Equitable coloring of random graphs

Michael Krivelevich ${ }^{1}$, Balázs Patkós ${ }^{2}$

1 Tel Aviv University, Tel Aviv, Israel
2 Central European University, Budapest, Hungary
Phenomena in High Dimensions, Samos 2007

A set of vertices $U \subseteq V(G)$ is said to be independent if no two vertices of U are adjacent.
$\alpha(G)$ denotes the size of the largest independent set in G.

A set of vertices $U \subseteq V(G)$ is said to be independent if no two vertices of U are adjacent.
$\alpha(G)$ denotes the size of the largest independent set in G.

A proper k-coloring of G is a function $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that if $u, v \in V(G)$ are adjacent, then $c(u) \neq c(v)$.
$\chi(G)$ is the least positive integer k for which there is a k-coloring of G (or equivalently the least positive integer k for which $V(G)$ is the union of k independent sets).

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

Applications

- Scheduling, partitioning and load balancing problems.
- Deviation bounds for sums of random variables with limited dependence.
- H-factors in graphs
- A new proof of Blow-Up Lemma.

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

This is not monotone, i.e. it is possible that a graph admits an equitable k-coloring but is not equitably $(k+1)$-colorable.

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

This is not monotone, i.e. it is possible that a graph admits an equitable k-coloring but is not equitably $(k+1)$-colorable.

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

This is not monotone, i.e. it is possible that a graph admits an equitable k-coloring but is not equitably $(k+1)$-colorable.

Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one.

This is not monotone, i.e. it is possible that a graph admits an equitable k-coloring but is not equitably $(k+1)$-colorable.

Definition

The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by $\chi=(G)$.

Definition

The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by $\chi=(G)$.

The least positive integer k such that for any $k^{\prime} \geq k$ there exists an equitable coloring of a graph G with k^{\prime} colors is said to be the equitable chromatic threshold of G and is denoted by $\chi_{=}^{*}(G)$.

Fact: If the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta+1$.

Fact: If the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta+1$.

Theorem
Hajnal - Szemerédi 1970, If the maximum degree in G is at most Δ, then $\chi_{=}^{*}(G) \leq \Delta+1$.

Fact: If the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta+1$.

Theorem
Hajnal - Szemerédi 1970, If the maximum degree in G is at most Δ, then $\chi_{=}^{*}(G) \leq \Delta+1$.
long proof

Fact: If the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta+1$.

Theorem
Hajnal - Szemerédi 1970, If the maximum degree in G is at most Δ, then $\chi_{=}^{*}(G) \leq \Delta+1$.
long proof
Kierstead - Kostochka 2006, polynomial time algorithm, 5 page proof

Theorem

Brooks If G is connected, G is not $K_{\Delta+1}$ nor an odd cycle and the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta$.

Theorem

Brooks If G is connected, G is not $K_{\Delta+1}$ nor an odd cycle and the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta$.

Conjecture

Chen - Lin -Wu Let G be a connected graph with maximum degree at most Δ. If G is distinct from $K_{\Delta+1}, K_{\Delta, \Delta}($ for odd $\Delta)$ and is not an odd cycle, then $\chi_{=}^{*}(G) \leq \Delta$.

Theorem
Brooks If G is connected, G is not $K_{\Delta+1}$ nor an odd cycle and the maximum degree in G is at most Δ, then $\chi(G) \leq \Delta$.

Conjecture
Chen - Lin -Wu Let G be a connected graph with maximum degree at most Δ. If G is distinct from $K_{\Delta+1}, K_{\Delta, \Delta}($ for odd $\Delta)$ and is not an odd cycle, then $\chi_{=}^{*}(G) \leq \Delta$.

True if $\Delta \leq 4$ (Chen - Lih -Wu $\Delta \leq 3$, Kierstead Kostochкa $\Delta=4$)
G is d-degenerate if every subgraph of G contains a vertex with degree at most d.
G is d-degenerate if every subgraph of G contains a vertex with degree at most d.
Fact: If G is d-degenerate, then $\chi(G) \leq d+1$.
G is d-degenerate if every subgraph of G contains a vertex with degree at most d.

Fact: If G is d-degenerate, then $\chi(G) \leq d+1$.
Theorem
Kostochka, Nakprasit, Pemmaraju For every $d, n \geq 1$, if a graph G is d-degenerate, has n vertices and the maximum degree of G is at most $n / 15$, then $\chi_{=}^{*}(G) \leq 16 d$.
$G(n, p)$: the probability space of all labeled graphs on n vertices, where every edge appears randomly and independently with probability $p=p(n)$.
$G(n, p)$: the probability space of all labeled graphs on n vertices, where every edge appears randomly and independently with probability $p=p(n)$.
For a fixed labeled graph G, we have

$$
\mathbb{P}[G(n, p)=G]=p^{|E(G)|}(1-p)^{\binom{n}{2}-|(G)|}
$$

$G(n, p)$: the probability space of all labeled graphs on n vertices, where every edge appears randomly and independently with probability $p=p(n)$.
For a fixed labeled graph G, we have

$$
\mathbb{P}[G(n, p)=G]=p^{|E(G)|}(1-p)^{\binom{n}{2}-|(G)|}
$$

We say that $G(n, p)$ possesses a property \mathcal{P} almost surely, or a.s. for brevity, if the probability that $G(n, p)$ satisfies \mathcal{P} tends to 1 as n tends to infinity.
$G(n, p)$: the probability space of all labeled graphs on n vertices, where every edge appears randomly and independently with probability $p=p(n)$.
For a fixed labeled graph G, we have

$$
\mathbb{P}[G(n, p)=G]=p^{|E(G)|}(1-p)^{\binom{n}{2}-|(G)|}
$$

We say that $G(n, p)$ possesses a property \mathcal{P} almost surely, or a.s. for brevity, if the probability that $G(n, p)$ satisfies \mathcal{P} tends to 1 as n tends to infinity.
Color $G(n, p)$ equitably!

Fact:

$$
\chi(G) \geq \frac{|V(G)|}{\alpha(G)}
$$

Fact:

$$
\chi(G) \geq \frac{|V(G)|}{\alpha(G)}
$$

Theorem

BollobÁs - Erdős 1976, Almost surely,

$$
\alpha(G(n, p)) \sim 2 \log _{b} n-2 \log _{b} \log _{b}(n p)
$$

where $b=\frac{1}{1-p}$.

Fact:

$$
\chi(G) \geq \frac{|V(G)|}{\alpha(G)}
$$

Theorem

BollobÁs - Erdős 1976, Almost surely,

$$
\alpha(G(n, p)) \sim 2 \log _{b} n-2 \log _{b} \log _{b}(n p)
$$

where $b=\frac{1}{1-p}$.

Theorem
Bollobás; Matula and Kučera 1987, Almost surely,

$$
\chi(G(n, p)) \sim \frac{n}{2 \log _{b} n-2 \log _{b} \log _{b}(n p)} .
$$

Theorem
Bollobás; Matula and Kučera 1987, Almost surely,

$$
\chi(G(n, p)) \sim \frac{n}{2 \log _{b} n-2 \log _{b} \log _{b}(n p)} .
$$

Proof idea: almost surely, every large subgraph of $G(n, p)$ contains a large independent set.

Theorem
Bollobás; Matula and Kučera 1987, Almost surely,

$$
\chi(G(n, p)) \sim \frac{n}{2 \log _{b} n-2 \log _{b} \log _{b}(n p)} .
$$

Proof idea: almost surely, every large subgraph of $G(n, p)$ contains a large independent set.

Pick large independent sets of vertices till leftover is tiny. (The independent sets are of the same size.) Color the leftover with few colors.

Theorem
Bollobás; Matula and Kučera 1987, Almost surely,

$$
\chi(G(n, p)) \sim \frac{n}{2 \log _{b} n-2 \log _{b} \log _{b}(n p)} .
$$

Proof idea: almost surely, every large subgraph of $G(n, p)$ contains a large independent set.

Pick large independent sets of vertices till leftover is tiny. (The independent sets are of the same size.) Color the leftover with few colors.

But the color classes used for the leftover are small!

Conjecture

There exists a constant C such that if $C / n<p<0.99$, then almost surely
$\chi(G(n, p)) \leq \chi=(G(n, p)) \leq \chi_{=}^{*}(G(n, p))=(1+o(1)) \chi(G(n, p))$
holds (the first two inequalities are true by definition).

A greedy algorithm:

A greedy algorithm:

A greedy algorithm:

We divide the vertex set into $\lceil n / k\rceil$ layers, each containing k vertices (except the last layer).

A greedy algorithm:

We divide the vertex set into $\lceil n / k\rceil$ layers, each containing k vertices (except the last layer).

Algorithm in $\lceil n / k\rceil$ turns.
In the $I+1$ st turn, we expose the edges between the $I+1$ st later and the previous ones.

Suppose, we managed to extend each k color classes by one vertex from the "that time current" layer in all previous turns.

We define an auxiliary random bipartite graph $G(k, k, q)$:

We define an auxiliary random bipartite graph $G(k, k, q)$:

We define an auxiliary random bipartite graph $G(k, k, q)$:

$q=(1-p)^{\prime}$

Theorem

(a) If $p<0.99$ and $\log (n p) \gg \log \log n$, then almost surely we have $\chi(G(n, p)) \leq \chi_{=}(G(n, p)) \leq \chi_{=}^{*}(G(n, p)) \leq(2+o(1)) \chi(G(n, p))$.
(b) If $p \rightarrow 0$ and there is a $\delta>1$ such that $p \geq \frac{\log ^{\delta} n}{n}$, then almost surely we have

$$
\chi_{=}^{*}(G(n, p))=O_{\delta}(\chi(G(n, p))) .
$$

Theorem
If $p<0.99$ and $p>n^{-\theta}$ for some $\theta<1 / 5$, then the following holds almost surely:

$$
\chi(G(n, p)) \leq \chi=(G(n, p)) \leq(1+o(1)) \chi(G(n, p))
$$

Case I: $\frac{1}{\log ^{8} n} \leq p \leq 0.99$
Theorem
Let G be a graph on n vertices in which every induced subgraph $G[U]$ with $|U| \geq m$ contains an independent set of size s. Suppose further that $\frac{n-\Delta(G)-m-m s^{2}}{s} \geq m$ holds. Then G can be properly colored using color classes only of size s and $s-1$.

Definition

An (n, d, λ)-graph is a d-regular graph on n vertices with eigenvalues $d=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ such that $\lambda \geq \max \left\{\left|\lambda_{i}\right|: 2 \leq i \leq n\right\}$.

Definition

An (n, d, λ)-graph is a d-regular graph on n vertices with eigenvalues $d=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ such that
$\lambda \geq \max \left\{\left|\lambda_{i}\right|: 2 \leq i \leq n\right\}$.

Theorem
Let G_{n} be a sequence of (n, d, λ)-graphs where $d(n) \leq 0.9 n$ and $\frac{d^{3}}{n^{2} \lambda}=\Omega\left(n^{\alpha}\right)$ holds for some $\alpha>0$. Then $\chi=\left(G_{n}\right)=O\left(\frac{d}{\log d}\right)$.

Case II: $n^{-1 / 5} \leq p \leq \frac{1}{\log ^{8} n}$
Definition
Independent (t, k)-comb

Case II: $n^{-1 / 5} \leq p \leq \frac{1}{\log ^{8} n}$

Definition

Independent (t, k)-comb

If $p>n^{-1 / 5}$, then almost surely every large subgraph of $G(n, p)$ contains a large (t, k)-comb.

Theorem

There exists a constant C such that if $\frac{C}{n} \leq p \leq \log ^{-7} n$, then a.s. $\chi=(G(n, p)) \leq(2+o(1)) \chi(G(n, p))$.

Open problems:

Open problems:

Find the asymptotics of $\chi_{=}(G(n, p))$ when p tends to 0 very quickly.

Open problems:
Find the asymptotics of $\chi_{=}(G(n, p))$ when p tends to 0 very quickly.

Find the asymptotics of $\chi_{=}^{*}(G(n, p))$ even only for constant p.

Thank you for your attention!

