Sets of constant height and PPT states in quantum information theory

Stanislaw Szarek
Case Western Reserve/Paris 6
Samos, June 27, 2007
Collaborators: I. Bengtsson, K. Życzkowski
J. Phys. A (2006)
http://www.case.edu/artsci/math/szarek/

Quantum information theory

(from the geometric functional analysis angle)
A complex Hilbert space \mathcal{H}, usually \mathbb{C}^{d}, and the C^{*}-algebra $\mathcal{B}(\mathcal{H})$

The real space $\mathcal{M}_{d}^{s a}$ of $d \times d$ Hermitian matrices
The positive semi-definite cone $\mathcal{P S D} \subset \mathcal{M}_{d}^{s a}$
The base of $\mathcal{P S D}$ consisting of density matrices: $\mathcal{M}_{d}^{\text {tot }}:=\mathcal{P S D} \cap\{\operatorname{tr}(\cdot)=1\}\left(\sim\right.$ the states of $\left.\mathcal{B}\left(\mathbb{C}^{d}\right)\right)$

Other cones, their bases (usually convex subsets of $\mathcal{M}_{d}^{\text {tot }}$) and related norms on \mathcal{M}_{d}

Completely positive maps $\Phi: \mathcal{B}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ etc.

Interesting convex subsets of $\mathcal{M}^{\text {tot }}(\mathcal{H})$

Context: $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \otimes \mathcal{H}_{m}$
Important cases: $m=2$ and m "moderately large"
Separable states (or matrices) $\mathcal{M}^{\text {sep }}(\mathcal{H})$ PPT (positive partial transpose) states $\mathcal{M}^{\mathrm{PPT}}(\mathcal{H})$ Euclidean (Hilbert-Schmidt) balls, other ellipsoids...

Precise relations between these are unclear, particularly for large m (even if all \mathcal{H}_{j} 's are equal to \mathbb{C}^{2})

For $m=2$, these sets of matrices are related via the Choi-Jamiołkowski isomorphism to classes of ${ }^{*}$ invariant maps $\mathcal{B}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ (talk of E . Werner)

Definitions

$\mathcal{S E P}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right):=\operatorname{conv}\left\{\mathcal{P S D}\left(\mathcal{H}_{1}\right) \otimes \mathcal{P S D}\left(\mathcal{H}_{2}\right)\right\}$

$$
\begin{aligned}
\mathcal{M}^{\operatorname{sep}}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) & :=\mathcal{S E P} \cap\{\operatorname{tr}(\cdot)=1\} \\
& =\operatorname{conv}\left\{\rho_{1} \otimes \rho_{2}: \rho_{j} \in \mathcal{M}^{\mathrm{tot}}\left(\mathcal{H}_{j}\right)\right\}
\end{aligned}
$$

$\mathcal{P} \mathcal{P} \mathcal{T}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right):=\mathcal{P S D} \cap\left\{\rho: T_{1}(\rho) \in \mathcal{P S D}\right\}$
$\mathcal{M}^{\mathrm{PPT}}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right):=\mathcal{P} \mathcal{P} \mathcal{T} \cap\{\operatorname{tr}(\cdot)=1\}$

Notation: $d_{1}:=\operatorname{dim} \mathcal{H}_{1}, d_{2}:=\operatorname{dim} \mathcal{H}_{2}$
$d:=\operatorname{dim}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)=d_{1} d_{2}$

Links to geometry of Banach spaces

$\operatorname{conv}\left(-\mathcal{M}^{\text {tot }}(\mathcal{H}) \cup \mathcal{M}^{\text {tot }}(\mathcal{H})\right)=$ the unit ball in $\left(\mathcal{M}_{d}^{s a},\|\cdot\|_{1}\right)$, where $\|\cdot\|_{1}$ is the trace class norm
$\operatorname{conv}\left(-\mathcal{M}^{\operatorname{sep}}(\mathcal{H}) \cup \mathcal{M}^{\text {sep }}(\mathcal{H})\right)=$ the unit ball in the projective tensor product of normed spaces $\left(\mathcal{M}_{d_{1}}^{s a},\|\cdot\|_{1}\right)$ and $\left(\mathcal{M}_{d_{2}}^{s a},\|\cdot\|_{1}\right)$

Major role is played by duality considerations

What is partial transpose?
$\left(\rho_{1} \otimes \rho_{2}\right)^{T}=\rho_{1}^{T} \otimes \rho_{2}^{T}$
$T_{1}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1}^{T} \otimes \rho_{2}, \quad T_{2}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1} \otimes \rho_{2}^{T}$
Note: $\left(T_{1}(\rho)\right)^{T}=T_{2}(\rho)$, hence

$$
T_{1}(\rho) \in \mathcal{P S D} \Leftrightarrow T_{2}(\rho) \in \mathcal{P S D}
$$

Also:
$\rho_{1} \otimes \rho_{2} \in \mathcal{P S D} \Leftrightarrow \rho_{1}, \rho_{2} \in \mathcal{P S D} \Leftrightarrow \rho_{1}^{T}, \rho_{2}^{T} \in \mathcal{P S D}$
Thus:

$$
\mathcal{S E P} \subset \mathcal{P P} \mathcal{T} \subset \mathcal{P S D}
$$

Partial transpose via block matrices

If $\operatorname{dim} \mathcal{H}_{1}=2$, then
$\mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \ni \rho \leftrightarrow\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
with $A, B, C, D \in \mathcal{B}\left(\mathcal{H}_{2}\right)$

$$
T_{1}(\rho)=\left[\begin{array}{cc}
A & C \\
B & D
\end{array}\right] \quad T_{2}(\rho)=\left[\begin{array}{cc}
A^{T} & B^{T} \\
C^{T} & D^{T}
\end{array}\right]
$$

A simple example of a non-PPT state

$$
\rho=\frac{1}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad \text { Eigenvalues: } 1,0,0,0
$$

$$
\rho^{\prime}:=T_{1}(\rho)=\frac{1}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Eigenvalues: $\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}$
\exists non-PPT state $\Leftrightarrow A \rightarrow A^{T}$ is not completely positive

Størmer-Woronowicz theorem

Assume $\min \left(d_{1}, d_{2}\right)>1$
$\mathcal{S E P}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \subset \mathcal{P P} \mathcal{T}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \varsubsetneqq \mathcal{P S D}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

First inclusion?

Equality iff $d_{1}+d_{2}<6$

Otoh, if $d_{1}=d_{2} \rightarrow \infty$, then (Aubrun-S., 2006)

$$
\left(\frac{\operatorname{vol} \mathcal{M}^{\text {sep }}}{\operatorname{vol} \mathcal{M}^{\mathrm{PPT}}}\right)^{1 /\left(d^{2}-1\right)} \sim\left(\frac{\mathrm{vol} \mathcal{M}^{\text {sep }}}{\mathrm{vol} \mathcal{M}^{\text {tot }}}\right)^{1 /\left(d^{2}-1\right)} \sim d^{-1 / 4}
$$

$P P T$ states and their role

$\mathcal{M}^{\text {sep }} \rightarrow$ classical behavior
$\mathcal{M}^{\text {PPT }} \rightarrow$???

Open problem: Can PPT states exhibit nonclassical (EPR) correlations?

An easier (to state) question:
Is $\sup _{d_{1}, d_{2}>1}\left(\frac{\mathrm{vol} \mathcal{M}_{d}^{\text {PT }}}{\mathrm{vol} \mathcal{M}_{d}^{\text {tot }}}\right)^{1 /\left(d^{2}-1\right)}<1$?
We know from the previous slide that $\inf (\cdot)>0$

The structure of $P P T$

$\mathcal{P P} \mathcal{T}=\mathcal{P S D} \cap T_{1}(\mathcal{P S D}), \mathcal{M}^{\text {PPT }}=\mathcal{M}^{\text {tot }} \cap T_{1}\left(\mathcal{M}^{\text {tot }}\right)$
Known (Spingarn??):
$K \subset \mathbb{R}^{n}$ with centroid at $0 \Rightarrow \operatorname{vol}(-K \cap K) \geq 2^{-n}$ vol K

Probably not optimal, but exponential decrease may occur (simplex)

Here: a specific set K, a "partial" reflection T_{1} with respect to $\rho_{*}=d^{-1} \mathrm{Id}$, which plays the role of the origin

Sets of constant height

$K \subset \mathbb{R}^{n}$ a convex body; r the inradius of K
K is said to be of constant height if

1. every point of ∂K is contained in a face tangent to the inscribed ball

This is equivalent to 2. $\frac{r \mathrm{vol}_{n-1} \partial K}{\mathrm{vol}_{n} K}=n$ (\leq always)
If the insphere of K is the unit ball, this is further equivalent to 3. $K=L^{\circ}$, where $L=\bar{L} \subset S^{n-1}$ and conv L contains the origin in its interior

Why 1. \Leftrightarrow 2. \Leftrightarrow 3.?

1. \Leftrightarrow 2. obvious for polytopes: K decomposes into a union of pyramids of height r

The general case: approximation or integral formulae; both based on the fact that K has unique tangent a.e. on ∂K

1. \Leftrightarrow 3. faces tangent to the unit ball \leftrightarrow points in $K^{\circ} \cap S^{n-1}$

A few simple observations

(i) $\mathcal{M}_{d}^{\text {tot }}$ is of constant height (center $=\rho_{*}$)
(ii) Intersection of two sets of constant height with the same inscribed ball is of constant height
(iii) $\mathcal{M}_{d}^{\text {PPT }}=\mathcal{M}^{\text {tot }} \cap T_{1}\left(\mathcal{M}^{\text {tot }}\right)$ is of constant height

Why (i) and (ii)?

(i) $\mathcal{M}_{d}^{\text {tot }}$ is of constant height

Center $=\rho_{*}$, inradius $=(d(d-1))^{-1 / 2}$
Maximal faces: matrices diagonalizable in a fixed basis with specified eigenvalue equal to 0 .
$d^{2}-2$-dimensional boundary of $\mathcal{M}_{d}^{\text {tot }}$ is a union of $d-2$-dimensional simplices tangent to the inscribed ball at their centroids
(ii) If $K_{1}=L_{1}^{\circ}$ and $K_{2}=L_{2}^{\circ}$, then $K_{1} \cap K_{2}=\left(L_{1} \cup L_{2}\right)^{\circ}$ and $L_{1}, L_{2} \subset S^{n-1} \Rightarrow L_{1} \cup L_{2} \subset S^{n-1}$

What about sets of separable states?

For 2×2 and 2×3 states, the set $\mathcal{M}^{\text {sep }}$ is of constant height (because it equals $\mathcal{M}^{\text {PPT }}$)

What about higher dimensions?

A corollary of $\mathcal{M}^{\mathrm{PPT}}$ being of

 constant heightConsider two models of selecting random states mixed two qubit states:

- $\rho_{1} \in \mathcal{M}^{\text {tot }}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$
- $\rho_{2} \in \partial \mathcal{M}^{\text {tot }}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$
distributed uniformly according to the Lebesgue (resp., surface) measure. Then
$\mathbb{P}\left(\rho_{1}\right.$ is separable $)=2 \cdot \mathbb{P}\left(\rho_{2}\right.$ is separable $)$
This phenomenon was earlier observed experimentally by Slater (2005).

$$
\begin{gathered}
\text { Why } p_{1}=2 p_{2} ? \\
p_{1}=\frac{\mathrm{vol}_{n} \mathcal{M}^{\mathrm{PPT}}}{\mathrm{vol}_{n} \mathcal{M}^{\mathrm{tot}}}, \quad p_{2}=\frac{\mathrm{vol}_{n-1}\left(\partial \mathcal{M}^{\mathrm{tot}} \cap \mathcal{M}^{\mathrm{PPT}}\right)}{\mathrm{vol}_{n-1} \partial \mathcal{M}^{\mathrm{tot}}}
\end{gathered}
$$

Hence

$$
\begin{aligned}
\frac{p_{1}}{p_{2}} & =\frac{\mathrm{vol}_{n-1} \partial \mathcal{M}^{\mathrm{PPT}}}{\mathrm{vol}_{n-1} \partial \mathcal{M}^{\mathrm{PPT}}} \cdot \frac{\mathrm{vol}_{n} \mathcal{M}^{\mathrm{PPT}}}{\mathrm{vol}_{n} \mathcal{M}^{\mathrm{tot}}} \cdot \frac{\mathrm{vol}_{n-1} \partial \mathcal{M}^{\mathrm{tot}}}{\mathrm{vol}_{n-1}\left(\partial \mathcal{M}^{\mathrm{tot}} \cap \mathcal{M}^{\mathrm{PPT}}\right)} \\
& =\frac{\mathrm{vol}_{n-1} \partial \mathcal{M}^{\mathrm{PPT}}}{\mathrm{vol}_{n-1}\left(\partial \mathcal{M}^{\mathrm{tot}} \cap \mathcal{M}^{\mathrm{PPT}}\right)}
\end{aligned}
$$

as $\mathcal{M}^{\mathrm{PPT}}$ and $\mathcal{M}^{\text {tot }}$ are both of constant height of the same dimension and with the same inradius.

Since T_{1} is an involution, half of the boundary of $\mathcal{M}^{\mathrm{PPT}}$ comes from the boundary of $\mathcal{M}^{\text {tot }}$ and so the ratio must be 2 . (The measure of the "corners" is 0 .)

