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Introduction Definition

Motivation

Definition
A short exact sequence is a diagram like

0— -y 4 . x_9.7__ .9

where Y, Z are Banach spaces and the morphisms are such that
the image of each arrow is the kernel of the next one. We say it is
trivial if j(Y) is complemented in X.

Examples
0 ()] goo — KOO/CO — 0
0 (o)) co D (goo/Co) —— loo/cg —— 0
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Introduction Definition

Motivation

» Theorem (Kalton-Peck, 1979)

For 1 < p < o0, there exists a non trivial exact sequence

0 €p Zp tp 0
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Introduction Definition

Motivation

» Theorem (Kalton-Peck, 1979)

For 1 < p < o0, there exists a non trivial exact sequence

0 €p Zp tp 0

» The homogeneous map 2 : {, — & defined like
Q(x) = >_ xilog ( i ) e; satisfies:

lIxle,
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Introduction Definition

Motivation

» Theorem (Kalton-Peck, 1979)

For 1 < p < o0, there exists a non trivial exact sequence

0 €p Zp tp 0

» The homogeneous map 2 : {, — & defined like
Q(x) = >_ xilog ( i ) e; satisfies:

lIxle,

There exists a constant C such that for every x, y € £, we have

Qx +y) = Qx) - Qy) € 4y
1920x +y) = Q(x) = Q2y)lle, < ClIxlle, + llylle,)
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Introduction Definition

Motivation

> Z, is defined as the space of all (x,y) € ¢, & £, for which the
quasi-norm

106 = lx = Q2y)lle, + llylle, < o0
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Introduction Definition

Motivation

> Z, is defined as the space of all (x,y) € ¢, & £, for which the
quasi-norm

106 = lx = Q2y)lle, + llylle, < o0

» Theorem (Kalton,1978)
Let

0 Y X V4 0

be an exact sequence. If Y, Z are B-convex Banach spaces then X
is isomorphic to a B-convex Banach space.
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Introduction Definition

Motivation

» Qur aim is to produce a non trivial exact sequence

0 5, o, S 0

for 1 < p < o0.
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Introduction Definition

Motivation

» Qur aim is to produce a non trivial exact sequence

0 5, o, S 0

for 1 < p < o0.

> A natural candidate for Q2 : S, — & is, for a given
T=>si(T)e®f,

QT)=> si(T)log <”5T(QP> & ®f
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Interpolation
Construction Duality
Non triviality

Complex interpolation

Given (Spy, Spy) and S = {z € C: 0 < Re(z) < 1}, we consider
holomorphic functions F : S — Sy + Sp, such that

R>t— F(+it) €Sy

is continuous and bounded for j =0, 1.
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Interpolation
Construction Duality
Non triviality

Complex interpolation

Given (Spy, Spy) and S = {z € C: 0 < Re(z) < 1}, we consider
holomorphic functions F : S — Sy + Sp, such that

R>t— F(+it) €Sy

is continuous and bounded for j =0, 1.
F(Spys Sp;) is the set of all functions defined above with the norm

Il = ma (sup IFG + i), )
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Interpolation
Construction Duality
Non triviality

Complex interpolation

Given (Spy, Spy) and S = {z € C: 0 < Re(z) < 1}, we consider
holomorphic functions F : S — Sy + Sp, such that
R>t— F(+it) €Sy

is continuous and bounded for j =0, 1.
F(Spys Sp;) is the set of all functions defined above with the norm

Il = ma (sup IFG + i), )
(Spo>Spr)o ={T €Spy +Sp, : T =F(0),F € F(Spy: Sp1) }

with norm

T|:== inf _|F
ITl=nt Il
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Interpolation
Construction Duality
Non triviality

Using interpolation techniques
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Interpolation
Construction Duality
Non triviality

Using interpolation techniques

1.
dp : f(SPmSPl) - (SP078P1)9 = Sp
1_1-6 , 6
for o =" T
2. If B is an homogeneous selector for dg then 0, B is

“quasi-linear”.
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Interpolation
Construction Duality
Non triviality

Using interpolation techniques

dp : f(SPmSPl) - (SP078P1)9 = Sp

for % =16, 0

Po pL
2. If B is an homogeneous selector for dg then 0, B is
“quasi-linear” .

3. For T =5 5i(T)e; @ f;, we define

B(T)(2) = si(T)" % *i)e o f
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Interpolation
Construction Duality
Non triviality

Using interpolation techniques

dp : f(SPmSPl) - (SpoaSm)@ = Sp

1_1-6, 6
for P Po + p1-
2. If B is an homogeneous selector for dg then 0, B is
“quasi-linear” .

3. For T =5 5i(T)e; @ f;, we define

B(T)(z) = Y. sl et

N

BT =p (- 2) Ss(Ttog (A) e
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Interpolation
Construction Duality
Non triviality

Constructing the exact sequence

1. Define ©, as the space of all (S, T) € S, @ S,, such that

IS = Q(T)lls, + I Tlls, < o0
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Interpolation
Construction Duality
Non triviality

Constructing the exact sequence

1. Define ©, as the space of all (S, T) € S, @ S,, such that

IS = Q(T)lls, + I Tlls, < o0

So, we have

0 Sy 0, Sp 0
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Interpolation
Construction Duality
Non triviality

Constructing the exact sequence

1. Define ©, as the space of all (S, T) € S, @ S,, such that

IS = Q(T)lls, + I Tlls, < o0

So, we have

0 Sy 0, Sp 0

What else can be said about ©,?
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Interpolation
Construction Duality
Non triviality

©, is a B(H)-module
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Interpolation
Construction Duality
Non triviality

©, is a B(H)-module

On ©,, there is a natural structure of B(H)-module:
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Interpolation

Construction Duality
Non triviality

©, is a B(H)-module

On ©,, there is a natural structure of B(H)-module:

There exists C > 0 such that for every A;/A' € B(H) and T € S,

we have

IQATA) — AQ(T)A'lls, < ClIAlg) I Tlls, 1A 5(H)
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Interpolation
Construction Duality
Non triviality

Duality

Theorem
Given
0 Sp ©p Sp 0=Q,
0 Sq O4 Sq 0=-Qq
we have that (Q,)" = —Qq forp 1+ ¢ 1 =1
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Interpolation
Construction Duality
Non triviality

Duality

Theorem

Given
0 Sp ©p Sp 0=Q,
0 Sq O4 Sq 0=-Qq

we have that (Q,)" = —Qq forp 1+ ¢ 1 =1

Corollary
(©,)* is isomorphic to ©4 for p~t + g1 =1 via “trace” duality.
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Interpolation
Construction Duality
Non triviality

Non triviality

Theorem
The exact sequence

Il
2
T

is not trivial for 1 < p < oo
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Non triviality

Theorem
The exact sequence

Il
2
T

is not trivial for 1 < p < oo
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Interpolation
Construction Duality
Non triviality

Non triviality

Theorem
The exact sequence

Il
2
T

is not trivial for 1 < p < oo

» We may assume, by duality, 1 < p < 2.
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Interpolation
Construction Duality
Non triviality

Non triviality

Theorem
The exact sequence

Il
2
T

is not trivial for 1 < p < oo

» We may assume, by duality, 1 < p < 2.
» For each N € N, consider (0,¢; ® f;i) € ©p, i =1,...,N.
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)

> LS =E (TN, rier @ )] + | ZHy rier @ fi])
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)

> LS =E (TN, rier @ )] + | ZHy rier @ fi])

> LS = E (log NP o ey @ £l + | Ly ries @ £
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)

> LS =E (TN, rier @ )] + | ZHy rier @ fi])
> LS = E (log NP o ey @ £l + | Ly ries @ £
> LS = (log NV/P) NV/P 4 N1/P
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)

v

LS =B (TN, e @ £l + | S, rier < £ill)
LS = E (log N7 || I, riey @ | + || oLy e £
LS = (log N¥/P) N1/P 4 N1/P

v

v

v

1
RS = (S, e A7) " = wv/e
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Interpolation
Construction Duality
Non triviality

Non triviality
O, has not type p

1/p
Assume E[| I, 10, ¢ @ £)]| < € (L, 110, & @ £)]?)

v

LS =B (TN, e @ £l + | S, rier < £ill)
LS = E (log N7 || I, riey @ | + || oLy e £
LS = (log N¥/P) N1/P 4 N1/P

v

v

v

1/
RS = (S ller @ fillP) " = ni/e
logNY/P +1<C

v
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More exact sequences

Definition '
d"S, = {(Tl, T T =6S"F),Fer,i= 1...n} endowed
with the norm inf ||F|| £.
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More exact sequences

Definition '
d"S, = {(Tl, T T =6S"F),Fer,i= 1...n} endowed
with the norm inf ||F|| £.

» For n=1, d'S, = S,.
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More exact sequences

Definition '
d"S, = {(Tl, T T =6S"F),Fer,i= 1...n} endowed
with the norm inf ||F|| £.

» For n=1, d'S, = S,.

» For n=2, d?S, = O,.
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More exact sequences

Definition '
d"S, = {(Tl, T T =6S"F),Fer,i= 1...n} endowed
with the norm inf ||F|| £.

» For n=1, d'S, = S,.

» For n=2, d?S, = O,.
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More exact sequences

Definition '
d"S, = {(Tl, T T =6S"F),Fer,i= 1...n} endowed
with the norm inf ||F|| £.

» For n=1, d'S, = S,.

» For n=2, d?S, = O,.

Theorem
For every n € N and every choice n = ng + ny there exists a non
trivial twisted sum of B(H)-modules:

0 —— d™S, —— d"S, —— d"S, —— 0
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Sketch of the proof

The case n=3

0 —— d%S, —— d3S, d's, 0
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Sketch of the proof

The case n=3

0 —— d2S, —— d°S, dtS, 0
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Sketch of the proof

The case n=3

s, = d*

0 —— d%S, —— d°

0 —— dlSp — > d?

Sp d's, 0

I
Sp d's, 0

Jesiis Sudrez Twisting Schatten classes



	Introduction
	Definition
	Motivation

	Construction
	Interpolation
	Duality
	Non triviality

	More...

