Hausdorff dimension of the residual set of a ball packing

Attila Pór

June 22, 2007

Residual set

- How small can be the residual set of a ball packing?
- Good measure: Hausdorff dimension. (Box dimension)
- Related to density of ball packings?
- Which type of ball packings?

Hausdorff dimension in the plane

- Theorem (Larman) The hausdorff dimension of the residual set of a disc packing in the unit square is at least 1.03.

Related Results about density in the plane

- The maximum density of disc packings is $\frac{\pi}{\sqrt{12}}$
- Density of disc packings with two different radii. (Heppes)
- The Maximum density of ball packings with radius from the interval $[r, 1]$ is $\rho_{n}(r)$ (in the n-dimensional space).
- Theorem: $\rho_{2}(0.743)=\rho_{2}(1)=\frac{\pi}{\sqrt{12}}$ (Fejes-Tóth, Florian, Böröczky)
- Theorem: $\rho_{2}(r)<1-c r$ (Florian)

Main Results

- Let $\lambda_{n}=\frac{196}{n+196}$ and let $d_{n}=n-\lambda_{n}$.
- Theorem: $\rho_{n}(r)<1-\overline{c_{n}} r^{\lambda_{n}}$ for all $0<r \leq 1$.
- Theorem: The Hausdorff dimension of the residual set of a ball packing is at least d_{n}.

Enlarging the packing

- A Ball packing $\mathcal{B}=\left\{B_{1} \mathcal{B}_{2}, \ldots\right\}$ is an r-packing if the radius of each ball is between r and 1 .
- $B_{i}=B\left(O_{i}, r_{i}\right)$ is the ball with radius r_{i} centered at the point O_{i}.
- Let $\varepsilon=\frac{r}{98}$.
- There exist sets D_{1}, D_{2}, \ldots such that
- $B_{i} \subset D_{i} \subset B_{i}^{+2 \varepsilon}=B\left(O_{i}, r_{i}+2 \varepsilon\right)$
- $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots\right\}$ is a packing
- $\operatorname{Vol}_{n}\left(D_{i}\right) \geq\left(1+\frac{n \varepsilon}{r_{i}}\right) \operatorname{Vol}_{n}\left(B_{i}\right)$

Inequalities

- Let $A_{x}=\operatorname{Vol}_{n}\left(\cup_{r_{i}=x, i \leq 1} B_{i}\right)$
- Let $A=\operatorname{Vol}_{n}\left([0,1]^{n}\right)=1$.
- $\sum_{x \geq y} A_{x}\left(1+c_{n} \frac{y}{x}\right)<A$.
- From these inequalities the theorem follows
- $\rho_{n}(r)<1-\overline{c_{n}} r^{\lambda_{n}}$
- where $\lambda_{n}=\Theta\left(\frac{1}{n}\right)$.

Covering

- Let K be a cube and let $I(K)$ denote the side length of K.
- A set of axis parallel cubes $\mathcal{K}=\left\{K_{1}, K_{2}, \ldots\right\}$ is a covering of $T \subset \mathbb{R}^{n}$ if $T \subset \bigcup_{i} K_{i}$.
- A covering \mathcal{K} is a k-covering if $I\left(K_{i}\right)=k$.

Definitions

- $\rho_{\text {Box }}(T, d, k)=$
$\inf \left\{\sum_{K \in \mathcal{K}} l(K)^{d}: \mathcal{K}\right.$ is a k^{\prime}-covering of T for some $\left.k^{\prime} \leq k\right\}$.
- $\operatorname{Vol}_{d, b o x}(T)=\lim _{k \rightarrow 0} \rho_{\text {Box }}(T, d, k)$.

Box volume \& Density

- The d_{n}-dimensional Box-volume of the residual set of a ball packing in the unit cube of dimension n is at least $5^{-n} \bar{c}_{n}$.

Hausdorff dimension

- $\rho_{\text {Haus }}(T, d, k)=$ $\inf \left\{\sum_{K \in \mathcal{K}} I(K)^{d}: \mathcal{K}\right.$ is a covering of T with $I(K) \leq k$ for all $K \in \mathcal{K}$
- $\operatorname{Vol}_{d, \text { haus }}(T)=\lim _{k \rightarrow 0} \rho_{\text {Haus }}(T, d, k)$.

