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Invertibility problems

Let A be an n× n random matrix with independent entries.

Examples
1 Gaussian matrix: the entries are N(0, 1) normal random variables
2 random ±1 matrix: the entries are Bernoulli random variables

Qualitative problem:
What is the probability that a random matrix A is non-singular?

Quantitative problems:
What is the typical distance from a random matrix to the set of singular
matrices?
What is the tail distribution of this distance?
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Qualitative problem

Let A be an n× n random ±1 matrix. Probability of non-singularity:

Pn = P (det(A) 6= 0).

Komlos (1967): Pn ≥ 1− c/
√

n.
Kahn, Komlos, Szemeredy (1994): Pn ≥ 1− 0.998n.
Tao, Vu (2004): Pn ≥ 1− 0.96n.
Tao, Vu (2005): Pn ≥ 1− (3/4)n.

Conjecture: Pn = 1−
(n

2

)
· 2−(n−2) · (1 + o(1)).

The main reason for singularity is that two rows or two columns of A are
equal up to a sign.
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Condition number of a matrix

Definition
Distortion (condition number):

D(A) = sup
x,y∈Sn−1

‖Ax‖
‖Ay‖

=
s1(A)
sn(A)

= ‖A‖ ·
∥∥A−1

∥∥ .

Here s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) ≥ 0 are the singular values of A (the
eigenvalues of (A∗A)1/2):

s1(A) =
∥∥A : Rn → RN

∥∥ , sn(A) = (
∥∥A−1 : ARn → Rn

∥∥)−1.

We need an upper estimate for the first singular number and a lower estimate
for the last one.
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Applications of the condition number

Definition
Distortion (condition number):

D(A) = sup
x,y∈Sn−1

‖Ax‖
‖Ay‖

.

Error control.
Gaussian elimination for the system Ax = b.

Rate of convergence.
Iteration methods for linear systems (conjugate gradients,
Kaczmarz-Steinhaus algorithm)
Linear programming (smoothed analysis)
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The first singular value

Assume that Eaj,k = 0 and E|aj,k|2 ≥ c.

Theorem (Bai, Krishnaiah, Silverstein, Yin)

Let An be a family of n× n random matrices with i.i.d. entries

lim
n→∞

s1(An)/
√

n

exists a.s. if and only if the fourth moment of the entries is finite.

Theorem (Latała)

Let A be an n× n random matrix, whose entries have a uniformly bounded
fourth moment. Then

Es1(A) ≤ C
√

n.
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The first singular value

Theorem (Large deviations)

Let A be an n× n random matrix with subgaussian entries. Then for any
t > t0

P
(
s1(A) ≥ t

√
n
)
≤ e−cnt2

.

Theorem (Concentration)

Let A be an n× n random matrix with bounded entries. Then for any t > 0

P
(∣∣∣s1(A)−M(s1(A))

∣∣∣ ≥ t
)
≤ 4e−t2/4.

s1(A) is a convex function of A.
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Quantitative problems: the median

The last singular value sn(A) = minx∈Sn−1 ‖Ax‖
is the distance of A to the set of singular matrices.

Conjecture (von Neumann, Smale):

sn(A) ∼ n−1/2 with probability close to 1.

Theorem (Edelman, 1988)

Let A be an n× n Gaussian matrix. Then for any ε > 0

P (sn(A) ≤ εn−1/2) ∼ ε.

Theorem (R, 2005)

Let A be an n× n matrix with i.i.d. subgaussian entries. Then for any
ε ≥ cn−1/2

P (sn(A) ≤ Cε · n−3/2) ≤ ε.
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Quantitative problems: the tail distribution

Theorem (Edelman, 1988)

Let A be an n× n Gaussian matrix. Then for any ε > 0

P (sn(A) ≤ ε · n−1/2) ∼ ε.

Conjecture (Spielman, Teng):

Let A be an n× n random ±1 matrix. Then for any ε > 0

P (sn(A) ≤ ε · n−1/2) ≤ ε + e−cn.

Theorem (Tao, Vu, 2005)

Let A be an n× n random ±1 matrix. Then for any α > 0 there exists β > 0
such that

P (sn(A) ≤ n−β) ≤ n−α.
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Quantitative problems: the results

Conjecture (von Neumann, Smale):

sn(A) ∼ n−1/2 with probability close to 1.

Theorem (Median)

Let A be an n× n random matrix, whose entries have a uniformly bounded
fourth moment. Then for any ε > 0 there exists δ > 0, such that

P (sn(A) ≤ δ · n−1/2) ≤ ε

for all n ≥ n0(ε).
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Quantitative problems: the results

Definition
A random variable ξ is called subgaussian if for any t > 0

P (|ξ| > t) ≤ Ce−ct2
.

Examples

Gaussian random variable
Any bounded random variable (including random ±1)

Theorem (Tail distribution)

Let A be an n× n random matrix with i.i.d. subgaussian entries. Then for
any ε > 0

P (sn(A) ≤ c′ε · n−1/2) ≤ ε + e−cn.

Therefore, P (det(A) = 0) ≤ e−cn.
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Compressible and incompressible vectors

Assume that A is a random matrix with i.i.d. subgaussian entries.

Definition

A vector x ∈ Sn−1 is called compressible if it is close to a sparse vector in
the `2-norm.

We decompose the sphere in two parts: Sn−1 = Comp ∪ Incomp.

Compressible vectors: the norm is
concentrated on a few coordinates
Incompressible vectors: many
coordinates of the order n−1/2.

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Invertibility for compressible vectors

Lemma (Litvak, Pajor, R’, Tomczak-Jaegermann)

P
(

inf
x∈Comp

‖Ax‖2 ≤ cn1/2) ≤ e−c′n.

This bound is much stronger than we need.

Proof.
1 Individual estimate: let x ∈ Sn−1 be any vector. Then

P (‖Ax‖2 ≤ cn1/2) ≤ e−c′n.

2 The set of sparse vectors admits a small ε-net.
3 This ε-net is a 2ε-net for the set of compressible vectors
4 Approximation.
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Invertibility via distance

Lemma
Let X1, . . . , Xn denote the column vectors of A, and let Hk denote the span of
all column vectors except the k-th. Then for every ε > 0, one has

P
(

inf
x∈Incomp

‖Ax‖2 < cεn−1/2) ≤ C P
(
dist(Xn, Hn) < ε

)
.
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Let x ∈ Incomp. Then |xk| ∼ n−1/2 for at least cn indices k. Hence,

∃ x ∈ Incomp

‖Ax‖2 < cεn−1/2 ⇒ dist(Xk, Hk) < ε for at least cn indices k

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Invertibility via distance

Lemma
Let X1, . . . , Xn denote the column vectors of A, and let Hk denote the span of
all column vectors except the k-th. Then for every ε > 0, one has

P
(

inf
x∈Incomp

‖Ax‖2 < cεn−1/2) ≤ C P
(
dist(Xn, Hn) < ε

)
.

Proof.

Writing Ax =
∑n

k=1 xkXk, we have

‖Ax‖2 ≥ max
k=1,...,n

dist(Ax, Hk) = max
k=1,...,n

|xk| dist(Xk, Hk).

Let x ∈ Incomp. Then |xk| ∼ n−1/2 for at least cn indices k. Hence,

∃ x ∈ Incomp

‖Ax‖2 < cεn−1/2 ⇒ dist(Xk, Hk) < ε for at least cn indices k

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Invertibility via distance

Lemma
Let X1, . . . , Xn denote the column vectors of A, and let Hk denote the span of
all column vectors except the k-th. Then for every ε > 0, one has

P
(

inf
x∈Incomp

‖Ax‖2 < cεn−1/2) ≤ C P
(
dist(Xn, Hn) < ε

)
.

Proof.

Writing Ax =
∑n

k=1 xkXk, we have

‖Ax‖2 ≥ max
k=1,...,n

dist(Ax, Hk) = max
k=1,...,n

|xk| dist(Xk, Hk).

Let x ∈ Incomp. Then |xk| ∼ n−1/2 for at least cn indices k. Hence,

∃ x ∈ Incomp ‖Ax‖2 < cεn−1/2 ⇒ dist(Xk, Hk) < ε for at least cn indices k

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Invertibility via distance

Lemma
Let X1, . . . , Xn denote the column vectors of A, and let Hk denote the span of
all column vectors except the k-th. Then for every ε > 0, one has

P
(

inf
x∈Incomp

‖Ax‖2 < cεn−1/2) ≤ C P
(
dist(Xn, Hn) < ε

)
.

Proof.

∃ x ∈ Incomp ‖Ax‖2 < cεn−1/2 ⇒ dist(Xk, Hk) < ε for at least cn indices k

Denote p := P
(
dist(Xk, Hk) < ε

)
. Then E

∣∣{k : dist(Xk, Hk) < ε}
∣∣ = np.

Therefore, by Chebychev’s inequality,

P (dist(Xk, Hk) < ε for at least cn indices k) ≤

P
(
dist(Xk, Hk) < ε

)
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Random normal

P
(
dist(Xn, Hn) < ε

)
≤?

Let X∗ =: (a1, . . . , an) be any unit vector orthogonal to X1, . . . , Xn−1.
We can choose X∗ so that it depends only on X1, . . . , Xn−1 and is
independent of Xn = (ξ1, . . . , ξn).

dist(Xn, Hn) ≥ |〈X∗, Xn〉|.

We use the small ball probability estimates to bound

P
(
|〈X∗, Xn〉| < ε

)
= P

(
|

n∑
k=1

akξk| < ε

)
.

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Random normal

P
(
dist(Xn, Hn) < ε

)
≤?

Let X∗ =: (a1, . . . , an) be any unit vector orthogonal to X1, . . . , Xn−1.
We can choose X∗ so that it depends only on X1, . . . , Xn−1 and is
independent of Xn = (ξ1, . . . , ξn).

dist(Xn, Hn) ≥ |〈X∗, Xn〉|.

We use the small ball probability estimates to bound

P
(
|〈X∗, Xn〉| < ε

)
= P

(
|

n∑
k=1

akξk| < ε

)
.

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Random normal

P
(
dist(Xn, Hn) < ε

)
≤?

Let X∗ =: (a1, . . . , an) be any unit vector orthogonal to X1, . . . , Xn−1.
We can choose X∗ so that it depends only on X1, . . . , Xn−1 and is
independent of Xn = (ξ1, . . . , ξn).

dist(Xn, Hn) ≥ |〈X∗, Xn〉|.

We use the small ball probability estimates to bound

P
(
|〈X∗, Xn〉| < ε

)
= P

(
|

n∑
k=1

akξk| < ε

)
.

Mark Rudelson Invertibility of random matrices



Qualitative problem
Quantitative problems

The median
The tail distribution

Compressible and incompressible vectors
Invertibility via distance
Distance via the small ball probability
Conclusion of the proof

Small ball probability

Pa(ε) := P

(
|

n∑
k=1

akξk| < ε

)
≤?

Examples ( Let ξ1, . . . , ξn be Bernoulli random variables.)

Compressible vector: if a = ( 1√
2
, 1√

2
, 0, . . . , 0), then Pa(ε) = 1/2.

Incompressible vector: if a = ( 1√
n , 1√

n , , . . . , 1√
n ), then

Pa(ε) ∼ t + 1/
√

n.

We have to treat compressible and incompressible normals separately.
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Random normal is incompressible

Lemma

P
(
X∗ ∈ Comp

)
≤ e−cn.

Proof.

Let A′ be the (n− 1)× n random matrix with rows X1, . . . , Xn.
By the definition of the random normal,

A′X∗ = 0.

Therefore, if X∗ ∈ Comp then infx∈Comp ‖A′x‖2 = 0.

Lemma

P
(

inf
x∈Comp

‖A′x‖2 ≤ cn1/2) ≤ e−c′n.
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Small ball probability for incompressible vectors

Pa(ε) := P

(
|

n∑
k=1

akξk| < ε

)
≤?

Lemma (CLT bound)

Let a ∈ Sn−1 be an incompressible vector. Then for every ε > 0

Pa(ε) ≤ C(ε + n−1/2),

Proof.

1 An incompressible vector has at least cn coordinates of the order n−1/2.
2 Condition on the other coordinates and apply Berry–Esseen Theorem:

P
(
|
∑n

k=1 akξk| < ε
)
≤ P (|γ| < ε) + Cn−1/2 ≤ C(ε + n−1/2).
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Polynomial bound

Theorem (Polynomial bound)

Let A be an n× n random matrix, with i.i.d. subgaussian entries. Then for
any ε > 0, such that

P (sn(A) ≤ cε · n−1/2) ≤ ε + cn−1/2.

Proof.

1 P (sn(A) ≤ cε · n−1/2) ≤
+P
(

infx∈Incomp ‖Ax‖2 < ε · n−1/2
)

2 P
(

infx∈Incomp ‖Ax‖2 < ε · n−1/2
)
≤

+P
(
|〈Xn, X∗〉| < ε and X∗ ∈ Incomp

)

3 P
(
|〈Xn, X∗〉| < ε and X∗ ∈ Incomp

)
≤ C(ε + n−1/2).
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Theorem (Exponential bound)

Let A be an n× n random matrix, with i.i.d. subgaussian entries. Then for
any ε > 0, such that

P (sn(A) ≤ cε · n−1/2) ≤ ε + e−cn.

Recall that Sn−1 = Comp ∪ Incomp. We proved that

P (sn(A) ≤ cε · n−1/2) ≤ e−cn + P
(
|〈Xn, X∗〉| < ε and X∗ ∈ Incomp

)
We decompose Incomp further into the set of typical and atypical vectors:
Incomp = Typ ∪ Atyp.

P
(
|〈Xn, X∗〉| < ε and X∗ ∈ Incomp

)
≤ P

(

|〈Xn, X∗〉| < ε and

X∗ ∈ Atyp
)

+ P
(
|〈Xn, X∗〉| < ε and X∗ ∈ Typ

)

≤ e−cn + C(ε + e−cn).
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Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ1, . . . , ξn be i.i.d. subgaussian random variables.
Then for any a ∈ Incomp and for any ε > 0

Pa(ε) := P
(∣∣ n∑

j=1

ajξj
∣∣ < ε

)
≤ C

(
ε +

1
LCD(a)

)
+ Ce−cn.

Typical vectors: LCD > ecn ⇒ Pa(ε) ≤ Cε + Ce−cn

Atypical vectors: LCD ≤ ecn
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Theorem (Small ball probability via the LCD)

Let ξ1, . . . , ξn be i.i.d. subgaussian random variables.
Then for any a ∈ Incomp and for any ε > 0

Pa(ε) := P
(∣∣ n∑

j=1

ajξj
∣∣ < ε

)
≤ C

(
ε +

1
LCD(a)

)
+ Ce−cn.

Typical vectors: LCD > ecn ⇒ Pa(ε) ≤ Cε + Ce−cn

Atypical vectors: LCD ≤ ecn

Examples (Atypical vectors)

a = ( 1√
n , 1√

n , . . . , 1√
n ) LCD(a) =

√
n

a = ( 1+1/n√
n , 1+2/n√

n , . . . , 1+n/n√
n ) LCD(a) = n3/2
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Theorem (Small ball probability via the LCD)

Let ξ1, . . . , ξn be i.i.d. subgaussian random variables.
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ε +

1
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Theorem (Random normal is typical)

Let X1, . . . , Xn−1 be vectors with i.i.d. subgaussian coordinates and
let X∗ be any unit vector orthogonal to X1, . . . , Xn−1. Then

P (LCD(X∗) < ecn) ≤ e−c′n.
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Random normal is typical

Theorem (Random normal is typical)

Let X1, . . . , Xn−1 be vectors with i.i.d. subgaussian coordinates and
let X∗ be any unit vector orthogonal to X1, . . . , Xn−1. Then

P (LCD(X∗) < ecn) ≤ e−c′n.

Proof.
We further partition the set Atyp into the level sets according to the values of
the LCD:

SD := {x ∈ Atyp : D ≤ LCD(x) < 2D}.

Here D = 2j, where j = 1, . . . , cn.
On each set SD it is enough to prove that

P
(
X∗ ∈ SD

)
≤ e−n.

Then taking the union bound over the level sets SD completes the proof.
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Norm minimization via the LCD

Lemma

Let SD ⊂ Sn−1 be the set of all incompressible points such that
D ≤ LCD(x) < 2D. Let X∗ be a random normal. Then

P
(
X∗ ∈ SD

)
≤ e−n.

Individual probability estimate via LCD.

P (‖X∗ − y‖ is small ) is exponentially small

for any fixed y ∈ SD.
Estimate of the cardinality of the ε-net.
Approximation.

The volumetric estimate of the cardinality of the ε-net is not good enough!
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The size of an ε-net

Lemma

Let WD ⊂ Sn−1 be the set of vectors for which LCD(x) ≤ D. Then there
exists a (α/D)-net in WD in the Euclidean metric, of cardinality at most

(CD/αc′)n for some c′ < 1.
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The size of an ε-net

Lemma

Let WD ⊂ Sn−1 be the set of vectors for which LCD(x) ≤ D. Then there
exists a (α/D)-net in WD in the Euclidean metric, of cardinality at most

(CD/αc′)n for some c′ < 1.

Volumetric estimate:
|t-net| ≤ (3/t)n.

We gain αc instead of α.
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The size of an ε-net

Lemma

Let WD ⊂ Sn−1 be the set of vectors for which LCD(x) ≤ D. Then there
exists a (α/D)-net in WD in the Euclidean metric, of cardinality at most

(CD/αc′)n for some c′ < 1.

Proof.

For any x ∈ WD, the vector n1/2 · LCD(x) · x has cn
coordinates α-close to the integers.

The restrictions of these vectors to such coordinates
admit a (α/D)-net of cardinality (CD)cn.
On the rest of the coordinates we use the volumetric
estimate: (CD/α)(1−c)n.
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Norm minimization via the LCD
ε-net argument

Lemma

Let SD ⊂ Sn−1 be the set of all incompressible points such that
D ≤ LCD(x) < 2D. Then

P
(
X∗ ∈ SD

)
≤ e−n.

Proof.

Let x ∈ Sn−1 be an incompressible vector such that LCD(x) > D. Then
for any y ∈ SD

P (‖X∗ − y‖ < α/D) ≤ (Cα/D)n−1.

There exists a (α/D)-net N in SD in the Euclidean metric, of
cardinality at most (CD/αc)n for some c < 1.

P (∃x ∈ N ‖A′x‖2 < α/D) ≤ (Cα1−c)n ≤ e−n.
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