Marchenko-Pastur distribution for random vectors with log-concave law

Alain Pajor
University Paris-Est

Joint work with Leonid Pastur

Global regime for sample covariance matrices

We consider a sequence of real or complex $m \times n$ matrices

$$
\begin{gathered}
\Gamma_{n, m} n=1,2, \ldots \\
\Gamma_{n, m}=\left(\begin{array}{ccc}
\gamma_{11}^{(n)} & \ldots & \gamma_{1 n}^{(n)} \\
\gamma_{21}^{(n)} & \ldots & \gamma_{2 n}^{(n)} \\
\vdots & \ddots & \vdots \\
\gamma_{m 1}^{(n)} & \ldots & \gamma_{m n}^{(n)}
\end{array}\right)
\end{gathered}
$$

with $m \sim c n$ and $c>1$. We suppose that these matrices are isotropic, that is:

$$
\text { for all } i, j \quad \mathbb{E} \gamma_{i j}^{(n)}=0 \quad \text { and } \quad \mathbb{E}\left|\gamma_{i j}^{(n)}\right|^{2}=\frac{1}{n}
$$

in the complex case, we suppose moreover that $\mathbb{E}\left(\gamma_{i j}^{(n)}\right)^{2}=0$.

Eigenvalue counting measure

Denote $\lambda_{1} \leq \ldots \leq \lambda_{n}$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^{*} \Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n, m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$
N_{n, m}(\Delta)=\operatorname{Card}\left\{\ell \in[1, n]: \lambda_{\ell} \in \Delta\right\} / n .
$$

Eigenvalue counting measure

Denote $\lambda_{1} \leq \ldots \leq \lambda_{n}$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^{*} \Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n, m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$
N_{n, m}(\Delta)=\operatorname{Card}\left\{\ell \in[1, n]: \lambda_{\ell} \in \Delta\right\} / n .
$$

Let $c>1$, it was shown by Marchenko and Pastur [MP] (1967) that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty, m / n \rightarrow c} N_{n, m}(\Delta)=N(\Delta)
$$

where N is the so-called Marchenko-Pastur law.

Eigenvalue counting measure

Denote $\lambda_{1} \leq \ldots \leq \lambda_{n}$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^{*} \Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n, m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$
N_{n, m}(\Delta)=\operatorname{Card}\left\{\ell \in[1, n]: \lambda_{\ell} \in \Delta\right\} / n .
$$

Let $c>1$, it was shown by Marchenko and Pastur [MP] (1967) that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty, m / n \rightarrow c} N_{n, m}(\Delta)=N(\Delta)
$$

where N is the so-called Marchenko-Pastur law.
N is supported on the interval $[a, b]$ with $a=\left(1-\frac{1}{\sqrt{c}}\right)^{2}, b=\left(1+\frac{1}{\sqrt{c}}\right)^{2}$ and with density

$$
\frac{c}{2 \pi x} \sqrt{(b-x)(x-a)}, \quad x \in[a, b]
$$

Eigenvalue counting measure

Denote $\lambda_{1} \leq \ldots \leq \lambda_{n}$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^{*} \Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n, m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$
N_{n, m}(\Delta)=\operatorname{Card}\left\{\ell \in[1, n]: \lambda_{\ell} \in \Delta\right\} / n .
$$

Let $c>1$, it was shown by Marchenko and Pastur [MP] (1967) that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty / n \rightarrow c} N_{n, m}(\Delta)=N(\Delta)
$$

where N is the so-called Marchenko-Pastur law.
Note: The particular case with Gaussian components is known since the 30th in statistics as the Wishart matrix.

General setting and spherical case

Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) and $\left\{\tau_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ. Set

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

General setting and spherical case

Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random vectors of $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ and $\left\{\tau_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ. Set

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

$$
\Gamma_{n, m}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right)
$$

General setting and spherical case

Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) and $\left\{\tau_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ. Set

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

Denote $\lambda_{1} \leq \ldots \leq \lambda_{n}$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $H_{n, m}$ and introduce their Normalized Counting (or empirical) Measure $N_{n, m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$
N_{n, m}(\Delta)=\operatorname{Card}\left\{\ell \in[1, n]: \lambda_{\ell} \in \Delta\right\} / n
$$

It was shown by Marchenko and Pastur [MP](1967) that if $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ are uniformly distributed over the unit sphere of \mathbb{R}^{n} (or \mathbb{C}^{n}), then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty, m \rightarrow c} N_{n, m}(\Delta)=N(\Delta) .
$$

$L_{\alpha}(X)=Y_{\alpha} \otimes Y_{\alpha}(X)=\left(X, Y_{\alpha}\right) Y_{\alpha}, \forall X \in \mathbb{R}^{n}\left(\mathbb{C}^{n}\right)$

Non independent entries: the ℓ_{p} case

A more general but similar case as the spherical one was observed by L . Pastur and A. P. (2004).

Non independent entries: the ℓ_{p} case

Let $p \geq 1$. Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\left\{\sum_{1}^{n}\left|x_{i}\right|^{p} \leq r^{p}\right\}$ of the n-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.

Non independent entries: the ℓ_{p} case

Let $p \geq 1$. Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\left\{\sum_{1}^{n}\left|x_{i}\right|^{p} \leq r^{p}\right\}$ of the n-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.
The proof used the Stieltjes transform method of [MP] and the fact that the square of coordinates functionals in ℓ_{p}^{n} space are negatively correlated (Anttila-Ball-Perissinaki).

Non independent entries: the ℓ_{p} case

Let $p \geq 1$. Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\left\{\sum_{1}^{n}\left|x_{i}\right|^{p} \leq r^{p}\right\}$ of the n-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.
The proof used the Stieltjes transform method of [MP] and the fact that the square of coordinates functionals in ℓ_{p}^{n} space are negatively correlated (Anttila-Ball-Perissinaki).
This property is very particular to the ℓ_{p} space (or of similar spaces) and is not true in general even for unconditional space (see S. Bobkov and J. O. Wojtaszczyk).

Aubrun method

An other proof of this result for ℓ_{p} was given by G. Aubrun (2005) using a very elegant method which in fact gives more information in that case.

Aubrun method

An other proof of this result for ℓ_{p} was given by G. Aubrun (2005) using a very elegant method which in fact gives more information in that case.

The method is based on the following result of Barthe - Guédon Mendelson - Naor.

Let X_{1}, \ldots, X_{n} and Z be independent so that the first have a distribution with a density of the form $c_{p} e^{-|t|^{p}}$ and the last has an exponential law. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\frac{X}{\left(\sum_{1}^{n}\left|X_{i}\right|^{p}+Z\right)^{1 / p}}
$$

generates the Lebesgue measure on $\left\{\sum_{1}^{n}\left|x_{i}\right|^{p} \leq 1\right\}$.

Aubrun method

An other proof of this result for ℓ_{p} was given by G. Aubrun (2005) using a very elegant method which in fact gives more information in that case.

The method is based on the following result of Barthe - Guédon Mendelson - Naor.

Let X_{1}, \ldots, X_{n} and Z be independent so that the first have a distribution with a density of the form $c_{p} e^{-|t|^{p}}$ and the last has an exponential law. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\frac{X}{\left(\sum_{1}^{n}\left|X_{i}\right|^{p}+Z\right)^{1 / p}}
$$

generates the Lebesgue measure on $\left\{\sum_{1}^{n}\left|x_{i}\right|^{p} \leq 1\right\}$.
This representation which creates almost independent entries allows to transfer results on Wishart matrices to this case of random sampling by bringing back to the classical Marchenko-Pastur theorem for i.i.d. entries.

Log-concave setting

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^{n}$ is called isotropic if

$$
\mathbf{E}\{(Y, X)\}=0 \quad \text { and } \quad \mathbf{E}\left\{|(Y, X)|^{2}\right\}=n^{-1}|X|^{2}, \forall X \in \mathbb{R}^{n},
$$

where $|X|$ denotes the Euclidean norm of X.

Log-concave setting

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^{n}$ is called isotropic if

$$
\mathbf{E}\{(Y, X)\}=0 \quad \text { and } \quad \mathbf{E}\left\{|(Y, X)|^{2}\right\}=n^{-1}|X|^{2}, \forall X \in \mathbb{R}^{n},
$$

where $|X|$ denotes the Euclidean norm of X. A random complex vector $Y \in \mathbb{C}^{n}$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2 n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated.

Log-concave setting

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^{n}$ is called isotropic if

$$
\mathbf{E}\{(Y, X)\}=0 \quad \text { and } \quad \mathbf{E}\left\{|(Y, X)|^{2}\right\}=n^{-1}|X|^{2}, \forall X \in \mathbb{R}^{n},
$$

where $|X|$ denotes the Euclidean norm of X. A random complex vector $Y \in \mathbb{C}^{n}$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2 n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated. Alert on normalization!!

Log-concave setting

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^{n}$ is called isotropic if

$$
\mathbf{E}\{(Y, X)\}=0 \quad \text { and } \quad \mathbf{E}\left\{|(Y, X)|^{2}\right\}=n^{-1}|X|^{2}, \forall X \in \mathbb{R}^{n},
$$

where $|X|$ denotes the Euclidean norm of X. A random complex vector $Y \in \mathbb{C}^{n}$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2 n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated. Alert on normalization!!

Recall also that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called log-concave if for any $\theta \in[0,1]$ and any $X_{1}, X_{2} \in \mathbb{R}^{n}$, then $f\left(\theta X_{1}+(1-\theta) X_{2}\right) \geq f\left(X_{1}\right)^{\theta} f\left(X_{2}\right)^{1-\theta}$.

A measure μ on \mathbb{R}^{n} with a log-concave density will be called log-concave.

Universal principle for log-concave measure

Theorem (L. Pastur and A. P.) Let $\left\{Y_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. isotropic random vectors of $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ with a log-concave distribution and $\left\{\tau_{\alpha}\right\}_{\alpha=1}^{m}$ be i.i.d. random variables with a common probability law σ. Consider random matrices

$$
H_{n, m}=\sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha}
$$

Then there exist a probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have in probability

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty, m / n \rightarrow c \in[0, \infty)} N_{n, m}(\Delta)=N(\Delta) .
$$

- $\quad N$ is uniquely determined by its Stieltjes transform which satisfies the following equation:

$$
\begin{equation*}
f(z)=-\left(z-c \int_{\mathbb{R}} \frac{\tau \sigma(d \tau)}{1+\tau f(z)}\right)^{-1} . \tag{*}
\end{equation*}
$$

Stieltjes transform method: [MP] (1967)

Introduce the Stieltjes transform

$$
f(z)=\int_{\mathbb{R}} \frac{N(d \lambda)}{\lambda-z}, \Im z \neq 0
$$

of a measure N and the resolvent of a real symmetric (hermitian) matrix A

$$
G_{A}(z)=(A-z)^{-1}, \Im z \neq 0 .
$$

The use of the Stieltjes transform is based on the spectral theorem. Let $N_{n, m}$ be the Normalized Counting Measure of eigenvalues of $H_{n, m}$. Denote

$$
g_{n, m}(z)=\int_{\mathbb{R}} \frac{N_{n, m}(d \lambda)}{\lambda-z}, \Im z \neq 0
$$

then

$$
g_{n, m}(z)=\frac{1}{n} \operatorname{Tr}\left(H_{n, m}-z\right)^{-1}:=\frac{1}{n} \operatorname{Tr} G_{H_{n, m}}(z) .
$$

Stieltjes transform method (2)

The mechanism of the proof is the following.

- The expectations of the the Normalized Counting Measure of eigenvalues of $H_{n, m}$ will converge weakly to the measure, whose Stieltjes transform solves

$$
\begin{equation*}
f(z)=-\left(z-c \int_{\mathbb{R}} \frac{\tau \sigma(d \tau)}{1+\tau f(z)}\right)^{-1} \tag{*}
\end{equation*}
$$

(This equation has a unique solution in the class we consider).

- The Stieltjes transform is a one-to-one correspondence between probability measures and a certain well known class of analytic functions and it is continuous if one consider weak convergence of measure on one side and uniform convergence on compact subset of $\mathbb{C} \backslash \mathbb{R}$ on the other side.

Beginning the proof (1)

- Since for any interval $\Delta \subset \mathbb{R}$,

$$
\operatorname{Var}\left\{N_{n, m}(\Delta)\right\} \leq 4 / n
$$

it suffices to study the convergence of the Stieltjes transform $f_{n, m}$ of $\bar{N}_{n, m}$.

- Notation:
$G_{n, m}=G_{H_{n, m}}$ is the resolvent of the matrix $H_{n, m}$. $g_{n, m}(z)=\frac{1}{n} \operatorname{Tr}\left(H_{n, m}-z\right)^{-1}=\frac{1}{n} \operatorname{Tr} G_{n, m}(z)$ is the Stietjes transform of $N_{n, m}$ $\mathbf{E}\left\{g_{n, m}\right\}=f_{n, m}$ is the Stietjes transform of $\bar{N}_{n, m}$. $L_{\alpha}(X)=Y_{\alpha} \otimes Y_{\alpha}(X)=\left(X, Y_{\alpha}\right) Y_{\alpha}, \forall X \in \mathbb{R}^{n}\left(\mathbb{C}^{n}\right)$

Continuing the proof: induction and equation $(*)$

Forgetting the indices n, m, let G be the resolvent of $H_{n, m}$ and write \bar{G} for its expectation. Denote also $G_{\alpha}=\left.G\right|_{Y_{\alpha}=0}$.
Now we write the resolvent in order to fit with our equation (*).
We start from

$$
\bar{G}=-\frac{1}{z}+\frac{1}{z} \sum_{\alpha=1}^{m} \mathbf{E}\left\{\frac{\tau_{\alpha}}{1+\tau_{\alpha}\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)} G_{\alpha} L_{\alpha}\right\}
$$

and notice that $\mathbf{E}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}=\mathbf{E}\left\{n^{-1} \operatorname{Tr} G_{\alpha}\right\} \sim f_{n, m} \sim f$.
Take the normalized trace of \bar{G}.
After all these approximations we arrive at the relation (*) we want

$$
f \sim-\frac{1}{z}+\frac{1}{z} \frac{m}{n} \int_{\mathbb{R}} \frac{\tau \sigma(d \tau)}{1+\tau f} f .
$$

Continuing the proof (3)

Finally after all these approximations we arrive at the relation (*) we want

$$
f \sim-\frac{1}{z}+\frac{1}{z} \frac{m}{n} \int_{\mathbb{R}} \frac{\tau \sigma(d \tau)}{1+\tau f} f .
$$

Conclusion: let

$$
\bar{G}=-\frac{1}{z}+\frac{1}{z} \frac{m}{n} \int_{\mathbb{R}} \frac{\tau \sigma(d \tau)}{1+\tau f} \bar{G}+R .
$$

It suffices to show that the normalized trace of R goes to 0 .
For that we first trunctate the vectors to reduce to the case when all $\left|Y_{\alpha}\right|$ are bounded by some universal constant C.

The first term that appears in R after truncation at level C is of the form

$$
R_{1}=\sum_{\alpha=1}^{m} \mathbf{E}\left\{\tau_{\alpha} G\left(Y_{\alpha} \otimes Y_{\alpha}\right) \mathbf{1}_{\left|Y_{\alpha}\right| \geq t}\right\}
$$

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

$$
\mathbf{E}\left\{\left|Y_{\alpha}\right|^{q} \mathbf{1}_{\left|Y_{\alpha}\right| \geq C}\right\}
$$

for a fixed large C. For this we use the following result:

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

$$
\mathbf{E}\left\{\left|Y_{\alpha}\right|^{q} \mathbf{1}_{\left|Y_{\alpha}\right| \geq C}\right\}
$$

for a fixed large C. For this we use the following result:
Theorem (G. Paouris) There exists $C>0$ such that for any integer $n \geq 1$ and any isotropic random vector $Y \in \mathbb{R}^{n}$ with a log-concave distribution we have

$$
\mathbf{P}\{|Y| \geq C t\} \leq \exp (-t \sqrt{n})
$$

for every $t \geq 1$.

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

$$
\mathbf{E}\left\{\left|Y_{\alpha}\right|^{q} \mathbf{1}_{\left|Y_{\alpha}\right| \geq C}\right\}
$$

for a fixed large C. For this we use the following result:
Theorem (G. Paouris) There exists $C>0$ such that for any integer $n \geq 1$ and any isotropic random vector $Y \in \mathbb{R}^{n}$ with a log-concave distribution we have

$$
\mathbf{P}\{|Y| \geq C t\} \leq \exp (-t \sqrt{n})
$$

for every $t \geq 1$.
As a consequence,

$$
\mathbf{E}\left\{\left|Y_{\alpha}\right|^{2} \mathbf{1}_{\left|Y_{\alpha}\right| \geq C}\right\} \leq c \exp \left(-c^{\prime} \sqrt{n}\right)
$$

Continuing the proof

An other "typical" term of R is of the form:

$$
\mathbf{E}\left\{\mid \mathbf{E}_{\alpha}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)-f_{n, m} \mid\right\}\right\}
$$

which is

$$
\leq \mathbf{E}\left\{\operatorname{Var}_{\alpha}^{1 / 2}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}\right\}+\mathbf{E}\left\{\left|g_{\alpha}-g_{n, m}\right|\right\}+\operatorname{Var}_{\alpha}^{1 / 2}\left\{g_{n, m}\right\}
$$

with

$$
\mathbf{E}_{\alpha}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}=n^{-1} \operatorname{Tr} G_{\alpha}:=g_{\alpha}
$$

Here $\mathbf{E}_{\alpha}\{\ldots\}$ denotes the expectation only with respect to Y_{α}.
Let us focus on the first term

$$
\mathbf{E}\left\{\operatorname{Var}_{\alpha}^{1 / 2}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}\right\} .
$$

Recall: $g_{n, m}(z)=\frac{1}{n} \operatorname{Tr}\left(H_{n, m}-z\right)^{-1}=\frac{1}{n} \operatorname{Tr} G_{H_{n, m}}(z), \mathbf{E}\left\{g_{n, m}\right\}=f_{n, m}$.

Kannan-Lovász-Simonovits type inequality

The first term again is

$$
\mathbf{E}\left\{\operatorname{Var}_{\alpha}^{1 / 2}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}\right\}
$$

where G_{α} is the resolvent of an hermitian matrix. We want to show that it goes to 0 with n, m.

We can reformulate the question: estimate

$$
\operatorname{Var}\{(G Y, Y)\}
$$

in terms of some norm of G, where G is an $n \times n$ hermitian matrix (non-random) and Y is an isotropic random vector in \mathbb{R}^{n} (or \mathbb{C}^{n}) with a log-concave law.
Kannan-Lovász-Simonovits type of inequality

$$
\operatorname{Var} g(Y) \leq \frac{C}{n} \mathbf{E}|\nabla g(Y)|^{2}
$$

for $g(Y)=(G Y, Y)$ with G an Hermitian matrice.

Central limit problem: a result of B. Klartag

When G is the identity, it is the central limit problem for log-concave measure. An important breakthrough was done recently by B. Klartag. We state here the following reformulation which fit with our questions.

Theorem (B. Klartag) There exist positive constants C, α (with $\alpha<1$), such that for any integer $n \geq 1$ and any isotropic random vector $Y \in \mathbb{R}^{n}$ with a log-concave distribution we have

$$
\operatorname{Var}\left\{|Y|^{2}\right\} \leq C / n^{\alpha}
$$

The conjecture is with $\alpha=1$. An estimate of the type

$$
\operatorname{Var}\left\{|Y|^{2}\right\} \leq C / \log ^{\alpha} n
$$

was first given by B. Klartag. Few times later, a similar estimate was proved by B. Fleury, O. Guédon, G. Paouris using a different approach. Recently, B. Klartag gave the above polynomial bound and proved the conjecture in the unconditionnal case.

End of the proof

From the result of Klartag, we deduce:
Proposition. Let A be an hermitian matrix and let $Y \in \mathbb{R}^{n}$ (or \mathbb{C}^{n}) be an isotropic random vector with a log-concave distribution. Then

$$
\operatorname{Var}\{(A Y, Y)\} \leq C\|A\|^{2} / n^{\alpha}
$$

where $\|A\|$ denotes the operator norm.
To conclude our estimate, observe that the resolvent of an hermitian matrix A satisfies

$$
\left\|G_{A}(z)\right\| \leq|\Im z|^{-1}
$$

which allows to show that on any compact domain of $\mathbb{C} \backslash \mathbb{R}$ one has

$$
\lim _{n} \operatorname{Var}_{\alpha}\left\{\left(G_{\alpha} Y_{\alpha}, Y_{\alpha}\right)\right\}=0
$$

