Marchenko-Pastur distribution for random vectors with log-concave law

Alain Pajor University Paris-Est

Joint work with Leonid Pastur

Global regime for sample covariance matrices

We consider a sequence of real or complex $m \times n$ matrices

$$\Gamma_{n,m}$$
 $n=1,2,\ldots$

$$\Gamma_{n,m} = \begin{pmatrix} \gamma_{11}^{(n)} & \dots & \gamma_{1n}^{(n)} \\ \gamma_{21}^{(n)} & \dots & \gamma_{2n}^{(n)} \\ \vdots & \vdots & \vdots \\ \gamma_{m1}^{(n)} & \dots & \gamma_{mn}^{(n)} \end{pmatrix}$$

with $m \sim cn$ and c > 1. We suppose that these matrices are **isotropic**, that is:

for all
$$i, j$$
 $\mathbb{E}\gamma_{ij}^{(n)} = 0$ and $\mathbb{E}|\gamma_{ij}^{(n)}|^2 = \frac{1}{n}$.

in the complex case, we suppose moreover that $\mathbb{E}(\gamma_{ij}^{(n)})^2 = 0$.

Denote $\lambda_1 \leq ... \leq \lambda_n$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^*\Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n,m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$N_{n,m}(\Delta) = \operatorname{Card}\{\ell \in [1,n] : \lambda_{\ell} \in \Delta\}/n.$$

Denote $\lambda_1 \leq ... \leq \lambda_n$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^*\Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n,m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$N_{n,m}(\Delta) = \operatorname{Card}\{\ell \in [1,n] : \lambda_{\ell} \in \Delta\}/n.$$

Let c > 1, it was shown by **Marchenko and Pastur [MP] (1967)** that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$\lim_{n \to \infty, \ m \to \infty, \ m/n \to c} N_{n,m}(\Delta) = N(\Delta)$$

where N is the so-called Marchenko-Pastur law.

Denote $\lambda_1 \leq ... \leq \lambda_n$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^*\Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n,m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$N_{n,m}(\Delta) = \operatorname{Card}\{\ell \in [1,n] : \lambda_{\ell} \in \Delta\}/n.$$

Let c > 1, it was shown by **Marchenko and Pastur [MP] (1967)** that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$\lim_{n \to \infty, \ m \to \infty, \ m/n \to c} N_{n,m}(\Delta) = N(\Delta)$$

where N is the so-called Marchenko-Pastur law.

N is supported on the interval [a, b] with $a = \left(1 - \frac{1}{\sqrt{c}}\right)^2$, $b = \left(1 + \frac{1}{\sqrt{c}}\right)^2$ and with density

$$\frac{c}{2\pi x}\sqrt{(b-x)(x-a)}, \quad x \in [a,b].$$

Denote $\lambda_1 \leq ... \leq \lambda_n$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $\Gamma^*\Gamma$ and introduce their Normalized Counting (or empirical) Measure $N_{n,m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$N_{n,m}(\Delta) = \operatorname{Card}\{\ell \in [1,n] : \lambda_{\ell} \in \Delta\}/n.$$

Let c > 1, it was shown by **Marchenko and Pastur [MP] (1967)** that if all the components of the matrices are i.i.d. random variables, then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$\lim_{n \to \infty, \ m \to \infty, \ m/n \to c} N_{n,m}(\Delta) = N(\Delta)$$

where N is the so-called Marchenko-Pastur law.

Note: The particular case with Gaussian components is known since the 30th in statistics as the Wishart matrix.

General setting and spherical case

Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) and $\{\tau_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ . Set

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

General setting and spherical case

Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) and $\{\tau_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ . Set

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

$$\Gamma_{n,m} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{pmatrix}$$

General setting and spherical case

Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) and $\{\tau_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random variables with common probability law σ . Set

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

Denote $\lambda_1 \leq ... \leq \lambda_n$ the eigenvalues of the real symmetric (or hermitian) $n \times n$ matrix $H_{n,m}$ and introduce their Normalized Counting (or empirical) Measure $N_{n,m}$, setting for any interval $\Delta \subset \mathbb{R}$

$$N_{n,m}(\Delta) = \operatorname{Card}\{\ell \in [1,n] : \lambda_{\ell} \in \Delta\}/n.$$

It was shown by **Marchenko and Pastur [MP]**(1967) that if $\{Y_{\alpha}\}_{\alpha=1}^{m}$ are uniformly distributed over the unit sphere of \mathbb{R}^{n} (or \mathbb{C}^{n}), then there exists a non-random probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have the convergence in probability

$$\lim_{n \to \infty, \ m \to \infty, \ m/n \to c} N_{n,m}(\Delta) = N(\Delta).$$

 $L_{\alpha}(X) = Y_{\alpha} \otimes Y_{\alpha}(X) = (X, Y_{\alpha})Y_{\alpha}, \ \forall X \in \mathbb{R}^{n}(\mathbb{C}^{n})$

A more general but similar case as the spherical one was observed by **L**. **Pastur and A. P.** (2004).

Let $p \ge 1$. Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\{\sum_{i=1}^{n} |x_{i}|^{p} \le r^{p}\}$ of the *n*-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.

Let $p \ge 1$. Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\{\sum_{1}^{n} |x_{i}|^{p} \le r^{p}\}$ of the *n*-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.

The proof used the Stieltjes transform method of [MP] and the fact that the square of coordinates functionals in ℓ_p^n space are negatively correlated (Anttila-Ball-Perissinaki).

Let $p \ge 1$. Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be uniformly distributed over a ball $\{\sum_{1}^{n} |x_{i}|^{p} \le r^{p}\}$ of the *n*-dimensional ℓ_{p}^{n} space that has been rescaled so that the matrix

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

is isotropic. Then the Marchenko-Pastur theorem is also valid.

The proof used the Stieltjes transform method of [MP] and the fact that the square of coordinates functionals in ℓ_p^n space are negatively correlated (Anttila-Ball-Perissinaki).

This property is very particular to the ℓ_p space (or of similar spaces) and is not true in general even for unconditional space (see **S. Bobkov** and **J. O. Wojtaszczyk**).

Aubrun method

An other proof of this result for ℓ_p was given by **G. Aubrun** (2005) using a very elegant method which in fact gives more information in that case.

Aubrun method

An other proof of this result for ℓ_p was given by **G. Aubrun** (2005) using a very elegant method which in fact gives more information in that case.

The method is based on the following result of **Barthe - Guédon -Mendelson - Naor**.

Let X_1, \ldots, X_n and Z be independent so that the first have a distribution with a density of the form $c_p e^{-|t|^p}$ and the last has an exponential law. Let $X = (X_1, \ldots, X_n)$, then

$$\frac{X}{\left(\sum_{1}^{n} |X_i|^p + Z\right)^{1/p}}$$

generates the Lebesgue measure on $\{\sum_{i=1}^{n} |x_i|^p \le 1\}$.

Aubrun method

An other proof of this result for ℓ_p was given by **G. Aubrun** (2005) using a very elegant method which in fact gives more information in that case.

The method is based on the following result of **Barthe - Guédon -Mendelson - Naor**.

Let X_1, \ldots, X_n and Z be independent so that the first have a distribution with a density of the form $c_p e^{-|t|^p}$ and the last has an exponential law. Let $X = (X_1, \ldots, X_n)$, then

 $\frac{X}{\left(\sum_{1}^{n}|X_{i}|^{p}+Z\right)^{1/p}}$

generates the Lebesgue measure on $\{\sum_{i=1}^{n} |x_i|^p \le 1\}$.

This representation which creates almost independent entries allows to transfer results on Wishart matrices to this case of random sampling by bringing back to the classical Marchenko-Pastur theorem for i.i.d. entries.

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^n$ is called isotropic if

 $\mathbf{E}\{(Y,X)\} = 0$ and $\mathbf{E}\{|(Y,X)|^2\} = n^{-1}|X|^2, \forall X \in \mathbb{R}^n,$

where |X| denotes the Euclidean norm of X.

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^n$ is called isotropic if

 $\mathbf{E}\{(Y,X)\} = 0$ and $\mathbf{E}\{|(Y,X)|^2\} = n^{-1}|X|^2, \forall X \in \mathbb{R}^n,$

where |X| denotes the Euclidean norm of X.

A random complex vector $Y \in \mathbb{C}^n$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated.

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^n$ is called isotropic if

 $\mathbf{E}\{(Y,X)\} = 0$ and $\mathbf{E}\{|(Y,X)|^2\} = n^{-1}|X|^2, \forall X \in \mathbb{R}^n,$

where |X| denotes the Euclidean norm of X.

A random complex vector $Y \in \mathbb{C}^n$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated.

Alert on normalization!!

Definition of isotropic vectors. A random real vector $Y \in \mathbb{R}^n$ is called isotropic if

 $\mathbf{E}\{(Y,X)\} = 0$ and $\mathbf{E}\{|(Y,X)|^2\} = n^{-1}|X|^2, \forall X \in \mathbb{R}^n,$

where |X| denotes the Euclidean norm of X.

A random **complex vector** $Y \in \mathbb{C}^n$ is called isotropic if $(\Re Y, \Im Y) \in \mathbb{R}^{2n}$ is isotropic; in others words, $\Re Y$ and $\Im Y$ are isotropic and not correlated.

Alert on normalization!!

Recall also that a function $f : \mathbb{R}^n \to \mathbb{R}$ is called log-concave if for any $\theta \in [0,1]$ and any $X_1, X_2 \in \mathbb{R}^n$, then $f(\theta X_1 + (1-\theta)X_2) \ge f(X_1)^{\theta} f(X_2)^{1-\theta}$.

A measure μ on \mathbb{R}^n with a log-concave density will be called **log-concave**.

Universal principle for log-concave measure

Theorem (L. Pastur and A. P.) Let $\{Y_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. isotropic random vectors of \mathbb{R}^{n} (or \mathbb{C}^{n}) with a log-concave distribution and $\{\tau_{\alpha}\}_{\alpha=1}^{m}$ be i.i.d. random variables with a common probability law σ . Consider random matrices

$$H_{n,m} = \sum_{\alpha=1}^{m} \tau_{\alpha} Y_{\alpha} \otimes Y_{\alpha} \cdot$$

Then there exist a probability measure N such that for any interval $\Delta \subset \mathbb{R}$ we have in probability

$$\lim_{n \to \infty, m \to \infty, m/n \to c \in [0,\infty)} N_{n,m}(\Delta) = N(\Delta).$$

• *N* is uniquely determined by its Stieltjes transform which satisfies the following equation:

$$f(z) = -\left(z - c \int_{\mathbb{R}} \frac{\tau \sigma(d\tau)}{1 + \tau f(z)}\right)^{-1}.$$
 (*)

Stieltjes transform method: [MP] (1967)

Introduce the Stieltjes transform

$$f(z) = \int_{\mathbb{R}} \frac{N(d\lambda)}{\lambda - z}, \ \Im z \neq 0$$

of a measure N and the resolvent of a real symmetric (hermitian) matrix A

$$G_A(z) = (A - z)^{-1}, \ \Im z \neq 0.$$

The use of the Stieltjes transform is based on the spectral theorem. Let $N_{n,m}$ be the Normalized Counting Measure of eigenvalues of $H_{n,m}$. Denote

$$g_{n,m}(z) = \int_{\mathbb{R}} \frac{N_{n,m}(d\lambda)}{\lambda - z}, \ \Im z \neq 0$$

then

$$g_{n,m}(z) = \frac{1}{n} \operatorname{Tr} (H_{n,m} - z)^{-1} := \frac{1}{n} \operatorname{Tr} G_{H_{n,m}}(z).$$

Stieltjes transform method (2)

The mechanism of the proof is the following.

• The expectations of the the Normalized Counting Measure of eigenvalues of $H_{n,m}$ will converge weakly to the measure, whose Stieltjes transform solves

$$f(z) = -\left(z - c \int_{\mathbb{R}} \frac{\tau \sigma(d\tau)}{1 + \tau f(z)}\right)^{-1}.$$
 (*)

(This equation has a unique solution in the class we consider).

• The Stieltjes transform is a one-to-one correspondence between probability measures and a certain well known class of analytic functions and it is continuous if one consider weak convergence of measure on one side and uniform convergence on compact subset of $\mathbb{C} \setminus \mathbb{R}$ on the other side.

Beginning the proof (1)

• Since for any interval $\Delta \subset \mathbb{R}$,

 $\operatorname{Var}\{N_{n,m}(\Delta)\} \le 4/n \qquad (**)$

it suffices to study the convergence of the Stieltjes transform $f_{n,m}$ of $\bar{N}_{n,m}$.

• Notation:

 $G_{n,m} = G_{H_{n,m}}$ is the resolvent of the matrix $H_{n,m}$. $g_{n,m}(z) = \frac{1}{n} \operatorname{Tr} (H_{n,m} - z)^{-1} = \frac{1}{n} \operatorname{Tr} G_{n,m}(z)$ is the Stietjes transform of $N_{n,m}$ $\mathbf{E}\{g_{n,m}\} = f_{n,m}$ is the Stietjes transform of $\overline{N}_{n,m}$. $L_{\alpha}(X) = Y_{\alpha} \otimes Y_{\alpha}(X) = (X, Y_{\alpha})Y_{\alpha}, \ \forall X \in \mathbb{R}^{n}(\mathbb{C}^{n})$

Continuing the proof: induction and equation (*)

Forgetting the indices n, m, let G be the resolvent of $H_{n,m}$ and write \overline{G} for its expectation. Denote also $G_{\alpha} = G|_{Y_{\alpha}=0}$.

Now we write the resolvent in order to fit with our equation (*).

We start from

$$\overline{G} = -\frac{1}{z} + \frac{1}{z} \sum_{\alpha=1}^{m} \mathbf{E} \left\{ \frac{\tau_{\alpha}}{1 + \tau_{\alpha}(G_{\alpha}Y_{\alpha}, Y_{\alpha})} G_{\alpha}L_{\alpha} \right\}$$

and notice that $\mathbf{E}\{(G_{\alpha}Y_{\alpha}, Y_{\alpha})\} = \mathbf{E}\{n^{-1}\mathrm{Tr}\,G_{\alpha}\} \sim f_{n,m} \sim f.$

Take the normalized trace of \overline{G} .

After all these approximations we arrive at the relation (*) we want

$$f \sim -\frac{1}{z} + \frac{1}{z} \frac{m}{n} \int_{\mathbb{R}} \frac{\tau \sigma(d\tau)}{1 + \tau f} f.$$

Continuing the proof (3)

Finally after all these approximations we arrive at the relation (*) we want

$$f \sim -\frac{1}{z} + \frac{1}{z}\frac{m}{n}\int_{\mathbb{R}} \frac{\tau\sigma(d\tau)}{1+\tau f} f.$$

Conclusion: let

$$\overline{G} = -\frac{1}{z} + \frac{1}{z}\frac{m}{n}\int_{\mathbb{R}}\frac{\tau\sigma(d\tau)}{1+\tau f}\overline{G} + R.$$

It suffices to show that the normalized trace of R goes to 0.

For that we first trunctate the vectors to reduce to the case when all $|Y_{\alpha}|$ are bounded by some universal constant *C*.

The first term that appears in R after truncation at level C is of the form

$$R_1 = \sum_{\alpha=1}^m \mathbf{E}\{\tau_\alpha G(Y_\alpha \otimes Y_\alpha) \mathbf{1}_{|Y_\alpha| \ge t}\}.$$

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

 $\mathbf{E}\{|Y_{\alpha}|^{q}\mathbf{1}_{|Y_{\alpha}|\geq C}\}$

for a fixed large C. For this we use the following result:

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

 $\mathbf{E}\{|Y_{\alpha}|^{q}\mathbf{1}_{|Y_{\alpha}|\geq C}\}$

for a fixed large C. For this we use the following result:

Theorem (G. Paouris) There exists C > 0 such that for any integer $n \ge 1$ and any isotropic random vector $Y \in \mathbb{R}^n$ with a log-concave distribution we have

 $\mathbf{P}\{|Y| \ge Ct\} \le \exp(-t\sqrt{n}).$

for every $t \ge 1$.

Truncation. A fundamental result of G. Paouris.

For the truncation technic one needs a good control of quantities like

 $\mathbf{E}\{|Y_{\alpha}|^{q}\mathbf{1}_{|Y_{\alpha}|\geq C}\}$

for a fixed large C. For this we use the following result:

Theorem (G. Paouris) There exists C > 0 such that for any integer $n \ge 1$ and any isotropic random vector $Y \in \mathbb{R}^n$ with a log-concave distribution we have

$$\mathbf{P}\{|Y| \ge Ct\} \le \exp(-t\sqrt{n}).$$

for every $t \ge 1$.

As a consequence,

$$\mathbf{E}\{|Y_{\alpha}|^{2}\mathbf{1}_{|Y_{\alpha}|\geq C}\}\leq c\exp(-c'\sqrt{n}).$$

Continuing the proof

An other "typical" term of R is of the form:

 $\mathbf{E}\left\{\left|\mathbf{E}_{\alpha}\left\{\left(G_{\alpha}Y_{\alpha},Y_{\alpha}\right)-f_{n,m}\right|\right\}\right\}$

which is

with

$$\leq \mathbf{E}\left\{\mathbf{Var}_{\alpha}^{1/2}\left\{\left(G_{\alpha}Y_{\alpha},Y_{\alpha}\right)\right\}\right\} + \mathbf{E}\left\{\left|g_{\alpha}-g_{n,m}\right|\right\} + \mathbf{Var}_{\alpha}^{1/2}\left\{g_{n,m}\right\}.$$

$$\mathbf{E}_{\alpha}\{(G_{\alpha}Y_{\alpha}, Y_{\alpha})\} = n^{-1}\mathrm{Tr}\,G_{\alpha} := g_{\alpha}$$

Here $\mathbf{E}_{\alpha}\{...\}$ denotes the expectation only with respect to Y_{α} . Let us focus on the first term

$$\mathbf{E}\left\{\mathbf{Var}_{\alpha}^{1/2}\left\{\left(G_{\alpha}Y_{\alpha},Y_{\alpha}\right)\right\}\right\}.$$

Recall: $g_{n,m}(z) = \frac{1}{n} \operatorname{Tr} (H_{n,m} - z)^{-1} = \frac{1}{n} \operatorname{Tr} G_{H_{n,m}}(z), \ \mathbf{E}\{g_{n,m}\} = f_{n,m}.$

Kannan-Lovász-Simonovits type inequality

The first term again is

$$\mathbf{E}\left\{\mathbf{Var}_{\alpha}^{1/2}\left\{\left(G_{\alpha}Y_{\alpha},Y_{\alpha}\right)\right\}\right\}$$

where G_{α} is the resolvent of an hermitian matrix. We want to show that it goes to 0 with n, m.

We can reformulate the question: estimate

 $\mathbf{Var}\{(GY,Y)\}$

in terms of some norm of G, where G is an $n \times n$ hermitian matrix (non-random) and Y is an isotropic random vector in \mathbb{R}^n (or \mathbb{C}^n) with a log-concave law.

Kannan-Lovász-Simonovits type of inequality

$$\operatorname{Var} g(Y) \le \frac{C}{n} \mathbf{E} \, |\nabla g(Y)|^2$$

for g(Y) = (GY, Y) with G an Hermitian matrice.

Central limit problem: a result of B. Klartag

When G is the identity, it is the central limit problem for log-concave measure. An important breakthrough was done recently by **B. Klartag**. We state here the following reformulation which fit with our questions.

Theorem (B. Klartag) There exist positive constants C, α (with $\alpha < 1$), such that for any integer $n \ge 1$ and any isotropic random vector $Y \in \mathbb{R}^n$ with a log-concave distribution we have

 $\operatorname{Var}\{|Y|^2\} \le C/n^{\alpha}.$

The conjecture is with $\alpha = 1$. An estimate of the type

 $\operatorname{Var}\{|Y|^2\} \le C/\log^{\alpha} n.$

was first given by **B. Klartag**. Few times later, a similar estimate was proved by **B. Fleury, O. Guédon, G. Paouris** using a different approach. Recently, **B. Klartag** gave the above polynomial bound and proved the conjecture in the unconditionnal case.

End of the proof

From the result of Klartag, we deduce:

Proposition. Let A be an hermitian matrix and let $Y \in \mathbb{R}^n$ (or \mathbb{C}^n) be an isotropic random vector with a log-concave distribution. Then

 $\operatorname{Var}\{(AY,Y)\} \le C \|A\|^2 / n^{\alpha}$

where ||A|| denotes the operator norm.

To conclude our estimate, observe that the resolvent of an hermitian matrix A satisfies

 $||G_A(z)|| \le |\Im z|^{-1}$

which allows to show that on any compact domain of $\mathbb{C}\setminus\mathbb{R}$ one has

$$\lim_{n} \operatorname{Var}_{\alpha} \{ (G_{\alpha} Y_{\alpha}, Y_{\alpha}) \} = 0.$$