(GY, Y )}

in terms of some norm of G, where G is an n × n hermitian matrix
(non-random) and Y is an isotropic random vector in Rn (or Cn) with a
log-concave law.

Kannan-Lovász-Simonovits type of inequality

Var g(Y ) ≤ C

n
E |∇g(Y )|2

for g(Y ) = (GY, Y ) with G an Hermitian matrice.



Central limit problem: a result of B. Klartag

When G is the identity, it is the central limit problem for log-concave
measure. An important breakthrough was done recently by B. Klartag .
We state here the following reformulation which fit with our questions.

Theorem (B. Klartag) There exist positive constants C, α (with α < 1),
such that for any integer n ≥ 1 and any isotropic random vector Y ∈ Rn

with a log-concave distribution we have

Var{ |Y |2} ≤ C/nα.

The conjecture is with α = 1. An estimate of the type

Var{ |Y |2} ≤ C/ logα n.

was first given by B. Klartag . Few times later, a similar estimate was
proved by B. Fleury, O. Guédon, G. Paouris using a different approach.
Recently, B. Klartag gave the above polynomial bound and proved the
conjecture in the unconditionnal case.



End of the proof

From the result of Klartag, we deduce:

Proposition. Let A be an hermitian matrix and let Y ∈ Rn (or Cn) be an
isotropic random vector with a log-concave distribution. Then

Var{(AY, Y )} ≤ C‖A‖2/nα

where ‖A‖ denotes the operator norm.

To conclude our estimate, observe that the resolvent of an hermitian
matrix A satisfies

||GA(z)|| ≤ |ℑz|−1

which allows to show that on any compact domain of C \ R one has

lim
n

Varα{(GαYα, Yα)} = 0.
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