Tail Inequalities for Random Polytopes

Matthias Reitzner, TU Wien

- Introduction
- Mean values
- Azuma's inequality
- Vu's inequality
- Other types of random polytopes

Random polytopes

$$
{ }^{\circ} X_{2}
$$

$$
X_{1}
$$

$$
\begin{array}{llll}
& 0 & & \\
0 & & & \\
& 0 & & \\
0 & & 0 & 0
\end{array}
$$

Random polytopes

Random polytopes

Random polytopes

$$
P_{n}
$$

Random polytopes

Random polytopes with vertices in K

random points X_{1}, \ldots, X_{n} uniformly in $K, V(K)=1$

$$
P_{n}=\left[X_{1}, \ldots, X_{n}\right] \subset K
$$

Random polytopes with vertices in K

random points X_{1}, \ldots, X_{n} uniformly in K,

$$
P_{n}=\left[X_{1}, \ldots, X_{n}\right] \subset K
$$

Random polytopes with vertices in K

- $\mathbf{f}\left(P_{n}\right)=\left(\begin{array}{c}f_{0}\left(P_{n}\right) \\ f_{1}\left(P_{n}\right) \\ \vdots \\ f_{d-1}\left(P_{n}\right)\end{array}\right)=\left(\begin{array}{c}\sharp \text { vertices of } P_{n} \\ \sharp \text { edges of } P_{n} \\ : \\ \sharp \text { facets of } P_{n}\end{array}\right)$
- intrinsic volumes: $\left\{\begin{array}{c}V_{d}(K)-V_{d}\left(P_{n}\right) \\ V_{d-1}(K)-V_{d-1}\left(P_{n}\right) \\ : \\ V_{1}(K)-V_{1}\left(P_{n}\right)\end{array}\right.$

Random polytopes with vertices in K

- $\mathbf{f}\left(P_{n}\right)=\left(\begin{array}{c}f_{0}\left(P_{n}\right) \\ f_{1}\left(P_{n}\right) \\ \vdots \\ f_{d-1}\left(P_{n}\right)\end{array}\right)=\left(\begin{array}{c}\sharp \text { vertices of } P_{n} \\ \sharp \text { edges of } P_{n} \\ : \\ \sharp \text { facets of } P_{n}\end{array}\right)$
- intrinsic volumes: $\left\{\begin{array}{c}V(K)-V\left(P_{n}\right) \\ V_{d-1}(K)-V_{d-1}\left(P_{n}\right) \\ : \\ V_{1}(K)-V_{1}\left(P_{n}\right)\end{array}\right.$

Mean values

$$
K \in \mathcal{K}_{2,+}^{d}:
$$

$V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} \Omega(K) n^{-\frac{2}{d+1}}+\cdots$

$$
\Omega(K)=\int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d x
$$

Mean values

$K \in \mathcal{K}_{2,+}^{d}:$
$V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} \Omega(K) n^{-\frac{2}{d+1}}+\cdots$
$\mathbb{E} \mathbf{f}\left(P_{n}\right)=\mathbf{c} \Omega(K) n^{\frac{d-1}{d+1}}+\cdots$

$$
\Omega(K)=\int_{\partial K} K(x)^{\frac{1}{d+1}} d x
$$

Mean values

$K \in \mathcal{K}_{2,+}^{d}:$
$V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} \Omega(K) n^{-\frac{2}{d+1}}+\cdots$
$\mathbb{E} \mathbf{f}\left(P_{n}\right)=\mathbf{c} \Omega(K) n^{\frac{d-1}{d+1}}+\cdots$
$K \in \mathcal{P}^{d}$:
$V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} T(K) n^{-1} \ln ^{d-1} n+\cdots$
$\mathbb{E} \mathbf{f}\left(P_{n}\right)=\tilde{\mathbf{c}} T(K) \ln ^{d-1} n+\cdots$
Affentranger, Bárány, Blaschke, Buchta, Dalla, Efron, Giannopoulos, Groemer, Larman, Reitzner, Rényi, Schneider, Sulanke, Wieacker, ...

The floating body

The floating body and mean values

$K \in \mathcal{K}^{d}:$

$$
V(K)-V\left(K_{[\delta]}\right)=c_{d} \Omega(K) \delta^{\frac{2}{d+1}}+\cdots
$$

(Schütt, Werner)

$$
V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} \Omega(K) n^{-\frac{2}{d+1}}+\cdots
$$

(Schütt)

The floating body and mean values

$K \in \mathcal{P}^{d}:$

$$
V(K)-V\left(K_{[\delta]}\right)=c_{d} T(K) \delta \ln ^{d-1}(1 / \delta)+\cdots
$$

Bárány, Buchta, Schütt

$$
V(K)-\mathbb{E} V\left(P_{n}\right)=c_{d} T(K) n^{-1} \ln ^{d-1} n+\cdots
$$

Bárány, Buchta

floating body and first deviation inequalities

K smooth:

$$
T_{n}=\frac{\alpha_{n}}{n}
$$

$$
\text { with } \alpha_{n} \rightarrow \infty
$$

With high probability $K_{\left[T_{n}\right]} \subset P_{n}$.

Bárány, Buchta, Dalla, Larman, ...

The floating body

The floating body

floating body and first deviation inequalities

K smooth:

$$
T_{n}=\frac{\alpha_{n}}{n}
$$

with $\alpha_{n} \rightarrow \infty$

$$
1-\mathbb{P}\left(K_{\left[T_{n}\right]} \subset P_{n}\right) \leq m_{T_{n}} e^{-n T_{n}}
$$

floating body and first deviation inequalities

K smooth:

$$
T_{n}=\frac{\alpha_{n}}{n}
$$

$$
\text { with } \alpha_{n}=\alpha \ln n
$$

$$
\begin{aligned}
1-\mathbb{P}\left(K_{\left[T_{n}\right]} \subset P_{n}\right) & \leq m_{T_{n}} e^{-n T_{n}} \\
& \lesssim n^{1-2 /(d+1)} n^{-\alpha}=n^{-c}
\end{aligned}
$$

floating body and first deviation inequalities

K polytope：

$$
\begin{aligned}
T_{n}=\frac{\alpha_{n}}{n}, s_{n}= & \frac{1}{\beta_{n} n} \\
& \text { with } \alpha_{n}, \beta_{n} \rightarrow \infty
\end{aligned}
$$

$$
1-\mathbb{P}\left(K_{\left[T_{n}\right]} \subset P_{n} \subset K_{\left[s_{n}\right]}\right) \leq m_{T_{n}} e^{-n T_{n}}+\left(1-e^{-n V\left(K_{\left[s_{n}\right]}\right)}\right)
$$

floating body and first deviation inequalities

K polytope:

$$
\begin{aligned}
T_{n}=\frac{\alpha_{n}}{n}, s_{n}= & \frac{1}{\beta_{n} n} \\
& \text { with } \alpha_{n}=\alpha \ln n, \beta_{n}=\ln ^{\beta} n
\end{aligned}
$$

$$
\begin{aligned}
1-\mathbb{P}\left(K_{\left[T_{n}\right]} \subset P_{n} \subset K_{\left[s_{n}\right]}\right) & \leq m_{T_{n}} e^{-n T_{n}}+\left(1-e^{-n V\left(K_{\left[s_{n}\right]}\right)}\right) \\
& \lesssim \ln ^{-c} n
\end{aligned}
$$

Azuma's inequality

$$
\begin{aligned}
f & =f(T), \quad T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right) & =\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right)
\end{aligned}
$$

Azuma's inequality

$$
\begin{gathered}
f=f(T), T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right)
\end{gathered}
$$

$$
\mathbb{E} C_{i}\left(t_{1}, \ldots, t_{i}\right)=0
$$

Azuma＇s inequality

$$
\begin{gathered}
f=f(T), T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
f(T)-\mathbb{E} f(T)=\sum_{1}^{m} C_{i}\left(t_{1}, \ldots, t_{i}\right)
\end{gathered}
$$

Azuma's inequality

$$
\begin{aligned}
f & =f(T), \quad T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right) & =\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t) & =\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right|
\end{aligned}
$$

Azuma's inequality

$$
\begin{aligned}
f & =f(T), T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right) & =\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t) & =\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right|
\end{aligned}
$$

Hoeffding-Azuma inequality:

For $B \geq B(t)$

$$
\mathbb{P}(|f(T)-\mathbb{E} f(T)| \geq x) \leq 2 e^{-x^{2} /\left(2 m B^{2}\right)}
$$

Azuma's inequality

$$
\begin{aligned}
f & =f(T), T=\left(t_{1}, \ldots, t_{m}\right) \\
C_{i}\left(t_{1}, \ldots, t_{i}\right) & =\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right)
\end{aligned}
$$

$$
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right|
$$

Hoeffding-Azuma inequality:

$$
\mathbb{P}(|f(T)-\mathbb{E} f(T)| \geq x) \leq 2 e^{-x^{2} /\left(2 m B^{2}\right)}+\mathbb{P}(B(t) \geq B)
$$

Azuma's inequality

smooth K :

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

Azuma's inequality

smooth K :

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

Azuma's inequality

smooth K :

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

Azuma's inequality

smooth K :

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

$\left|V\left(Y_{1}, \ldots, Y_{i}, \ldots, Y_{m_{T_{n}}}\right)-V\left(Y_{1}, \ldots, Y_{i}^{\prime}, \ldots, Y_{m_{T_{n}}}\right)\right| \leq \frac{\ln n}{n}$

Azuma's inequality

smooth K :

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

$\left|\mathbb{E}\left(V \mid Y_{1}, \ldots, Y_{i}\right)-\mathbb{E}\left(V \mid Y_{1}, \ldots, Y_{i-1}\right)\right| \leq \frac{\ln n}{n}$

Azuma＇s inequality

smooth K ：

$$
\begin{aligned}
& V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
& \left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln n}{n}
\end{aligned}
$$

Azuma's inequality

smooth K :

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln n}{n}, \quad m_{T_{n}} \leq(n / \ln n)^{1-2 /(d+1)}
\end{gathered}
$$

Azuma's inequality

smooth K :

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln n}{n}, \quad m_{T_{n}} \leq(n / \ln n)^{1-2 /(d+1)}
\end{gathered}
$$

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x \mid \ldots\right) \leq e^{-x^{2} /(\ln n / n)^{1+2 /(d+1)}}
$$

Azuma's inequality

smooth K :

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln n}{n}, \quad m_{T_{n}} \leq(n / \ln n)^{1-2 /(d+1)}
\end{gathered}
$$

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq e^{-x^{2} /(\ln n / n)^{1+2 /(d+1)}}+n^{-c}
$$

Variance

smooth K :

$$
\Longrightarrow \sigma^{2}(V) \leq c n^{-1-2 /(d+1)} \ln ^{1+2 /(d+1)} n
$$

Variance

smooth K :

$$
\Longrightarrow \sigma^{2}(V) \leq c n^{-1-2 /(d+1)} \ln ^{1+2 /(d+1)} n
$$

$$
\sigma^{2}(V) \leq c n^{-1-2 /(d+1)}
$$

Azuma's inequality

smooth K :

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln n}{n}, \quad m_{T_{n}} \leq(n / \ln n)^{1-2 /(d+1)}
\end{gathered}
$$

Azuma's inequality for $V\left(P_{n}\right)$

For smooth K

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2} \ln ^{-1-2 /(d+1)} n}+n^{-c}
$$

Azuma's inequality

K polytope:

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

Azuma's inequality

K polytope:

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

$Y_{m_{T_{n}}}$
Y_{1}
Y_{2}

Azuma's inequality

K polytope:

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
Y_{m_{T_{n}}}
\end{gathered} Y_{1} \quad Y_{2} \quad .
$$

Azuma's inequality

K polytope:

$$
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right)
$$

$\left|V\left(Y_{1}, \ldots, Y_{i}, \ldots, Y_{m_{T_{n}}}\right)-V\left(Y_{1}, \ldots, Y_{i}^{\prime}, \ldots, Y_{m_{T_{n}}}\right)\right| \leq \frac{\| \mathrm{n}^{4 d-3} n}{n}$
Bárány, Reitzner

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{4 d-3} n}{n}
\end{gathered}
$$

Bárány, Reitzner

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{4 d-3} n}{n}, \quad m_{T_{n}} \leq \ln ^{d-1} n
\end{gathered}
$$

Bárány, Reitzner

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{4 d-3} n}{n}, \quad m_{T_{n}} \leq \ln ^{d-1} n
\end{gathered}
$$

Bárány, Reitzner

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x \mid \ldots\right) \leq e^{-x^{2} /\left(n^{-2} \ln ^{d-1} n \| n^{8 d-6} n\right)}
$$

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{4 d-3} n}{n}, \quad m_{T_{n}} \leq \ln ^{d-1} n
\end{gathered}
$$

Bárány, Reitzner

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq e^{-x^{2} /\left(n^{-2} \ln ^{d-1} n \ln n^{8 d-6} n\right)}+\ln ^{-c} n
$$

Variance

K polytope:

$$
\Longrightarrow \sigma^{2}(V) \leq c n^{-2} \ln ^{d-1} n \ln ^{8 d-6} n
$$

Variance

K polytope:

$$
\Longrightarrow \sigma^{2}(V) \leq c n^{-2} \ln ^{d-1} n \ln ^{8 d-6} n
$$

$$
\sigma^{2}(V) \leq c n^{-2} \ln ^{d-1} n
$$

Bárány, Reitzner

Azuma's inequality

K polytope:

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m_{T_{n}}}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{4 d-3} n}{n}, \quad m_{T_{n}} \leq \ln ^{d-1} n
\end{gathered}
$$

Azuma's inequality for $V\left(P_{n}\right)$

For K a polytope

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2} \| n^{-8 d+6} n}+\ln ^{-c} n
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right|
\end{gathered}
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\underset{i}{\max \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right|} \\
S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\mathbb{E} \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right)
\end{gathered}
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right)
\end{gathered}
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mid \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right) \\
\sigma^{2}(f)=\mathbb{E}(f-\mathbb{E} f)^{2}=\mathbb{E}\left(\sum_{i} C_{i}\right)^{2}
\end{gathered}
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mid \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right) \\
\sigma^{2}(f)=\mathbb{E}(f-\mathbb{E} f)^{2}=\mathbb{E}\left(\sum_{i} C_{i}\right)^{2}=\sum \mathbb{E} C_{i}^{2}
\end{gathered}
$$

Vu's concentration inequality

$$
\begin{aligned}
& C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
& B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
& S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mid \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right) \\
& \sigma^{2}(f)=\mathbb{E}(f-\mathbb{E} f)^{2}=\mathbb{E}\left(\sum_{i} C_{i}\right)^{2}=\sum \mathbb{E} C_{i}^{2} \\
&= \mathbb{E S}(t)
\end{aligned}
$$

Vu＇s concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right)
\end{gathered}
$$

Vu＇s concentration inequality

For $x \leq S /(2 B)$

$$
\begin{aligned}
\mathbb{P}(|f(T)-\mathbb{E} f(T)| \geq x) & \leq 2 e^{-x^{2} /(4 S)} \\
& +\mathbb{P}\left(S^{2}(t) \geq S \text { or } B(t) \geq B\right)
\end{aligned}
$$

Vu's concentration inequality

$$
\begin{gathered}
C_{i}\left(t_{1}, \ldots, t_{i}\right)=\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i}\right)-\mathbb{E}\left(f \mid t_{1}, \ldots, t_{i-1}\right) \\
B(t)=\max _{i} \sup _{t_{i}}\left|C_{i}\left(t_{1}, \ldots, t_{i}\right)\right| \\
S^{2}(t)=\sum_{i} S_{i}^{2}\left(t_{1}, \ldots, t_{i-1}\right)=\sum_{i} \mathbb{E}_{t_{i}} C_{i}^{2}\left(t_{1}, \ldots, t_{i}\right)
\end{gathered}
$$

Vu's concentration inequality

For $x \leq S \sigma^{2} /(2 B)$.

$$
\begin{aligned}
\mathbb{P}(|f(T)-\mathbb{E} f(T)| \geq x) \leq & 2 e^{-(x / \sigma)^{2} /(4 S)} \\
& +\mathbb{P}\left(S^{2}(t) \geq S \sigma^{2} \text { or } B(t) \geq B\right)
\end{aligned}
$$

Vu＇s concentration inequality

K smooth ：

$$
\mathbb{P}(B(t) \geq B) \leq m_{B} e^{-n B}
$$

Vu's concentration inequality

K smooth , $B=n^{-1+\frac{d-1}{3 d+5}}$:

$$
\mathbb{P}(B(t) \geq B) \leq e^{-c n\left(\frac{d-1}{3 d+5}\right.}
$$

Vu's concentration inequality

K smooth , $B=n^{-1+\frac{d-1}{3 d+5}}$:

$$
\mathbb{P}(B(t) \geq B) \leq e^{-c n^{\frac{d-1}{3 d+5}}}
$$

$$
\mathbb{P}\left(S^{2}(t) \geq S_{0} \sigma^{2} \text { and } B(t) \leq B_{0}\right) \leq e^{-c \frac{d}{3 d+1}}
$$

Vu's concentration inequality

Vu's inequality for $V\left(P_{n}\right)$

For smooth K and $x \leq c n^{-\frac{(d+3)^{2}}{(d+1)(d+5)}}$.

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2}}+e^{-c n^{\frac{d-1}{3 d+5}}}
$$

Vu's concentration inequality

Vu's inequality for $V\left(P_{n}\right)$

For smooth K and $x \leq c n^{-\frac{(d+3)^{2}}{(d+1)(3+5)}}$.

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2}}+e^{-c n^{\frac{d-1}{3 d+5}}}
$$

Azuma's inequality for $V\left(P_{n}\right)$

For smooth K

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2} \ln ^{-1-2 /(d+1)} n}+n^{-c}
$$

Other types of random polytopes：

Gaussian polytopes

X_{1}, \ldots, X_{n} normal distributed in $\mathbb{R}^{d}, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

Other types of random polytopes:

Gaussian polytopes

X_{1}, \ldots, X_{n} normal distributed in $\mathbb{R}^{d}, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

$$
E V\left(P_{n}\right)=\kappa_{d} 2^{\frac{d}{2}} \ln ^{\frac{d}{2}} n+\cdots
$$

Other types of random polytopes:

Gaussian polytopes

X_{1}, \ldots, X_{n} normal distributed in $\mathbb{R}^{d}, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

$$
\begin{gathered}
E V\left(P_{n}\right)=\kappa_{d} 2^{\frac{d}{2}} \ln ^{\frac{d}{2}} n+\cdots \\
\sigma^{2}(V) \approx \ln n^{\frac{d-3}{2}} n
\end{gathered}
$$

Affentranger, Bárány, Baryshnikov, Hueter, Hug, Raynaud, Reitzner, Rényi, Schneider, Sulanke, Vitale, Vu, Wieacker, ...

Gaussian polytopes and Azuma's inequality

$$
\begin{aligned}
& V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
& \left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\| n^{\frac{d+1}{2}} n}{\ln ^{\frac{1}{2}} n},
\end{aligned}
$$

Bárány, Vu

Gaussian polytopes and Azuma's inequality

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln \frac{d+1}{2} n}{\ln ^{\frac{1}{2}} n}, \quad m \leq \ln ^{\frac{d-1}{2}} n
\end{gathered}
$$

Bárány, Vu

Gaussian polytopes and Azuma's inequality

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln \frac{d+1}{2} n}{\ln ^{\frac{1}{2}} n}, \quad m \leq \ln \frac{d-1}{2} n
\end{gathered}
$$

Azuma's inequality for $V\left(P_{n}\right)$

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E V V}\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2}} \|^{-(d+1)} n+\ln ^{-c} n
$$

Random points on ∂K

K smooth, X_{1}, \ldots, X_{n} random points on $\partial K, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

Random points on ∂K

K smooth, X_{1}, \ldots, X_{n} random points on $\partial K, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

$$
V(K)-E V\left(P_{n}\right)=c(\ldots) n^{-\frac{2}{d-1}}+\cdots
$$

Random points on ∂K

K smooth, X_{1}, \ldots, X_{n} random points on $\partial K, P_{n}=\left[X_{1}, \ldots, X_{n}\right]$

$$
\begin{aligned}
V(K)-E V\left(P_{n}\right) & =c(\ldots) n^{-\frac{2}{d-1}}+\cdots \\
\sigma^{2}(V) & \approx n^{-1-4 /(d-1)}
\end{aligned}
$$

Buchta, Gruber, Müller, Tichy, Reitzner, Schneider, Schütt, Werner,

Azuma's inequality

$$
\begin{aligned}
& V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
& \left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln ^{\frac{d+1}{d+1}} n}{n^{\frac{d+1}{d-1}}},
\end{aligned}
$$

Azuma's inequality

$$
\begin{gathered}
V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
\left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln ^{\frac{d+1}{d+1}} n}{n^{d+1}}, \quad m \leq \frac{n}{\ln n}
\end{gathered}
$$

Azuma's inequality

$$
\begin{aligned}
& V=V\left(X_{1}, \ldots X_{n}\right)=V\left(Y_{1}, \ldots, Y_{m}\right) \\
& \left|C_{i}\left(Y_{1}, \ldots, Y_{i}\right)\right| \leq \frac{\ln ^{\frac{d+1}{d+1}} n}{n^{\frac{d+1}{d-1}}}, \quad m \leq \frac{n}{\ln n}
\end{aligned}
$$

Azuma's inequality for $V\left(P_{n}\right)$

For K smooth

$$
\mathbb{P}\left(\left|V\left(P_{n}\right)-\mathbb{E} V\left(P_{n}\right)\right| \geq x\right) \leq 2 e^{-c(x / \sigma(V))^{2} \ln -(d+5) /(d+1)} n+n^{-c}
$$

Remarks

（1）random points on ∂P

Remarks

(1) random points on ∂P
(2) 0-1-polytopes

Fukuda, Ziegler, Dyer, Füredi, McDiarmid Bárány, Por, Giannopoulos, Gatzouras, Markoulakis Litvak, Pajor, Rudelson, Tomczak-Jaegermann

Remarks

(1) random points on ∂P
(2) 0-1-polytopes

Fukuda, Ziegler, Dyer, Füredi, McDiarmid Bárány, Por, Giannopoulos, Gatzouras, Markoulakis Litvak, Pajor, Rudelson, Tomczak-Jaegermann
(0) intrinsic volumes

Remarks

(1) random points on ∂P
(2) 0-1-polytopes

Fukuda, Ziegler, Dyer, Füredi, McDiarmid Bárány, Por, Giannopoulos, Gatzouras, Markoulakis Litvak, Pajor, Rudelson, Tomczak-Jaegermann
(0) intrinsic volumes

- Replacing Azuma's inequality by Vu's inequality

Remarks

(1) random points on ∂P
(2) 0-1-polytopes

Fukuda, Ziegler, Dyer, Füredi, McDiarmid Bárány, Por, Giannopoulos, Gatzouras, Markoulakis Litvak, Pajor, Rudelson, Tomczak-Jaegermann
(0) intrinsic volumes

- Replacing Azuma's inequality by Vu's inequality
- dimension to ∞

