Invertibility of random matrices

Mark Rudelson ${ }^{1}$ Roman Vershynin ${ }^{2}$

${ }^{1}$ Department of Mathematics University of Missouri
${ }^{2}$ Department of Mathematics
University of California, Davis

Phenomena in High Dimensions, Samos 2007

Invertibility problems

Let A be an $n \times n$ random matrix with independent entries.

Examples

- Gaussian matrix: the entries are $N(0,1)$ normal random variables
(2) random ± 1 matrix: the entries are Bernoulli random variables

Invertibility problems

Let A be an $n \times n$ random matrix with independent entries.

Examples

(1) Gaussian matrix: the entries are $N(0,1)$ normal random variables
(2) random ± 1 matrix: the entries are Bernoulli random variables

- Qualitative problem:
- What is the probability that a random matrix A is non-singular?
- Quantitative problems:
- What is the typical distance from a random matrix to the set of singular matrices?
- What is the tail distribution of this distance?

Qualitative problem

Let A be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$
P_{n}=\mathbb{P}(\operatorname{det}(A) \neq 0)
$$

Qualitative problem

Let A be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$
P_{n}=\mathbb{P}(\operatorname{det}(A) \neq 0)
$$

- Komlos (1967): $P_{n} \geq 1-c / \sqrt{n}$.

Qualitative problem

Let A be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$
P_{n}=\mathbb{P}(\operatorname{det}(A) \neq 0)
$$

- Komlos (1967): $P_{n} \geq 1-c / \sqrt{n}$.
- Kahn, Komlos, Szemeredy (1994): $P_{n} \geq 1-0.998^{n}$.
- Tao, Vu (2004): $P_{n} \geq 1-0.96^{n}$.
- Tao, $\mathrm{Vu}(2005): P_{n} \geq 1-(3 / 4)^{n}$.

Qualitative problem

Let A be an $n \times n$ random ± 1 matrix. Probability of non-singularity:

$$
P_{n}=\mathbb{P}(\operatorname{det}(A) \neq 0)
$$

- Komlos (1967): $P_{n} \geq 1-c / \sqrt{n}$.
- Kahn, Komlos, Szemeredy (1994): $P_{n} \geq 1-0.998^{n}$.
- Tao, Vu (2004): $P_{n} \geq 1-0.96^{n}$.
- Tao, $\mathrm{Vu}(2005): P_{n} \geq 1-(3 / 4)^{n}$.

Conjecture: $P_{n}=1-\binom{n}{2} \cdot 2^{-(n-2)} \cdot(1+o(1))$.
The main reason for singularity is that two rows or two columns of A are equal up to a sign.

Condition number of a matrix

Definition

Distortion (condition number):

$$
D(A)=\sup _{x, y \in S^{n-1}} \frac{\|A x\|}{\|A y\|}
$$

Condition number of a matrix

Definition

Distortion (condition number):

$$
D(A)=\sup _{x, y \in S^{n-1}} \frac{\|A x\|}{\|A y\|}=\frac{s_{1}(A)}{s_{n}(A)}=\|A\| \cdot\left\|A^{-1}\right\| .
$$

Here $s_{1}(A) \geq s_{2}(A) \geq \ldots \geq s_{n}(A) \geq 0$ are the singular values of A (the eigenvalues of $\left.\left(A^{*} A\right)^{1 / 2}\right)$:

$$
s_{1}(A)=\left\|A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}\right\|, \quad s_{n}(A)=\left(\left\|A^{-1}: A \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\|\right)^{-1}
$$

We need an upper estimate for the first singular number and a lower estimate for the last one.

Applications of the condition number

Definition

Distortion (condition number):

$$
D(A)=\sup _{x, y \in S^{n-1}} \frac{\|A x\|}{\|A y\|}
$$

- Error control.
- Gaussian elimination for the system $A x=b$.
- Rate of convergence.
- Iteration methods for linear systems (conjugate gradients, Kaczmarz-Steinhaus algorithm)
- Linear programming (smoothed analysis)

The first singular value

Assume that $\mathbb{E} a_{j, k}=0$ and $\mathbb{E}\left|a_{j, k}\right|^{2} \geq c$.

Theorem (Bai, Krishnaiah, Silverstein, Yin)

Let A_{n} be a family of $n \times n$ random matrices with i.i.d. entries

$$
\lim _{n \rightarrow \infty} s_{1}\left(A_{n}\right) / \sqrt{n}
$$

exists a.s. if and only if the fourth moment of the entries is finite.

The first singular value

Assume that $\mathbb{E} a_{j, k}=0$ and $\mathbb{E}\left|a_{j, k}\right|^{2} \geq c$.

Theorem (Bai, Krishnaiah, Silverstein, Yin)

Let A_{n} be a family of $n \times n$ random matrices with i.i.d. entries

$$
\lim _{n \rightarrow \infty} s_{1}\left(A_{n}\right) / \sqrt{n}
$$

exists a.s. if and only if the fourth moment of the entries is finite.

Theorem (Latała)

Let A be an $n \times n$ random matrix, whose entries have a uniformly bounded fourth moment. Then

$$
\mathbb{E} s_{1}(A) \leq C \sqrt{n}
$$

The first singular value

Theorem (Large deviations)

Let A be an $n \times n$ random matrix with subgaussian entries. Then for any $t>t_{0}$

$$
\mathbb{P}\left(s_{1}(A) \geq t \sqrt{n}\right) \leq e^{-c n t^{2}}
$$

Theorem (Concentration)

Let A be an $n \times n$ random matrix with bounded entries. Then for any $t>0$

$$
\mathbb{P}\left(\left|s_{1}(A)-\mathbb{M}\left(s_{1}(A)\right)\right| \geq t\right) \leq 4 e^{-t^{2} / 4}
$$

$s_{1}(A)$ is a convex function of A.

Quantitative problems: the median

The last singular value $\quad s_{n}(A)=\min _{x \in S^{n-1}}\|A x\|$ is the distance of A to the set of singular matrices.

Conjecture (von Neumann, Smale):
$s_{n}(A) \sim n^{-1 / 2}$ with probability close to 1 .

Quantitative problems: the median

The last singular value $\quad s_{n}(A)=\min _{x \in S^{n-1}}\|A x\|$ is the distance of A to the set of singular matrices.

Conjecture (von Neumann, Smale):

$s_{n}(A) \sim n^{-1 / 2}$ with probability close to 1 .

Theorem (Edelman, 1988)

Let A be an $n \times n$ Gaussian matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon n^{-1 / 2}\right) \sim \varepsilon .
$$

Quantitative problems: the median

The last singular value $\quad s_{n}(A)=\min _{x \in S^{n-1}}\|A x\|$ is the distance of A to the set of singular matrices.

Conjecture (von Neumann, Smale):

$s_{n}(A) \sim n^{-1 / 2}$ with probability close to 1 .

Theorem (Edelman, 1988)

Let A be an $n \times n$ Gaussian matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon n^{-1 / 2}\right) \sim \varepsilon .
$$

Theorem ($\mathrm{R}, 2005$)

Let A be an $n \times n$ matrix with i.i.d. subgaussian entries. Then for any $\varepsilon \geq c n^{-1 / 2}$

$$
\mathbb{P}\left(s_{n}(A) \leq C \varepsilon \cdot n^{-3 / 2}\right) \leq \varepsilon .
$$

Quantitative problems: the tail distribution

Theorem (Edelman, 1988)

Let A be an $n \times n$ Gaussian matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon \cdot n^{-1 / 2}\right) \sim \varepsilon .
$$

Conjecture (Spielman, Teng):
Let A be an $n \times n$ random ± 1 matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n} .
$$

Quantitative problems: the tail distribution

Theorem (Edelman, 1988)

Let A be an $n \times n$ Gaussian matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon \cdot n^{-1 / 2}\right) \sim \varepsilon .
$$

Conjecture (Spielman, Teng):
Let A be an $n \times n$ random ± 1 matrix. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n} .
$$

Theorem (Tao, Vu, 2005)

Let A be an $n \times n$ random ± 1 matrix. Then for any $\alpha>0$ there exists $\beta>0$ such that

$$
\mathbb{P}\left(s_{n}(A) \leq n^{-\beta}\right) \leq n^{-\alpha} .
$$

Quantitative problems: the results

Conjecture (von Neumann, Smale):
$s_{n}(A) \sim n^{-1 / 2}$ with probability close to 1.

Quantitative problems: the results

Conjecture (von Neumann, Smale):
$s_{n}(A) \sim n^{-1 / 2}$ with probability close to 1 .

Theorem (Median)

Let A be an $n \times n$ random matrix, whose entries have a uniformly bounded fourth moment. Then for any $\varepsilon>0$ there exists $\delta>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq \delta \cdot n^{-1 / 2}\right) \leq \varepsilon
$$

for all $n \geq n_{0}(\varepsilon)$.

Quantitative problems: the results

Definition

A random variable ξ is called subgaussian if for any $t>0$

$$
\mathbb{P}(|\xi|>t) \leq C e^{-c t^{2}}
$$

Examples

- Gaussian random variable
- Any bounded random variable (including random ± 1)

Therefore, $\mathbb{P}(\operatorname{det}(A)=0) \leq e^{-c n}$.

Quantitative problems: the results

Definition

A random variable ξ is called subgaussian if for any $t>0$

$$
\mathbb{P}(|\xi|>t) \leq C e^{-c t^{2}}
$$

Examples

- Gaussian random variable
- Any bounded random variable (including random ± 1)

Theorem (Tail distribution)

Let A be an $n \times n$ random matrix with i.i.d. subgaussian entries. Then for any $\varepsilon>0$

$$
\mathbb{P}\left(s_{n}(A) \leq c^{\prime} \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n} .
$$

Therefore, $\mathbb{P}(\operatorname{det}(A)=0) \leq e^{-c n}$.

Compressible and incompressible vectors

Assume that A is a random matrix with i.i.d. subgaussian entries.

Definition

A vector $x \in S^{n-1}$ is called compressible if it is close to a sparse vector in the ℓ_{2}-norm.

We decompose the sphere in two parts: $S^{n-1}=C o m p \cup$ Incomp .

- Compressible vectors: the norm is concentrated on a few coordinates
- Incompressible vectors: many coordinates of the order $n^{-1 / 2}$.

Invertibility for compressible vectors

Lemma (Litvak, Pajor, R', Tomczak-Jaegermann)

$$
\mathbb{P}\left(\inf _{x \in \text { Comp }}\|A x\|_{2} \leq c n^{1 / 2}\right) \leq e^{-c^{\prime} n} .
$$

This bound is much stronger than we need.

Invertibility for compressible vectors

Lemma (Litvak, Pajor, R', Tomczak-Jaegermann)

$$
\mathbb{P}\left(\inf _{x \in \text { Comp }}\|A x\|_{2} \leq c n^{1 / 2}\right) \leq e^{-c^{\prime} n}
$$

This bound is much stronger than we need.

Proof.

(1) Individual estimate: let $x \in S^{n-1}$ be any vector. Then

$$
\mathbb{P}\left(\|A x\|_{2} \leq c n^{1 / 2}\right) \leq e^{-c^{\prime} n} .
$$

(2) The set of sparse vectors admits a small ε-net.
(0) This ε-net is a 2ε-net for the set of compressible vectors
(1) Approximation.

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

Writing $A x=\sum_{k=1}^{n} x_{k} X_{k}$, we have

$$
\|A x\|_{2} \geq \max _{k=1, \ldots, n} \operatorname{dist}\left(A x, H_{k}\right)=\max _{k=1, \ldots, n}\left|x_{k}\right| \operatorname{dist}\left(X_{k}, H_{k}\right)
$$

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

Writing $A x=\sum_{k=1}^{n} x_{k} X_{k}$, we have

$$
\|A x\|_{2} \geq \max _{k=1, \ldots, n} \operatorname{dist}\left(A x, H_{k}\right)=\max _{k=1, \ldots, n}\left|x_{k}\right| \operatorname{dist}\left(X_{k}, H_{k}\right)
$$

Let $x \in$ Incomp. Then $\left|x_{k}\right| \sim n^{-1 / 2}$ for at least $c n$ indices k. Hence,

$$
\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon \text { for at least } c n \text { indices } k
$$

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

Writing $A x=\sum_{k=1}^{n} x_{k} X_{k}$, we have

$$
\|A x\|_{2} \geq \max _{k=1, \ldots, n} \operatorname{dist}\left(A x, H_{k}\right)=\max _{k=1, \ldots, n}\left|x_{k}\right| \operatorname{dist}\left(X_{k}, H_{k}\right)
$$

Let $x \in$ Incomp. Then $\left|x_{k}\right| \sim n^{-1 / 2}$ for at least $c n$ indices k. Hence,
$\exists x \in \operatorname{Incomp}\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon$ for at least $c n$ indices k

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

$\exists x \in \operatorname{Incomp}\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon$ for at least $c n$ indices k

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

$\exists x \in$ Incomp $\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon$ for at least $c n$ indices k
Denote $p:=\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right)$. Then $\mathbb{E}\left|\left\{k: \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right\}\right|=n p$.

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

$\exists x \in$ Incomp $\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon$ for at least $c n$ indices k
Denote $p:=\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right)$. Then $\mathbb{E}\left|\left\{k: \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right\}\right|=n p$. Therefore, by Chebychev's inequality,
$\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right.$ for at least $c n$ indices $\left.k\right) \leq \frac{n p}{n c}$.

Invertibility via distance

Lemma

Let X_{1}, \ldots, X_{n} denote the column vectors of A, and let H_{k} denote the span of all column vectors except the k-th. Then for every $\varepsilon>0$, one has

$$
\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<c \varepsilon n^{-1 / 2}\right) \leq C \mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right)
$$

Proof.

$\exists x \in$ Incomp $\|A x\|_{2}<c \varepsilon n^{-1 / 2} \Rightarrow \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon$ for at least $c n$ indices k
Denote $p:=\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right)$. Then $\mathbb{E}\left|\left\{k: \operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right\}\right|=n p$. Therefore, by Chebychev's inequality,
$\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right.$ for at least $c n$ indices $\left.k\right) \leq(1 / c) \mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\varepsilon\right)$

Random normal

$$
\mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right) \leq ?
$$

Random normal

$$
\mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right) \leq ?
$$

Let $X^{*}=:\left(a_{1}, \ldots, a_{n}\right)$ be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. We can choose X^{*} so that it depends only on X_{1}, \ldots, X_{n-1} and is independent of $X_{n}=\left(\xi_{1}, \ldots, \xi_{n}\right)$.

Random normal

$$
\mathbb{P}\left(\operatorname{dist}\left(X_{n}, H_{n}\right)<\varepsilon\right) \leq ?
$$

Let $X^{*}=:\left(a_{1}, \ldots, a_{n}\right)$ be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. We can choose X^{*} so that it depends only on X_{1}, \ldots, X_{n-1} and is independent of $X_{n}=\left(\xi_{1}, \ldots, \xi_{n}\right)$.

$$
\operatorname{dist}\left(X_{n}, H_{n}\right) \geq\left|\left\langle X^{*}, X_{n}\right\rangle\right| .
$$

We use the small ball probability estimates to bound

$$
\mathbb{P}\left(\left|\left\langle X^{*}, X_{n}\right\rangle\right|<\varepsilon\right)=\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) .
$$

Small ball probability

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) \leq ?
$$

Small ball probability

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) \leq ?
$$

Examples (Let ξ_{1}, \ldots, ξ_{n} be Bernoulli random variables.)

- Compressible vector: if $a=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0\right)$, then $P_{a}(\varepsilon)=1 / 2$.
- Incompressible vector: if $a=\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$, then $P_{a}(\varepsilon) \sim t+1 / \sqrt{n}$.

We have to treat compressible and incompressible normals separately.

Random normal is incompressible

Lemma

$$
\mathbb{P}\left(X^{*} \in \operatorname{Comp}\right) \leq e^{-c n}
$$

Proof.

Let A^{\prime} be the $(n-1) \times n$ random matrix with rows X_{1}, \ldots, X_{n}. By the definition of the random normal,

$$
A^{\prime} X^{*}=0 .
$$

Therefore, if $X^{*} \in \operatorname{Comp}$ then $\quad \inf _{x \in \operatorname{Comp}}\left\|A^{\prime} x\right\|_{2}=0$.

Random normal is incompressible

Lemma

$$
\mathbb{P}\left(X^{*} \in \text { Comp }\right) \leq e^{-c n} .
$$

Proof.

Let A^{\prime} be the $(n-1) \times n$ random matrix with rows X_{1}, \ldots, X_{n}. By the definition of the random normal,

$$
A^{\prime} X^{*}=0 .
$$

Therefore, if $X^{*} \in \operatorname{Comp}$ then $\quad \inf _{x \in \operatorname{Comp}}\left\|A^{\prime} x\right\|_{2}=0$.

Lemma

$$
\mathbb{P}\left(\inf _{x \in \text { Comp }}\left\|A^{\prime} x\right\|_{2} \leq c n^{1 / 2}\right) \leq e^{-c^{\prime} n} .
$$

Small ball probability for incompressible vectors

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) \leq ?
$$

Lemma (CLT bound)

Let $a \in S^{n-1}$ be an incompressible vector. Then for every $\varepsilon>0$

$$
P_{a}(\varepsilon) \leq C\left(\varepsilon+n^{-1 / 2}\right),
$$

Small ball probability for incompressible vectors

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) \leq ?
$$

Lemma (CLT bound)

Let $a \in S^{n-1}$ be an incompressible vector. Then for every $\varepsilon>0$

$$
P_{a}(\varepsilon) \leq C\left(\varepsilon+n^{-1 / 2}\right),
$$

Proof.

(1) An incompressible vector has at least $c n$ coordinates of the order $n^{-1 / 2}$.
(2) Condition on the other coordinates and apply Berry-Esseen Theorem:

$$
\mathbb{P}\left(\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|<\varepsilon\right) \leq \mathbb{P}(|\gamma|<\varepsilon)+C n^{-1 / 2} \leq C\left(\varepsilon+n^{-1 / 2}\right) .
$$

\square

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \mathbb{P}\left(\inf _{x \in \operatorname{Comp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)$

$$
+\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

(2) $\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right) \leq \mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon\right)$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

(2) $\mathbb{P}\left(\inf _{x \in \text { Incomp }}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right) \leq \mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon\right.$ and $X^{*} \in$ Comp $)$

$$
+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

(2) $\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

Polynomial bound

Theorem (Polynomial bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+c n^{-1 / 2} .
$$

Proof.

(1) $\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right)
$$

(2) $\mathbb{P}\left(\inf _{x \in \operatorname{Incomp}}\|A x\|_{2}<\varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}$

$$
+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

(3) $\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon\right.$ and $X^{*} \in$ Incomp $) \leq C\left(\varepsilon+n^{-1 / 2}\right)$.

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n} .
$$

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n} .
$$

Recall that $S^{n-1}=\operatorname{Comp} \cup$ Incomp. We proved that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n}
$$

Recall that $S^{n-1}=\operatorname{Comp} \cup$ Incomp. We proved that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

We decompose Incomp further into the set of typical and atypical vectors: Incomp $=$ Typ \cup Atyp .

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right) \\
& \leq \mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Atyp }\right)+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Typ }\right)
\end{aligned}
$$

Stratification of the sphere

Theorem (Exponential bound)

Let A be an $n \times n$ random matrix, with i.i.d. subgaussian entries. Then for any $\varepsilon>0$, such that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq \varepsilon+e^{-c n}
$$

Recall that $S^{n-1}=\operatorname{Comp} \cup$ Incomp. We proved that

$$
\mathbb{P}\left(s_{n}(A) \leq c \varepsilon \cdot n^{-1 / 2}\right) \leq e^{-c n}+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right)
$$

We decompose Incomp further into the set of typical and atypical vectors: Incomp $=$ Typ \cup Atyp .

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Incomp }\right) \\
& \leq \mathbb{P}\left(\quad X^{*} \in \text { Atyp }\right)+\mathbb{P}\left(\left|\left\langle X_{n}, X^{*}\right\rangle\right|<\varepsilon \text { and } X^{*} \in \text { Typ }\right) \\
& \leq e^{-c n} \\
& +C\left(\varepsilon+e^{-c n}\right)
\end{aligned}
$$

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_{1}, \ldots, ξ_{n} be i.i.d. subgaussian random variables.
Then for any $a \in$ Incomp and for any $\varepsilon>0$

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|<\varepsilon\right) \leq C\left(\varepsilon+\frac{1}{L C D(a)}\right)+C e^{-c n}
$$

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_{1}, \ldots, ξ_{n} be i.i.d. subgaussian random variables.
Then for any $a \in$ Incomp and for any $\varepsilon>0$

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|<\varepsilon\right) \leq C\left(\varepsilon+\frac{1}{L C D(a)}\right)+C e^{-c n}
$$

- Typical vectors: $\mathrm{LCD}>e^{c n} \Rightarrow P_{a}(\varepsilon) \leq C \varepsilon+C e^{-c n}$
- Atypical vectors: $\mathrm{LCD} \leq e^{c n}$

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_{1}, \ldots, ξ_{n} be i.i.d. subgaussian random variables.
Then for any $a \in$ Incomp and for any $\varepsilon>0$

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|<\varepsilon\right) \leq C\left(\varepsilon+\frac{1}{\operatorname{LCD}(a)}\right)+C e^{-c n} .
$$

- Typical vectors: $\mathrm{LCD}>e^{c n} \Rightarrow P_{a}(\varepsilon) \leq C \varepsilon+C e^{-c n}$
- Atypical vectors: $\mathrm{LCD} \leq e^{c n}$

Examples (Atypical vectors)

$$
\begin{array}{ll}
\text { - } a=\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right) & \operatorname{LCD}(a)=\sqrt{n} \\
\text { - } a=\left(\frac{1+1 / n}{\sqrt{n}}, \frac{1+2 / n}{\sqrt{n}}, \ldots, \frac{1+n / n}{\sqrt{n}}\right) & \operatorname{LCD}(a)=n^{3 / 2}
\end{array}
$$

Stratification by the LCD

Theorem (Small ball probability via the LCD)

Let ξ_{1}, \ldots, ξ_{n} be i.i.d. subgaussian random variables.
Then for any $a \in$ Incomp and for any $\varepsilon>0$

$$
P_{a}(\varepsilon):=\mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|<\varepsilon\right) \leq C\left(\varepsilon+\frac{1}{L C D(a)}\right)+C e^{-c n} .
$$

- Typical vectors: $\mathrm{LCD}>e^{c n} \Rightarrow P_{a}(\varepsilon) \leq C \varepsilon+C e^{-c n}$
- Atypical vectors: $\mathrm{LCD} \leq e^{c n}$

Theorem (Random normal is typical)

Let X_{1}, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^{*} be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. Then

$$
\mathbb{P}\left(L C D\left(X^{*}\right)<e^{c n}\right) \leq e^{-c^{\prime} n}
$$

Random normal is typical

Theorem (Random normal is typical)

Let X_{1}, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^{*} be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. Then

$$
\mathbb{P}\left(L C D\left(X^{*}\right)<e^{c n}\right) \leq e^{-c^{\prime} n} .
$$

Random normal is typical

Theorem (Random normal is typical)

Let X_{1}, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^{*} be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. Then

$$
\mathbb{P}\left(L C D\left(X^{*}\right)<e^{c n}\right) \leq e^{-c^{\prime} n} .
$$

Proof.

We further partition the set Atyp into the level sets according to the values of the LCD:

$$
S_{D}:=\{x \in \text { Atyp }: D \leq L C D(x)<2 D\} .
$$

Here $D=2^{j}$, where $j=1, \ldots, c n$.

Random normal is typical

Theorem (Random normal is typical)

Let X_{1}, \ldots, X_{n-1} be vectors with i.i.d. subgaussian coordinates and let X^{*} be any unit vector orthogonal to X_{1}, \ldots, X_{n-1}. Then

$$
\mathbb{P}\left(L C D\left(X^{*}\right)<e^{c n}\right) \leq e^{-c^{\prime} n} .
$$

Proof.

We further partition the set Atyp into the level sets according to the values of the LCD:

$$
S_{D}:=\{x \in \text { Atyp }: D \leq L C D(x)<2 D\} .
$$

Here $D=2^{j}$, where $j=1, \ldots$, cn.
On each set S_{D} it is enough to prove that

$$
\mathbb{P}\left(X^{*} \in S_{D}\right) \leq e^{-n} .
$$

Then taking the union bound over the level sets S_{D} completes the proof.

Norm minimization via the LCD

Lemma

Let $S_{D} \subset S^{n-1}$ be the set of all incompressible points such that
$D \leq L C D(x)<2 D$. Let X^{*} be a random normal. Then

$$
\mathbb{P}\left(X^{*} \in S_{D}\right) \leq e^{-n}
$$

- Individual probability estimate via LCD.

$$
\mathbb{P}\left(\left\|X^{*}-y\right\| \text { is small }\right) \text { is exponentially small }
$$

for any fixed $y \in S_{D}$.

- Estimate of the cardinality of the ε-net.
- Approximation.

The volumetric estimate of the cardinality of the ε-net is not good enough!

The size of an ε-net

Lemma

Let $W_{D} \subset S^{n-1}$ be the set of vectors for which $\operatorname{LCD}(x) \leq D$. Then there exists a (α / D)-net in W_{D} in the Euclidean metric, of cardinality at most

$$
\left(C D / \alpha^{c^{\prime}}\right)^{n} \quad \text { for some } c^{\prime}<1 .
$$

The size of an ε-net

Lemma

Let $W_{D} \subset S^{n-1}$ be the set of vectors for which $L C D(x) \leq D$. Then there exists a (α / D)-net in W_{D} in the Euclidean metric, of cardinality at most

$$
\left(C D / \alpha^{c^{\prime}}\right)^{n} \quad \text { for some } c^{\prime}<1 .
$$

Volumetric estimate:

$$
\mid t \text {-net } \mid \leq(3 / t)^{n} \text {. }
$$

We gain α^{c} instead of α.

The size of an ε-net

Lemma

Let $W_{D} \subset S^{n-1}$ be the set of vectors for which $L C D(x) \leq D$. Then there exists a (α / D)-net in W_{D} in the Euclidean metric, of cardinality at most

$$
\left(C D / \alpha^{c^{\prime}}\right)^{n} \text { for some } c^{\prime}<1 .
$$

Proof.

- For any $x \in W_{D}$, the vector $n^{1 / 2} \cdot L C D(x) \cdot x$ has $c n$ coordinates α-close to the integers.

The size of an ε-net

Lemma

Let $W_{D} \subset S^{n-1}$ be the set of vectors for which $L C D(x) \leq D$. Then there exists $a(\alpha / D)$-net in W_{D} in the Euclidean metric, of cardinality at most

$$
\left(C D / \alpha^{c^{\prime}}\right)^{n} \text { for some } c^{\prime}<1
$$

Proof.

- For any $x \in W_{D}$, the vector $n^{1 / 2} \cdot L C D(x) \cdot x$ has $c n$ coordinates α-close to the integers.
- The restrictions of these vectors to such coordinates admit a (α / D)-net of cardinality $(C D)^{c n}$.

The size of an ε-net

Lemma

Let $W_{D} \subset S^{n-1}$ be the set of vectors for which $L C D(x) \leq D$. Then there exists $a(\alpha / D)$-net in W_{D} in the Euclidean metric, of cardinality at most

$$
\left(C D / \alpha^{c^{\prime}}\right)^{n} \text { for some } c^{\prime}<1
$$

Proof.

- For any $x \in W_{D}$, the vector $n^{1 / 2} \cdot L C D(x) \cdot x$ has $c n$ coordinates α-close to the integers.
- The restrictions of these vectors to such coordinates admit a (α / D)-net of cardinality $(C D)^{c n}$.
- On the rest of the coordinates we use the volumetric estimate: $(C D / \alpha)^{(1-c) n}$.

Norm minimization via the LCD

```
\varepsilon-net argument
```


Lemma

Let $S_{D} \subset S^{n-1}$ be the set of all incompressible points such that $D \leq L C D(x)<2 D$. Then

$$
\mathbb{P}\left(X^{*} \in S_{D}\right) \leq e^{-n} .
$$

Norm minimization via the LCD

ε-net argument

Lemma

Let $S_{D} \subset S^{n-1}$ be the set of all incompressible points such that
$D \leq L C D(x)<2 D$. Then

$$
\mathbb{P}\left(X^{*} \in S_{D}\right) \leq e^{-n} .
$$

Proof.

- Let $x \in S^{n-1}$ be an incompressible vector such that $L C D(x)>D$. Then for any $y \in S_{D}$

$$
\mathbb{P}\left(\left\|X^{*}-y\right\|<\alpha / D\right) \leq(C \alpha / D)^{n-1} .
$$

- There exists a (α / D)-net \mathcal{N} in S_{D} in the Euclidean metric, of cardinality at most $\left(C D / \alpha^{c}\right)^{n}$ for some $c<1$.

Norm minimization via the LCD

ε-net argument

Lemma

Let $S_{D} \subset S^{n-1}$ be the set of all incompressible points such that
$D \leq L C D(x)<2 D$. Then

$$
\mathbb{P}\left(X^{*} \in S_{D}\right) \leq e^{-n} .
$$

Proof.

- Let $x \in S^{n-1}$ be an incompressible vector such that $L C D(x)>D$. Then for any $y \in S_{D}$

$$
\mathbb{P}\left(\left\|X^{*}-y\right\|<\alpha / D\right) \leq(C \alpha / D)^{n-1} .
$$

- There exists a (α / D)-net \mathcal{N} in S_{D} in the Euclidean metric, of cardinality at most $\left(C D / \alpha^{c}\right)^{n}$ for some $c<1$.
- $\mathbb{P}\left(\exists x \in \mathcal{N}\left\|A^{\prime} x\right\|_{2}<\alpha / D\right) \leq\left(C \alpha^{1-c}\right)^{n} \leq e^{-n}$.

