Invertibility of random matrices

Mark Rudelson¹ Roman Vershynin²

¹Department of Mathematics University of Missouri

²Department of Mathematics University of California, Davis

Phenomena in High Dimensions, Samos 2007

Invertibility problems

Let *A* be an $n \times n$ random matrix with independent entries.

Examples

- Gaussian matrix: the entries are N(0, 1) normal random variables
- 2 random ± 1 matrix: the entries are Bernoulli random variables

Invertibility problems

Let *A* be an $n \times n$ random matrix with independent entries.

Examples

- Gaussian matrix: the entries are N(0, 1) normal random variables
- 2 random ± 1 matrix: the entries are Bernoulli random variables
 - Qualitative problem:
 - What is the probability that a random matrix A is non-singular?
 - Quantitative problems:
 - What is the typical distance from a random matrix to the set of singular matrices?
 - What is the tail distribution of this distance?

Qualitative problem

Let *A* be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

 $P_n = \mathbb{P}\left(\det(A) \neq 0\right).$

Qualitative problem

Let *A* be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

 $P_n = \mathbb{P}\left(\det(A) \neq 0\right).$

• Komlos (1967): $P_n \ge 1 - c/\sqrt{n}$.

<ロ><日><日><日><日<</td>

Qualitative problem

Let *A* be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$P_n = \mathbb{P}\left(\det(A) \neq 0\right).$$

- Komlos (1967): $P_n \ge 1 c/\sqrt{n}$.
- Kahn, Komlos, Szemeredy (1994): $P_n \ge 1 0.998^n$.
- Tao, Vu (2004): $P_n \ge 1 0.96^n$.
- Tao, Vu (2005): $P_n \ge 1 (3/4)^n$.

A D > A B > A B > A B >

Qualitative problem

Let *A* be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$P_n = \mathbb{P}\left(\det(A) \neq 0\right).$$

- Komlos (1967): $P_n \ge 1 c/\sqrt{n}$.
- Kahn, Komlos, Szemeredy (1994): $P_n \ge 1 0.998^n$.
- Tao, Vu (2004): $P_n \ge 1 0.96^n$.
- Tao, Vu (2005): $P_n \ge 1 (3/4)^n$.

Conjecture: $P_n = 1 - \binom{n}{2} \cdot 2^{-(n-2)} \cdot (1 + o(1)).$

The main reason for singularity is that two rows or two columns of *A* are equal up to a sign.

Condition number of a matrix The first singular value The last singular value The results

Condition number of a matrix

Definition

Distortion (condition number):

$$D(A) = \sup_{x,y \in S^{n-1}} \frac{\|Ax\|}{\|Ay\|}$$

イロト イヨト イヨト

Condition number of a matrix The first singular value The last singular value The results

Condition number of a matrix

Definition

Distortion (condition number):

$$D(A) = \sup_{x,y \in S^{n-1}} \frac{\|Ax\|}{\|Ay\|} = \frac{s_1(A)}{s_n(A)} = \|A\| \cdot \|A^{-1}\|.$$

Here $s_1(A) \ge s_2(A) \ge ... \ge s_n(A) \ge 0$ are the singular values of *A* (the eigenvalues of $(A^*A)^{1/2}$):

 $s_1(A) = \left\| A : \mathbb{R}^n \to \mathbb{R}^N \right\|, \qquad s_n(A) = \left(\left\| A^{-1} : A \mathbb{R}^n \to \mathbb{R}^n \right\| \right)^{-1}.$

We need an upper estimate for the first singular number and a lower estimate for the last one.

Condition number of a matrix The first singular value The last singular value The results

Applications of the condition number

Definition

Distortion (condition number):

$$D(A) = \sup_{x,y\in S^{n-1}} \frac{\|Ax\|}{\|Ay\|}.$$

- Error control.
 - Gaussian elimination for the system Ax = b.
- Rate of convergence.
 - Iteration methods for linear systems (conjugate gradients, Kaczmarz-Steinhaus algorithm)
 - Linear programming (smoothed analysis)

Condition number of a matrix The first singular value The last singular value The results

The first singular value

Assume that $\mathbb{E}a_{j,k} = 0$ and $\mathbb{E}|a_{j,k}|^2 \ge c$.

Theorem (Bai, Krishnaiah, Silverstein, Yin)

Let A_n be a family of $n \times n$ random matrices with i.i.d. entries

 $\lim_{n\to\infty}s_1(A_n)/\sqrt{n}$

exists a.s. if and only if the fourth moment of the entries is finite.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Condition number of a matri: The first singular value The last singular value The results

The first singular value

Assume that $\mathbb{E}a_{j,k} = 0$ and $\mathbb{E}|a_{j,k}|^2 \ge c$.

Theorem (Bai, Krishnaiah, Silverstein, Yin)

Let A_n be a family of $n \times n$ random matrices with i.i.d. entries

 $\lim_{n\to\infty}s_1(A_n)/\sqrt{n}$

exists a.s. if and only if the fourth moment of the entries is finite.

Theorem (Latała)

Let A be an $n \times n$ random matrix, whose entries have a uniformly bounded fourth moment. Then

 $\mathbb{E}s_1(A) \leq C\sqrt{n}.$

A D > A B > A B > A B >

Condition number of a matrix The first singular value The last singular value The results

The first singular value

Theorem (Large deviations)

Let A be an $n \times n$ random matrix with subgaussian entries. Then for any $t > t_0$

$$\mathbb{P}\left(s_1(A) \ge t\sqrt{n}\right) \le e^{-cnt^2}$$

Theorem (Concentration)

Let A be an $n \times n$ random matrix with bounded entries. Then for any t > 0

$$\mathbb{P}\left(\left|s_1(A) - \mathbb{M}(s_1(A))\right| \ge t\right) \le 4e^{-t^2/4}.$$

 $s_1(A)$ is a convex function of A.

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the median

The last singular value $s_n(A) = \min_{x \in S^{n-1}} ||Ax||$ is the distance of *A* to the set of singular matrices.

Conjecture (von Neumann, Smale):

 $s_n(A) \sim n^{-1/2}$ with probability close to 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the median

The last singular value $s_n(A) = \min_{x \in S^{n-1}} ||Ax||$ is the distance of A to the set of singular matrices.

Conjecture (von Neumann, Smale):

 $s_n(A) \sim n^{-1/2}$ with probability close to 1.

Theorem (Edelman, 1988)

Let A be an $n \times n$ *Gaussian matrix. Then for any* $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A)\leq \varepsilon n^{-1/2}\right)\sim \varepsilon.$$

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the median

The last singular value $s_n(A) = \min_{x \in S^{n-1}} ||Ax||$ is the distance of *A* to the set of singular matrices.

Conjecture (von Neumann, Smale):

 $s_n(A) \sim n^{-1/2}$ with probability close to 1.

Theorem (Edelman, 1988)

Let A be an $n \times n$ Gaussian matrix. Then for any $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A) \leq \varepsilon n^{-1/2}\right) \sim \varepsilon.$$

Theorem (R, 2005)

Let A be an $n \times n$ matrix with i.i.d. subgaussian entries. Then for any $\varepsilon \ge cn^{-1/2}$

$$\mathbb{P}\left(s_n(A) \leq C\varepsilon \cdot n^{-3/2}\right) \leq \varepsilon.$$

Mark Rudelson

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the tail distribution

Theorem (Edelman, 1988)

Let A be an n × *n Gaussian matrix. Then for any* $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A) \leq \varepsilon \cdot n^{-1/2}\right) \sim \varepsilon.$$

Conjecture (Spielman, Teng):

Let *A* be an $n \times n$ random ± 1 matrix. Then for any $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A) \leq \varepsilon \cdot n^{-1/2}\right) \leq \varepsilon + e^{-cn}.$$

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the tail distribution

Theorem (Edelman, 1988)

Let A be an $n \times n$ *Gaussian matrix. Then for any* $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A) \leq \varepsilon \cdot n^{-1/2}\right) \sim \varepsilon.$$

Conjecture (Spielman, Teng):

Let *A* be an $n \times n$ random ± 1 matrix. Then for any $\varepsilon > 0$

$$\mathbb{P}(s_n(A) \leq \varepsilon \cdot n^{-1/2}) \leq \varepsilon + e^{-cn}.$$

Theorem (Tao, Vu, 2005)

Let A be an n × *n random* ± 1 *matrix. Then for any* $\alpha > 0$ *there exists* $\beta > 0$ *such that*

$$\mathbb{P}\left(s_n(A) \le n^{-\beta}\right) \le n^{-\alpha}$$

Mark Rudelson Invertibility of r

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the results

Conjecture (von Neumann, Smale):

 $s_n(A) \sim n^{-1/2}$ with probability close to 1.

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the results

Conjecture (von Neumann, Smale):

 $s_n(A) \sim n^{-1/2}$ with probability close to 1.

Theorem (Median)

Let A be an $n \times n$ random matrix, whose entries have a uniformly bounded fourth moment. Then for any $\varepsilon > 0$ there exists $\delta > 0$, such that

$$\mathbb{P}\left(s_n(A) \leq \delta \cdot n^{-1/2}\right) \leq \varepsilon$$

for all $n \ge n_0(\varepsilon)$.

A D > A B > A B > A B > .

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the results

Definition

A random variable ξ is called subgaussian if for any t > 0

$$\mathbb{P}\left(|\xi|>t\right)\leq Ce^{-ct^2}.$$

Examples

- Gaussian random variable
- Any bounded random variable (including random ± 1)

Therefore,
$$\mathbb{P}(\det(A) = 0) \le e^{-cn}$$
.

Condition number of a matrix The first singular value The last singular value The results

Quantitative problems: the results

Definition

A random variable ξ is called subgaussian if for any t > 0

$$\mathbb{P}\left(|\xi|>t\right)\leq Ce^{-ct^2}.$$

Examples

- Gaussian random variable
- Any bounded random variable (including random ± 1)

Theorem (Tail distribution)

Let A be an $n \times n$ random matrix with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$

$$\mathbb{P}\left(s_n(A) \le c' \varepsilon \cdot n^{-1/2}\right) \le \varepsilon + e^{-cn}.$$

Therefore, $\mathbb{P}(\det(A) = 0) \le e^{-cn}$.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Compressible and incompressible vectors

Assume that A is a random matrix with i.i.d. subgaussian entries.

Definition

A vector $x \in S^{n-1}$ is called compressible if it is close to a sparse vector in the ℓ_2 -norm.

We decompose the sphere in two parts: $S^{n-1} = Comp \cup Incomp$.

- Compressible vectors: the norm is concentrated on a few coordinates
- Incompressible vectors: many coordinates of the order $n^{-1/2}$.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility for compressible vectors

Lemma (Litvak, Pajor, R', Tomczak-Jaegermann)

$$\mathbb{P}\left(\inf_{x\in Comp} \|Ax\|_2 \le cn^{1/2}\right) \le e^{-c'n}.$$

This bound is much stronger than we need.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility for compressible vectors

Lemma (Litvak, Pajor, R', Tomczak-Jaegermann)

$$\mathbb{P}\left(\inf_{x\in Comp} \|Ax\|_2 \le cn^{1/2}\right) \le e^{-c'n}.$$

This bound is much stronger than we need.

Proof.

• Individual estimate: let $x \in S^{n-1}$ be any vector. Then

$$\mathbb{P}\left(\|Ax\|_2 \le cn^{1/2}\right) \le e^{-c'n}.$$

- 2 The set of sparse vectors admits a small ε -net.
- 3 This ε -net is a 2ε -net for the set of compressible vectors
- Approximation.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x\in Incomp} \|Ax\|_2 < c\varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x \in Incomp} \|Ax\|_2 < c \varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

Writing $Ax = \sum_{k=1}^{n} x_k X_k$, we have $||Ax||_2 \ge \max_{k=1,\dots,n} \operatorname{dist}(Ax, H_k) = \max_{k=1,\dots,n} |x_k| \operatorname{dist}(X_k, H_k).$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x\in Incomp} \|Ax\|_2 < c\varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

Writing $Ax = \sum_{k=1}^{n} x_k X_k$, we have $||Ax||_2 \ge \max_{k=1,...,n} \operatorname{dist}(Ax, H_k) = \max_{k=1,...,n} |x_k| \operatorname{dist}(X_k, H_k).$ Let $x \in Incomp$. Then $|x_k| \sim n^{-1/2}$ for at least *cn* indices *k*. Hence, $||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow \operatorname{dist}(X_k, H_k) < \varepsilon$ for at least *cn* indices *k*

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x\in Incomp} \|Ax\|_2 < c\varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

Writing $Ax = \sum_{k=1}^{n} x_k X_k$, we have $||Ax||_2 \ge \max_{k=1,...,n} \operatorname{dist}(Ax, H_k) = \max_{k=1,...,n} |x_k| \operatorname{dist}(X_k, H_k).$ Let $x \in Incomp$. Then $|x_k| \sim n^{-1/2}$ for at least cn indices k. Hence, $\exists x \in Incomp ||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow \operatorname{dist}(X_k, H_k) < \varepsilon$ for at least cn indices k

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x \in Incomp} \|Ax\|_2 < c \varepsilon n^{-1/2}\right) \le C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

 $\exists x \in Incomp ||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow dist(X_k, H_k) < \varepsilon \text{ for at least } cn \text{ indices } k$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x \in Incomp} \|Ax\|_2 < c \varepsilon n^{-1/2}\right) \le C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

 $\exists x \in Incomp ||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow dist(X_k, H_k) < \varepsilon \text{ for at least } cn \text{ indices } k$

Denote $p := \mathbb{P}\left(\operatorname{dist}(X_k, H_k) < \varepsilon\right)$. Then $\mathbb{E}\left|\{k : \operatorname{dist}(X_k, H_k) < \varepsilon\}\right| = np$.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x\in Incomp} \|Ax\|_2 < c\varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

 $\exists x \in Incomp \ ||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow \operatorname{dist}(X_k, H_k) < \varepsilon \text{ for at least } cn \text{ indices } k$

Denote $p := \mathbb{P}\left(\operatorname{dist}(X_k, H_k) < \varepsilon\right)$. Then $\mathbb{E}\left|\{k : \operatorname{dist}(X_k, H_k) < \varepsilon\}\right| = np$. Therefore, by Chebychev's inequality,

 $\mathbb{P}\left(\operatorname{dist}(X_k, H_k) < \varepsilon \text{ for at least } \underline{cn} \text{ indices } k\right) \leq \frac{np}{nc}.$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Invertibility via distance

Lemma

Let X_1, \ldots, X_n denote the column vectors of A, and let H_k denote the span of all column vectors except the k-th. Then for every $\varepsilon > 0$, one has

$$\mathbb{P}\left(\inf_{x\in Incomp} \|Ax\|_2 < c\varepsilon n^{-1/2}\right) \leq C \mathbb{P}\left(\operatorname{dist}(X_n, H_n) < \varepsilon\right)$$

Proof.

 $\exists x \in Incomp \ ||Ax||_2 < c \varepsilon n^{-1/2} \Rightarrow \operatorname{dist}(X_k, H_k) < \varepsilon \text{ for at least } cn \text{ indices } k$

Denote $p := \mathbb{P}\left(\operatorname{dist}(X_k, H_k) < \varepsilon\right)$. Then $\mathbb{E}\left|\{k : \operatorname{dist}(X_k, H_k) < \varepsilon\}\right| = np$. Therefore, by Chebychev's inequality,

 $\mathbb{P}(\operatorname{dist}(X_k, H_k) < \varepsilon \text{ for at least } cn \text{ indices } k) \leq (1/c) \mathbb{P}(\operatorname{dist}(X_k, H_k) < \varepsilon)$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Random normal

 $\mathbb{P}\left(\operatorname{dist}(X_n,H_n)<\varepsilon\right)\leq?$

イロト イロト イヨト イヨト

Ξ.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Random normal

 $\mathbb{P}\left(\operatorname{dist}(X_n,H_n)<\varepsilon\right)\leq?$

Let $X^* =: (a_1, \ldots, a_n)$ be any unit vector orthogonal to X_1, \ldots, X_{n-1} . We can choose X^* so that it depends only on X_1, \ldots, X_{n-1} and is independent of $X_n = (\xi_1, \ldots, \xi_n)$.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Random normal

 $\mathbb{P}\left(\operatorname{dist}(X_n,H_n)<\varepsilon\right)\leq?$

Let $X^* =: (a_1, \ldots, a_n)$ be any unit vector orthogonal to X_1, \ldots, X_{n-1} . We can choose X^* so that it depends only on X_1, \ldots, X_{n-1} and is independent of $X_n = (\xi_1, \ldots, \xi_n)$.

 $\operatorname{dist}(X_n, H_n) \geq |\langle X^*, X_n \rangle|.$

We use the small ball probability estimates to bound

$$\mathbb{P}\left(|\langle X^*, X_n
angle | < arepsilon
ight) = \mathbb{P}\left(|\sum_{k=1}^n a_k \xi_k| < arepsilon
ight).$$

A D > A B > A B > A B > .

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Small ball probability

$$P_a(\varepsilon) := \mathbb{P}\left(|\sum_{k=1}^n a_k \xi_k| < \varepsilon \right) \le ?$$

・ロト ・四ト ・ヨト ・ヨト

E

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Small ball probability

$$P_a(\varepsilon) := \mathbb{P}\left(\left|\sum_{k=1}^n a_k \xi_k\right| < \varepsilon\right) \leq ?$$

Examples (Let ξ_1, \ldots, ξ_n be Bernoulli random variables.)

- Compressible vector: if $a = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \dots, 0)$, then $P_a(\varepsilon) = 1/2$.
- Incompressible vector: if $a = (\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}})$, then $P_a(\varepsilon) \sim t + 1/\sqrt{n}$.

We have to treat compressible and incompressible normals separately.

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Random normal is incompressible

Lemma

$$\mathbb{P}\left(X^* \in Comp\right) \leq e^{-cn}.$$

Proof.

Let *A'* be the $(n - 1) \times n$ random matrix with rows X_1, \ldots, X_n . By the definition of the random normal,

$$A'X^* = 0.$$

Therefore, if $X^* \in Comp$ then $\inf_{x \in Comp} ||A'x||_2 = 0.$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Random normal is incompressible

Lemma

$$\mathbb{P}\left(X^* \in Comp\right) \leq e^{-cn}.$$

Proof.

Let *A'* be the $(n - 1) \times n$ random matrix with rows X_1, \ldots, X_n . By the definition of the random normal,

$$A'X^* = 0.$$

Therefore, if $X^* \in Comp$ then $\inf_{x \in Comp} ||A'x||_2 = 0$.

Lemma

$$\mathbb{P}\left(\inf_{x\in Comp} \|A'x\|_2 \le cn^{1/2}\right) \le e^{-c'n}.$$

Mark Rudelson

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Small ball probability for incompressible vectors

$$P_a(\varepsilon) := \mathbb{P}\left(|\sum_{k=1}^n a_k \xi_k| < \varepsilon
ight) \le ?$$

Lemma (CLT bound)

Let $a \in S^{n-1}$ be an incompressible vector. Then for every $\varepsilon > 0$

 $P_a(\varepsilon) \le C(\varepsilon + n^{-1/2}),$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Small ball probability for incompressible vectors

$$P_a(\varepsilon) := \mathbb{P}\left(\left|\sum_{k=1}^n a_k \xi_k\right| < \varepsilon\right) \le ?$$

Lemma (CLT bound)

Let $a \in S^{n-1}$ be an incompressible vector. Then for every $\varepsilon > 0$

$$P_a(\varepsilon) \le C(\varepsilon + n^{-1/2}),$$

Proof.

• An incompressible vector has at least *cn* coordinates of the order $n^{-1/2}$.

2 Condition on the other coordinates and apply Berry–Esseen Theorem: $\mathbb{P}\left(\left|\sum_{k=1}^{n} a_k \xi_k\right| < \varepsilon\right) \le \mathbb{P}\left(|\gamma| < \varepsilon\right) + Cn^{-1/2} \le C(\varepsilon + n^{-1/2}).$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le \varepsilon + cn^{-1/2}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \mathbb{P}(\inf_{x \in Comp} ||Ax||_2 < \varepsilon \cdot n^{-1/2}) + \mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2})$$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le e^{-cn}$$

$$+\mathbb{P}\left(\inf_{x\in \textit{Incomp}} \left\|Ax\right\|_{2} < \varepsilon \cdot n^{-1/2}\right)$$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le e^{-cn}$$

+ $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2})$
• $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2}) \le \mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon)$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le e^{-cn}$$

+ $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2})$
• $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2}) \le \mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Comp)$
+ $\mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Incomp)$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le e^{-cn}$$

+ $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2})$
• $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2}) \le e^{-cn}$
+ $\mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Incomp)$

Compressible and incompressible vectors Invertibility via distance Distance via the small ball probability Conclusion of the proof

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + cn^{-1/2}.$$

Proof.

•
$$\mathbb{P}(s_n(A) \leq c\varepsilon \cdot n^{-1/2}) \leq e^{-cn}$$

+ $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2})$
• $\mathbb{P}(\inf_{x \in Incomp} ||Ax||_2 < \varepsilon \cdot n^{-1/2}) \leq e^{-cn}$
+ $\mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Incomp)$
• $\mathbb{P}(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Incomp) \leq C(\varepsilon + n^{-1/2}).$

LCD and the stratification of the sphere Random normal $\varepsilon\text{-net}$ argument

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}(s_n(A) \le c\varepsilon \cdot n^{-1/2}) \le \varepsilon + e^{-cn}$$

LCD and the stratification of the sphere Random normal $\varepsilon\text{-net}$ argument

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le \varepsilon + e^{-cn}.$$

Recall that $S^{n-1} = Comp \cup Incomp$. We proved that

 $\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le e^{-cn} + \mathbb{P}\left(\left|\langle X_n, X^* \rangle\right| < \varepsilon \text{ and } X^* \in Incomp\right)$

A D > A B > A B > A B > .

LCD and the stratification of the sphere Random normal ε -net argument

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le \varepsilon + e^{-cn}.$$

Recall that $S^{n-1} = Comp \cup Incomp$. We proved that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le e^{-cn} + \mathbb{P}\left(\left|\langle X_n, X^* \rangle\right| < \varepsilon \text{ and } X^* \in Incomp\right)$$

We decompose *Incomp* further into the set of typical and atypical vectors: $Incomp = Typ \cup Atyp$.

$$\mathbb{P}\left(|\langle X_n, X^*
angle| < arepsilon ext{ and } X^* \in Incomp
ight) \ \leq \mathbb{P}\left(|\langle X_n, X^*
angle| < arepsilon ext{ and } X^* \in Atyp
ight) + \mathbb{P}\left(|\langle X_n, X^*
angle| < arepsilon ext{ and } X^* \in Typ
ight)$$

LCD and the stratification of the sphere Random normal $\varepsilon\text{-net}$ argument

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon > 0$, such that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le \varepsilon + e^{-cn}.$$

Recall that $S^{n-1} = Comp \cup Incomp$. We proved that

$$\mathbb{P}\left(s_n(A) \le c\varepsilon \cdot n^{-1/2}\right) \le e^{-cn} + \mathbb{P}\left(\left|\langle X_n, X^* \rangle\right| < \varepsilon \text{ and } X^* \in Incomp\right)$$

We decompose *Incomp* further into the set of typical and atypical vectors: $Incomp = Typ \cup Atyp$.

$$\mathbb{P}\left(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Incomp\right)$$

$$\leq \mathbb{P}\left(X^* \in Atyp\right) + \mathbb{P}\left(|\langle X_n, X^* \rangle| < \varepsilon \text{ and } X^* \in Typ\right)$$

$$\leq e^{-cn} + C(\varepsilon + e^{-cn}).$$

LCD and the stratification of the sphere Random normal $\varepsilon\text{-net}$ argument

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_1, \ldots, ξ_n be i.i.d. subgaussian random variables. Then for any $a \in$ Incomp and for any $\varepsilon > 0$

$$P_{a}(\varepsilon) := \mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j}\xi_{j}\right| < \varepsilon\right) \le C\left(\varepsilon + \frac{1}{LCD(a)}\right) + Ce^{-cn}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LCD and the stratification of the sphere Random normal ε -net argument

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_1, \ldots, ξ_n be i.i.d. subgaussian random variables. Then for any $a \in$ Incomp and for any $\varepsilon > 0$

$$P_{a}(\varepsilon) := \mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j}\xi_{j}\right| < \varepsilon\right) \le C\left(\varepsilon + \frac{1}{LCD(a)}\right) + Ce^{-cn}$$

- Typical vectors: LCD > $e^{cn} \Rightarrow P_a(\varepsilon) \leq C\varepsilon + Ce^{-cn}$
- Atypical vectors: $LCD \le e^{cn}$

LCD and the stratification of the sphere Random normal ε -net argument

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_1, \ldots, ξ_n be i.i.d. subgaussian random variables. Then for any $a \in$ Incomp and for any $\varepsilon > 0$

$$P_{a}(\varepsilon) := \mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j}\xi_{j}\right| < \varepsilon\right) \le C\left(\varepsilon + \frac{1}{LCD(a)}\right) + Ce^{-cn}$$

- Typical vectors: LCD > $e^{cn} \Rightarrow P_a(\varepsilon) \leq C\varepsilon + Ce^{-cn}$
- Atypical vectors: $LCD \le e^{cn}$

Examples (Atypical vectors)

•
$$a = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$$
 $\operatorname{LCD}(a) = \sqrt{n}$

•
$$a = (\frac{1+1/n}{\sqrt{n}}, \frac{1+2/n}{\sqrt{n}}, \dots, \frac{1+n/n}{\sqrt{n}})$$
 LCD $(a) = n^{3/2}$

LCD and the stratification of the sphere Random normal ε -net argument

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_1, \ldots, ξ_n be i.i.d. subgaussian random variables. Then for any $a \in$ Incomp and for any $\varepsilon > 0$

$$P_{a}(\varepsilon) := \mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j}\xi_{j}\right| < \varepsilon\right) \le C\left(\varepsilon + \frac{1}{LCD(a)}\right) + Ce^{-cn}$$

- Typical vectors: LCD > $e^{cn} \Rightarrow P_a(\varepsilon) \leq C\varepsilon + Ce^{-cn}$
- Atypical vectors: $LCD \le e^{cn}$

Theorem (Random normal is typical)

Let X_1, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^* be any unit vector orthogonal to X_1, \ldots, X_{n-1} . Then

$$\mathbb{P}\left(LCD(X^*) < e^{cn}\right) \le e^{-c'n}.$$

A D > A B > A B > A B >

LCD and the stratification of the sphere Random normal ε -net argument

Random normal is typical

Theorem (Random normal is typical)

Let X_1, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^* be any unit vector orthogonal to X_1, \ldots, X_{n-1} . Then

 $\mathbb{P}\left(LCD(X^*) < e^{cn}\right) \le e^{-c'n}.$

LCD and the stratification of the sphere Random normal ε -net argument

Random normal is typical

Theorem (Random normal is typical)

Let X_1, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^* be any unit vector orthogonal to X_1, \ldots, X_{n-1} . Then

$$\mathbb{P}\left(LCD(X^*) < e^{cn}\right) \le e^{-c'n}.$$

Proof.

We further partition the set *Atyp* into the level sets according to the values of the LCD:

$$S_D := \{x \in Atyp : D \le LCD(x) < 2D\}.$$

Here $D = 2^{j}$, where j = 1, ..., cn.

LCD and the stratification of the sphere Random normal ε -net argument

Random normal is typical

Theorem (Random normal is typical)

Let X_1, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^* be any unit vector orthogonal to X_1, \ldots, X_{n-1} . Then

$$\mathbb{P}\left(LCD(X^*) < e^{cn}\right) \le e^{-c'n}.$$

Proof.

We further partition the set *Atyp* into the level sets according to the values of the LCD:

$$S_D := \{x \in Atyp : D \le LCD(x) < 2D\}.$$

Here $D = 2^j$, where j = 1, ..., cn. On each set S_D it is enough to prove that

$$\mathbb{P}\left(X^*\in S_D\right)\leq e^{-n}.$$

Then taking the union bound over the level sets S_D completes the proof.

LCD and the stratification of the sphere Random normal ε-net argument

Norm minimization via the LCD

Lemma

Let $S_D \subset S^{n-1}$ be the set of all incompressible points such that $D \leq LCD(x) < 2D$. Let X^* be a random normal. Then

 $\mathbb{P}\left(X^* \in S_D\right) \leq e^{-n}.$

• Individual probability estimate via LCD.

 $\mathbb{P}\left(\|X^* - y\| \text{ is small } \right)$ is exponentially small

for any fixed $y \in S_D$.

- Estimate of the cardinality of the ε -net.
- Approximation.

The volumetric estimate of the cardinality of the ε -net is not good enough!

LCD and the stratification of the sphere Random normal ε -net argument

The size of an ε -net

Lemma

Let $W_D \subset S^{n-1}$ be the set of vectors for which $LCD(x) \leq D$. Then there exists a (α/D) -net in W_D in the Euclidean metric, of cardinality at most

 $(CD/\alpha^{c'})^n$ for some c' < 1.

<ロ> <四> <四> <日> <日> <日</p>

LCD and the stratification of the sphere Random normal ε -net argument

The size of an ε -net

Lemma

Let $W_D \subset S^{n-1}$ be the set of vectors for which $LCD(x) \leq D$. Then there exists a (α/D) -net in W_D in the Euclidean metric, of cardinality at most

 $(CD/\alpha^{c'})^n$ for some c' < 1.

Volumetric estimate:

 $|t\text{-net}| \leq (3/t)^n$.

We gain α^c instead of α .

LCD and the stratification of the sphere Random normal ε -net argument

The size of an ε -net

Lemma

Let $W_D \subset S^{n-1}$ be the set of vectors for which $LCD(x) \leq D$. Then there exists a (α/D) -net in W_D in the Euclidean metric, of cardinality at most

 $(CD/\alpha^{c'})^n$ for some c' < 1.

LCD and the stratification of the sphere Random normal ε-net argument

The size of an ε -net

Lemma

Let $W_D \subset S^{n-1}$ be the set of vectors for which $LCD(x) \leq D$. Then there exists a (α/D) -net in W_D in the Euclidean metric, of cardinality at most

 $(CD/\alpha^{c'})^n$ for some c' < 1.

Proof.

- For any x ∈ W_D, the vector n^{1/2} · LCD(x) · x has cn coordinates α-close to the integers.
- The restrictions of these vectors to such coordinates admit a (α/D)-net of cardinality (CD)^{cn}.

LCD and the stratification of the sphere Random normal ε-net argument

The size of an ε -net

Lemma

Let $W_D \subset S^{n-1}$ be the set of vectors for which $LCD(x) \leq D$. Then there exists a (α/D) -net in W_D in the Euclidean metric, of cardinality at most

 $(CD/\alpha^{c'})^n$ for some c' < 1.

Proof.

- For any x ∈ W_D, the vector n^{1/2} · LCD(x) · x has cn coordinates α-close to the integers.
- The restrictions of these vectors to such coordinates admit a (α/D)-net of cardinality (CD)^{cn}.
- On the rest of the coordinates we use the volumetric estimate: $(CD/\alpha)^{(1-c)n}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LCD and the stratification of the sphere Random normal ε -net argument

Norm minimization via the LCD *e*-net argument

Lemma

Let $S_D \subset S^{n-1}$ be the set of all incompressible points such that $D \leq LCD(x) < 2D$. Then

 $\mathbb{P}\left(X^* \in S_D\right) \leq e^{-n}.$

LCD and the stratification of the sphere Random normal *ε*-net argument

Norm minimization via the LCD

 ε -net argument

Lemma

Let $S_D \subset S^{n-1}$ be the set of all incompressible points such that $D \leq LCD(x) < 2D$. Then

$$\mathbb{P}\left(X^*\in S_D\right)\leq e^{-n}.$$

Proof.

• Let $x \in S^{n-1}$ be an incompressible vector such that LCD(x) > D. Then for any $y \in S_D$ $\mathbb{P} \left(||X^* - y|| \leq c \cdot D \right) \leq (C \cdot c \cdot D)^{n-1}$

$$\mathbb{P}\left(\|X^* - y\| < \alpha/D\right) \le (C\alpha/D)^{n-1}.$$

There exists a (α/D)-net N in S_D in the Euclidean metric, of cardinality at most (CD/α^c)ⁿ for some c < 1.

LCD and the stratification of the sphere Random normal *ε*-net argument

Norm minimization via the LCD ε -net argument

e net argument

Lemma

Let $S_D \subset S^{n-1}$ be the set of all incompressible points such that $D \leq LCD(x) < 2D$. Then

$$\mathbb{P}\left(X^*\in S_D\right)\leq e^{-n}.$$

Proof.

• Let $x \in S^{n-1}$ be an incompressible vector such that LCD(x) > D. Then for any $y \in S_D$

$$\mathbb{P} (||X^* - y|| < \alpha/D) \le (C\alpha/D)^{n-1}.$$

- There exists a (α/D)-net N in S_D in the Euclidean metric, of cardinality at most (CD/α^c)ⁿ for some c < 1.
- $\mathbb{P}(\exists x \in \mathcal{N} ||A'x||_2 < \alpha/D) \le (C\alpha^{1-c})^n \le e^{-n}.$

• □ • • @ • • = • • = •