Volume thresholds for Gaussian and spherical random polytopes and their duals

Peter Pivovarov

University of Alberta

June 28th, 2007

Peter Pivovarov (University of Alberta)

Volume Thresholds

June 28th, 2007 1 / 17

(日) (同) (三) (三)

Random ± 1 Polytopes

- $\bullet~\mu$ uniform probability measure on $\{-1,1\}^n$
- Let $Z_1, \ldots, Z_{N(n)}$ be independent random vectors $\sim \mu$ and set

$$C_N = \operatorname{conv}\left\{Z_1,\ldots,Z_N\right\}.$$

Random ± 1 Polytopes

- $\bullet~\mu$ uniform probability measure on $\{-1,1\}^n$
- Let $Z_1, \ldots, Z_{N(n)}$ be independent random vectors $\sim \mu$ and set

$$C_N = \operatorname{conv}\left\{Z_1,\ldots,Z_N\right\}.$$

Theorem (Dyer, Füredi, McDiarmid, 1992) Let $\varepsilon > 0$ and $\lambda = 2/\sqrt{e} \approx 1.213$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(C_N)]}{\operatorname{vol}([-1,1]^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq (\lambda - \varepsilon)^n, \\ 1 & \text{if } N \geq (\lambda + \varepsilon)^n. \end{cases}$$

Random ± 1 Polytopes

- $\bullet~\mu$ uniform probability measure on $\{-1,1\}^n$
- Let $Z_1, \ldots, Z_{N(n)}$ be independent random vectors $\sim \mu$ and set

$$C_N = \operatorname{conv}\left\{Z_1,\ldots,Z_N\right\}.$$

Theorem (Dyer, Füredi, McDiarmid, 1992) Let $\varepsilon > 0$ and $\lambda = 2/\sqrt{e} \approx 1.213$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(C_N)]}{\operatorname{vol}([-1,1]^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq (\lambda - \varepsilon)^n, \\ 1 & \text{if } N \geq (\lambda + \varepsilon)^n. \end{cases}$$

Generalized by Gatzouras & Giannopoulos in 2006 to a large class of compactly supported probability measures μ .

Peter Pivovarov (University of Alberta)

June 28th, 2007 2 / 17

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

Gaussian Model?

- γ_n standard Gaussian measure $N(0, I_n)$ on \mathbb{R}^n
- Let $g_1, \ldots, g_{N(n)}$ be independent random vectors $\sim \gamma_n$ and set

 $K_N := \operatorname{conv} \{g_1, \ldots, g_N\}.$

Question: What does it mean for K_N to capture significant volume?

◆ロ ▶ ◆屈 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● の � @

A First Approach

• Since $\mathbb{E}|g_1| \approx \sqrt{n}$, one natural choice for R is $R(n) = \sqrt{n}$.

◆□▶ ◆圖▶ ◆国▶ ◆国▶ → 国

$$\Phi(a):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{a}e^{-x^{2}/2}dx$$

Well-known: $1 - \Phi(a) \approx rac{1}{\sqrt{2\pi}(a+1)}e^{-a^2/2}.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへで

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$$

Well-known:
$$1 - \Phi(a) \approx \frac{1}{\sqrt{2\pi}(a+1)}e^{-a^2/2}$$
.
Set

$$\Psi(a) := (1 - \Phi(a))^{-1}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$$

Well-known:
$$1-\Phi(a)pprox rac{1}{\sqrt{2\pi}(a+1)}e^{-a^2/2}.$$

Set $\Psi(a):=(1-\Phi(a))^{-\frac{1}{2}}$

Theorem

Let $\kappa > 0$, c > 0 and let $0 < \varepsilon < c$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(K_N \cap cn^{\kappa}B_2^n)]}{\operatorname{vol}(cn^{\kappa}B_2^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \Psi((c-\varepsilon)n^{\kappa}), \\ 1 & \text{if } N \geq \Psi((c+\varepsilon)n^{\kappa}). \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ◆ ○

$$\Phi(a):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{a}e^{-x^{2}/2}dx$$

Well-known:
$$1-\Phi(a)pproxrac{1}{\sqrt{2\pi}(a+1)}e^{-a^2/2}.$$

Set $\Psi(a):=(1-\Phi(a))^{-1}.$

Theorem

Let $\kappa > 0$, c > 0 and let $0 < \varepsilon < c$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(K_N \cap cn^{\kappa}B_2^n)]}{\operatorname{vol}(cn^{\kappa}B_2^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \Psi((c-\varepsilon)n^{\kappa}), \\ 1 & \text{if } N \geq \Psi((c+\varepsilon)n^{\kappa}). \end{cases}$$

(Affentranger, '91) gives an asymptotic formula for $\mathbb{E} \operatorname{vol}(K_N)$ where *n* is fixed and $N \to \infty$.

Peter Pivovarov (University of Alberta)

± 1 Case

Note that

$$\mathbb{E}\operatorname{vol}(C_N) = \mathbb{E}\int_{[-1,1]^n} 1_{\{x \in C_N\}} dx = \int_{[-1,1]^n} \mathbb{P}(x \in C_N) dx.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥

± 1 Case

Note that

$$\mathbb{E}\operatorname{vol}(C_N) = \mathbb{E}\int_{[-1,1]^n} 1_{\{x\in C_N\}} dx = \int_{[-1,1]^n} \mathbb{P}(x\in C_N) dx.$$

Let *H* be a closed halfspace with $x \in H$.

$$\Rightarrow \mathbb{P}(x \in C_N) \leq N\mathbb{P}(Z_1 \in H).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへで

For $x \in [-1,1]^n$, let

$$\mathcal{H}_x := \{ \text{closed halfspaces } H : x \in H \}$$

and set

$$q(x) := \inf_{H \in \mathcal{H}_x} \mathbb{P}(Z_1 \in H)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥

For $x \in [-1,1]^n$, let

$$\mathcal{H}_x := \{ \text{closed halfspaces } H : x \in H \}$$

and set

$$q(x) := \inf_{H \in \mathcal{H}_x} \mathbb{P}(Z_1 \in H)$$
$$= \inf_{H \in \mathcal{H}_x} \frac{|H \cap \{-1, 1\}^n|}{2^n}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥

For $x \in [-1,1]^n$, let

$$\mathcal{H}_x := \{ \text{closed halfspaces } H : x \in H \}$$

and set

$$q(x) := \inf_{H \in \mathcal{H}_x} \mathbb{P}(Z_1 \in H)$$
$$= \inf_{H \in \mathcal{H}_x} \frac{|H \cap \{-1, 1\}^n|}{2^n}.$$

For $\alpha > 0$, set

$$Q_n^{\alpha} := \{ x \in [-1,1]^n : q(x) \ge e^{-\alpha n} \}.$$

Note that

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

◆□> ◆□> ◆三> ◆三> 三三 のへの

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

 $x \notin Q_n^{\alpha} \Longleftrightarrow \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$

Example: n = 3 and α is chosen such that $2^n e^{-\alpha n} = 2$.

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ● ● ● ● ●

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

Remark: For μ uniform on $[-1,1]^n$, Q_n^{α} is just the floating body.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへで

$$x \notin Q_n^{\alpha} \iff \exists H \in \mathcal{H}_x : |H \cap \{-1,1\}^n| < 2^n e^{-\alpha n}.$$

Remark: For μ uniform on $[-1,1]^n$, Q_n^{α} is just the floating body.

Lemma

$$\mathbb{P}(Q_n^{\alpha} \subset C_N) \geq 1 - o(1) - 2\binom{N}{n}(1 - e^{-\alpha n})^{N-n} \quad (\text{as } n \to \infty).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへで

Gaussian Case

Consequently $\{x \in \mathbb{R}^n : q(x) \ge 1 - \Phi(R)\} = RB_2^n$.

Lemma

Let R > 0. Then

$$\mathbb{P}(RB_2^n \subset K_N) \geq 1 - 2\binom{N}{n} (\Phi(R))^{N-n}.$$

Peter Pivovarov (University of Alberta)

A Different Take

Let ν be a log-concave probability measure on \mathbb{R}^n . Suppose ν is isotropic:

$$\int_{\mathbb{R}^n} x d\nu(x) = 0 \quad \text{ and } \quad \int_{\mathbb{R}^n} \langle x, \theta \rangle^2 d\nu(x) = |\theta|^2 \quad \forall \ \theta \in R^n.$$

Examples:

- standard Gaussian measure γ_n
- ν(A) := vol (A ∩ K) / vol (K), where K is a convex body in isotropic position

Behavior of $\mathbb{E}\nu(K_N)$?

A Different Take

Let ν be a log-concave probability measure on \mathbb{R}^n . Suppose ν is isotropic:

$$\int_{\mathbb{R}^n} x d
u(x) = 0$$
 and $\int_{\mathbb{R}^n} \langle x, heta
angle^2 d
u(x) = | heta|^2 \quad orall \ heta \in R^n.$

Examples:

- standard Gaussian measure γ_n
- ν(A) := vol (A ∩ K) / vol (K), where K is a convex body in isotropic position

Behavior of $\mathbb{E}\nu(K_N)$?

Theorem (Klartag, 2006)

There exist universal constants C, c > 0 such that for each $0 \le \varepsilon \le 1$,

$$u\{x\in\mathbb{R}^n:||x|-\sqrt{n}|\geq\varepsilon\sqrt{n}\}\leq Cn^{-c\varepsilon^2}.$$

Let ν be an isotropic, log-concave probability measure on \mathbb{R}^n and let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\mathbb{E}
u(K_N) \longrightarrow egin{cases} 0 & \text{if } N \leq \Psi((1-arepsilon)\sqrt{n}), \ 1 & \text{if } N \geq \Psi((1+arepsilon)\sqrt{n}). \end{cases}$$

Polytopes Generated by Random Facets

Let

$$\mathcal{K}'_{\mathcal{N}} := \{x \in \mathbb{R}^n : \langle g_i, x
angle \leq 1 ext{ for each } i = 1, \dots, \mathcal{N} \}.$$

Theorem

Let $\kappa > 0$, c > 0 and let $0 < \varepsilon < c$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}\left(K_N' \cap (cn^{\kappa})^{-1}B_2^n\right)]}{\operatorname{vol}\left((cn^{\kappa})^{-1}B_2^n\right)} \longrightarrow \begin{cases} 1 & \text{if } n < N \leq \Psi((c-\varepsilon)n^{\kappa}), \\ 0 & \text{if } N \geq \Psi((c+\varepsilon)n^{\kappa}). \end{cases}$$

Polytopes Generated by Random Facets

Let

$$\mathcal{K}'_{\mathcal{N}} := \{x \in \mathbb{R}^n : \langle g_i, x
angle \leq 1 ext{ for each } i = 1, \dots, \mathcal{N} \}.$$

Theorem

Let $\kappa > 0$, c > 0 and let $0 < \varepsilon < c$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}\left(K_{N}^{\prime}\cap(cn^{\kappa})^{-1}B_{2}^{n}\right)]}{\operatorname{vol}\left((cn^{\kappa})^{-1}B_{2}^{n}\right)}\longrightarrow\begin{cases}1 & \text{if } n < N \leq \Psi((c-\varepsilon)n^{\kappa}),\\0 & \text{if } N \geq \Psi((c+\varepsilon)n^{\kappa}).\end{cases}$$

Theorem

Let ν be an isotropic log-concave prob. measure on \mathbb{R}^n and let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\mathbb{E}\nu(nK'_N) \longrightarrow \begin{cases} 1 & \text{if } n < N \leq \Psi((1-\varepsilon)\sqrt{n}), \\ 0 & \text{if } N \geq \Psi((1+\varepsilon)\sqrt{n}). \end{cases}$$

Spherical Model

 σ - Haar measure on the Euclidean sphere S^{n-1} u_1, \ldots, u_N i.i.d. random vectors $\sim \sigma$ Set

$$L_N := \operatorname{conv} \{u_1, \ldots, u_N\}$$

and

$$\mathcal{L}'_{\mathcal{N}} := \{ x \in \mathbb{R}^n : \langle u_i, x \rangle \leq 1 ext{ for each } i = 1, \dots, \mathcal{N} \}.$$

Theorem

Let 0 < R < 1 and set $r = 1/\sqrt{1-R^2}$. Let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}\left(L_N \cap RB_2^n\right)]}{\operatorname{vol}\left(RB_2^n\right)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \exp\left((1-\varepsilon)n\ln r\right), \\ 1 & \text{if } N \geq \exp\left((1+\varepsilon)n\ln r\right). \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ◇ ◇ ◇

Spherical Model

 σ - Haar measure on the Euclidean sphere S^{n-1} u_1, \ldots, u_N i.i.d. random vectors $\sim \sigma$ Set

$$L_N := \operatorname{conv} \{u_1, \ldots, u_N\}$$

and

$$\mathcal{L}'_{\mathcal{N}} := \{ x \in \mathbb{R}^n : \langle u_i, x \rangle \leq 1 ext{ for each } i = 1, \dots, \mathcal{N} \}.$$

Theorem

Let 0 < R < 1 and set $r = 1/\sqrt{1 - R^2}$. Let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(L_N') \cap R^{-1}B_2^n]}{\operatorname{vol}(R^{-1}B_2^n)} \longrightarrow \begin{cases} 1 & \text{if } n < N \le \exp\left((1-\varepsilon)n\ln r\right), \\ 0 & \text{if } N \ge \exp\left((1+\varepsilon)n\ln r\right). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(L_N)]}{\operatorname{vol}(B_2^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \exp\left((1-\varepsilon)n\ln\sqrt{n}\right), \\ 1 & \text{if } N \geq \exp\left((1+\varepsilon)n\ln\sqrt{n}\right). \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

Let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(L_N)]}{\operatorname{vol}(B_2^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \exp\left((1-\varepsilon)n\ln\sqrt{n}\right), \\ 1 & \text{if } N \geq \exp\left((1+\varepsilon)n\ln\sqrt{n}\right). \end{cases}$$

• (Müller, 1990) gives an asymptotic formula for

$$\operatorname{vol}(B_2^n) - \mathbb{E}\operatorname{vol}(L_N),$$

where *n* is fixed and $N \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ◇ ◇ ◇

Let $0 < \varepsilon < 1$. Then, as $n \to \infty$,

$$\frac{\mathbb{E}[\operatorname{vol}(L_N)]}{\operatorname{vol}(B_2^n)} \longrightarrow \begin{cases} 0 & \text{if } N \leq \exp\left((1-\varepsilon)n\ln\sqrt{n}\right), \\ 1 & \text{if } N \geq \exp\left((1+\varepsilon)n\ln\sqrt{n}\right). \end{cases}$$

• (Müller, 1990) gives an asymptotic formula for

$$\operatorname{vol}(B_2^n) - \mathbb{E}\operatorname{vol}(L_N),$$

where *n* is fixed and $N \to \infty$.

• For the dual case it is tempting to consider

$$\frac{\operatorname{vol}\left(B_{2}^{n}\right)}{\mathbb{E}[\operatorname{vol}\left(L_{N}^{\prime}\right)]}$$

but in fact

 $\mathbb{E}[\mathrm{vol}\left(L'_{N}\right)] = \infty.$

Let $0 < \varepsilon < 1$.

a. There exists a sequence $(t_n)_{n=1}^{\infty} = (t_n(\varepsilon))_{n=1}^{\infty}$ with $t_n > 1$ and $\lim_{n \to \infty} t_n = 1$ such that

$$\lim_{n\to\infty}\frac{\operatorname{vol}\left(B_2^n\right)}{\mathbb{E}\operatorname{vol}\left(L_N'\cap t_n B_2^n\right)}=0 \quad \text{ if } n< N\leq \exp\left((1-\varepsilon)n\ln\sqrt{n}\right)$$

b. There exists a sequence $(R_n)_{n=1}^{\infty} = (R_n(\varepsilon))_{n=1}^{\infty}$ with $R_n > 1$ and $\lim_{n \to \infty} R_n = \infty$ such that

$$\lim_{n\to\infty}\frac{\operatorname{vol}\left(B_2^n\right)}{\mathbb{E}\operatorname{vol}\left(L_N'\cap R_nB_2^n\right)}=1\quad \text{ if } N\geq \exp\left((1+\varepsilon)n\ln\sqrt{n}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ◇ ◇ ◇

Thank You

- I thank N. Tomczak-Jaegermann, R. Latala, P. Mankiewicz, and the conference organizers.
- Pictures were made using Asymptote

http://asymptote.sourceforge.net

• Slides created with Latex's Beamer class; *Edmonton U of A* theme by Josh Nault.