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Plan of the talk

• Subgaussian embeddings/projections: Shahar Mendelson and NT-J

• Embeddings of convex bodies in `N∞ and ε nets: Yoram Gordon, Sasha
Litvak, Alain Pajor and NT-J

• Very economical“almost isometric” embeddings of `n2 into `N∞
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Notation

Rn, Rk, (ei)i the unit vector basis, | · | the Euclidean norm, Sn−1 – sphere

(gi), (gij) be independent N(0, 1) r.v.

Fix n, k ≥ 1; define
Γ : Rn → Rk

by

Γt =
k∑
i=1

n∑
j=1

gijtjei

for t = (tj).

In other words, Γ =
[
gij
]

is k × n matrix
Γej is the jth column of Γ, for j = 1, . . . , n.
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Gaussian theorem

Theorem 1. There is c > 0 s.t.: Let T ⊂ Sn−1 and E = (Rk, ‖ ‖E)
satisfy ‖x‖E ≤ |x|. Fix ε > 0 and assume that

E sup
t∈T

|
n∑
i=1

giti| ≤ c εE‖
k∑
i=1

giei‖E.

With probability close to 1, Γ satisfies, for every t ∈ T ,

(1− ε)E‖
k∑
i=1

giei‖E ≤ ‖Γt‖E ≤ (1 + ε)E‖
k∑
i=1

giei‖E.
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Special cases
Γ : Rn → Rk. If

`∗(T ) := E sup
t∈T

|
n∑
i=1

giti| ≤ c εE‖
k∑
i=1

giei‖E =: c ε `(E)

then
(1− ε)`(E) ≤ ‖Γt‖E ≤ (1 + ε)`(E) for t ∈ T ⊂ Sn−1.

• n ≤ k, T = Sn−1: Gaussian Dvoretzky-type embedding of `n2 into E
Condition

√
n ≤ c ε`(E) appears in the familiar formulation going back to

Milman, around 1970

• n ≥ k, Gaussian projection; if E = (Rk, | · |) = `k2 and T ⊂ Sn−1 satisfies
E supt∈T |

∑n
i=1 giti| ≤ c ε

√
k, then Γ is almost an isometry on T ;

Johnson-Lindenstrauss Lemma: if log |T | ≤ c′ε2k then Γ provides an
“almost distance-preserv.” mapping of T onto a subset of `k2.
Generalized to any normed space E.
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Gaussian theorem, final comments

Theorem 1 easily follows (by a known argument) from the Gaussian min-max
theorem by Y. Gordon.

The present formulation was proposed in a recent paper by G. Schechtman
(who gave a proof by majorizing measures approach).

A yet another proof by G. Pisier, based on his Gaussian measure
concentration theorem.

All three approaches use in an essential way that Γ is a Gaussian operator.

We use the concentration of a random vector ‖Γt‖E around its mean to
prove an isomorphic analog of Theorem 1, where the Gaussian operator is
replaced by an arbitrary subgaussian operator, under a cotype assumption
on the space E.
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Subgaussian theorem; notation

The ψ2 norm of a random variable ξ:
‖ξ‖ψ2 = inf

{
u > 0 : E exp

(
|ξ|2/u2

)
≤ 2
}
.

µ a symmetric measure on Rn, isotropic and L-subgaussian if:
letting X ∈ Rn be a random vector distributed according to µ

E 〈X, t〉2 = |t|2 and ‖ 〈X, t〉 ‖ψ2 ≤ L|t|, for t ∈ Rn.

(a subgaussian decay of linear functionals, exp(−cu2/L2)).

An operator Γ : Rn → Rk is L-subgaussian if (k × n matrix)

Γt =
k∑
i=1

〈Xi, t〉 ei for t ∈ Rn,

where (Xi)ki=1 are independent random vectors as above.
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Subgaussian theorem; notation II

A Banach space E has cotype q ≥ 2 with a constant βq if for all finite
sequences (zi) in E,

(∑
i

‖zi‖qE
)1/q

≤ βq E
∥∥∥∑

i

εizi

∥∥∥
E
,

where (εi)i are independent Bernoulli random variables.

Corresponds to the “lower estimate” for E in the parallelogram identity.

Examples: classical and non-commutative Lp-spaces, Schatten classes Sp,
for 1 ≤ p <∞.
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Subgaussian theorem

Theorem 2. ∃c1, c2, c3 > 0 s.t.: Let T ⊂ Sn−1 and E = (Rk, ‖ · ‖E) with
‖x‖E ≤ |x|, for x ∈ Rk. Fix L > 0, assume that E has cotype q with a

constant βq and that (recall `(E) := E‖
∑k
i=1 giei‖E)

E sup
t∈T

|
n∑
i=1

giti| =: `∗(T ) ≤
(c3/L2βq

√
q)

√
log k

`(E).

If Γ is L-subgaussian then, with probability close to 1, for every t ∈ T

(c1/Lβq
√
q) `(E) ≤ ‖Γt‖E ≤ c2L `(E).

Moreover, if Γ is an operator with independent Bernoulli random entries
then the logarithmic factor in the hypothesis can be removed.
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Corollary for Rademacher embedding

Let E = (Rk, ‖ · ‖E) with ‖x‖E ≤ |x|, for x ∈ Rk and assume that E has
cotype q with a constant βq. Let

n ≤ (c3/β2
qq) (`(E))2.

If Γ is an operator with independent Bernoulli random entries then, with
probability close to 1, the random subspace F := Γ(Rn) ⊂ Rk spanned by
±1 vectors satisfies ‖z‖E ∼ A|z|, for all z ∈ F (for a certain A > 0).

In particular, if the Euclidean unit ball on Rk is the maximal volume ellipsoid
for E then the assertion holds once n ≤ (c3/β2

qq)k
2/q.

Figiel-Lindenstrauss-Milman: Thus we fully recover the dimension of
Euclidean subspaces in spaces with cotype q obtained in FLM.
Subspaces here have more structure (but are isomorphic).

– 3rd Annual PHD Conference, Samos 9



Nicole Tomczak–Jaegermann

Role of the cotype assumption I

For a Gaussian operator, with large probability, for all t ∈ T ,

(1− ε)`(E) ≤ ‖Γt‖E ≤ (1 + ε)`(E).

So,

E‖Γt‖E = E‖
∑
i

∑
j

gijtjei‖E = E‖
∑
i

giei‖E = `(E)

does not depend on t ∈ T .

For a subgaussian operator, E‖Γt‖E does depend on t ∈ T . Not good!
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Role of the cotype assumption II

In spaces of cotype q < ∞, Rademacher and Gaussian averages are
equivalent.

Same is true for averages with respect to arbitrary independent symmetric
L-subgaussian r.v. In particular,

c `(E) = E‖
k∑
i=1

giei‖E ≤ inf
t∈T

E‖Γt‖E ≤ sup
t∈T

E‖Γt‖E ≤ C `(E),

where c, C depend on q, βq and L (but not on E!)
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Concentration for individual vectors

Concentration result for each r.v., ‖
∑k
i=1 〈Xi, t〉 ei‖E around its mean.

Let (ξi)ki=1 be i.i.d. symmetric L-subgaussian r.v. Let E = (Rk, ‖ · ‖E),
such that for every x ∈ E, ‖x‖E ≤ |x|. Then for every u ≥ 2,

P

(∣∣∣∣∣‖
k∑
i=1

ξiei‖E − E‖
k∑
i=1

ξiei‖E

∣∣∣∣∣ ≥ u

)
≤ 2 exp(−c u2/L2 log k).

For Gaussian or bounded r.v., the estimate is valid without log k factor.

We use for ξi = 〈Xi, t〉 for i = 1, . . . , k, for a fixed t ∈ T .
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Approximation

Let Γ : Rn → Rk be L-subgaussian.

Let T ⊂ Sn−1 and E = (Rk, ‖ · ‖E), such that ‖x‖E ≤ |x|, and, for each
t ∈ T , the r.v. ξi = 〈Xi, t〉 satisfy the concentration inequality.

Standard approximation: For ε > 0, let Λ be an ε net for T with respect
to | · |, so that

T ⊂
⋃
y∈Λ

y + εBn2 .

We require the Lipschitz constant of ‖Γ(·)‖E : Sn−1 → R

Instead, let U := T ∩ εBn2 . Then, T ⊂ Λ + U and so sufficient to require
an upper bound for supu∈U ‖Γu‖E with large probability.
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Norms of random operators

For any s ≥ 1,

P
(

sup
u∈U

‖Γu‖E ≤ csH

)
≥ 1− 2 exp(−s2),

where H := L
(
`∗(T ) + ε`(E)

)
and c > 0 is an absolute constant.

Norm of a random operator:

sup
u∈U

‖Γu‖ = ‖Γ : (Rn, conv U) → E‖.

The Gaussian case contained in Chevet-Gordon inequality.

Subgaussian: by majorizing measure of Talagrand, for example by generic
chaining.
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Almost isometric embeddings into `N∞

`∞ the space of all bounded sequences endowed with
‖t‖∞ = supi |ti|, for t = (ti) ∈ `∞.

Every separable Banach space is isometric to a subspace of `∞.

`N∞ = (RN , ‖ · ‖∞) : the unit ball is the cube

Fact. For every n and ε > 0 there is N = N(n, ε) s.t. every n-dimensional
normed space E is 1 + ε isomorphic to a subspace of `N∞.

Let E = (Rn, ‖ · ‖), K the unit ball (a symmetric convex body in Rn).
sometimes we denote ‖ · ‖ = ‖ · ‖K.

K◦ = {z ∈ Rn : | 〈x, z〉 | ≤ 1, for all x ∈ K}, the polar body.
Banach space duality: (Rn,K◦) can be identified to the dual space E∗.
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Almost isometric embeddings into `N∞ II

Let Λ ⊂ K◦ be an ε net in K◦, that is, K◦ ⊂
⋃
y∈Λ y + εK◦.

Set N = |Λ|, say Λ = (yi)Ni=1.

Set Γ : Rn → RN by Γt =
(
〈yi, t〉

)
i≤N ∈ RN . Rows are yi.

Then ‖Γt‖∞ = maxi | 〈yi, t〉 | ≤ ‖t‖. Converse direction also easy, Together:

(1− ε)‖t‖ ≤ ‖Γt‖∞ ≤ ‖t‖ for all t ∈ Rn.

So the subspace Γ(Rn) ⊂ `N∞ is (1 − ε)−1 isomorphic to E = (Rn, ‖ · ‖),
for N = |Λ|. Thus N(n, ε) = |Λ|.
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ε nets

Let K ⊂ Rn symmetric convex body. For every ε net Λ ⊂ K,
(
1/ε
)n ≤ |Λ|

oppositely, there is always an ε net Λ′ ⊂ K with |Λ′| ≤
(
3/ε
)n

(we take a maximal ε-separated subset of K).

For a set of vectors in Rn, being an ε net is not such a rare occurrence.

Randomness determined by K: a vector X is uniformly distributed on K if

P ({X ∈ A}) =
|K ∩A|
|K|

for every measurable A ⊂ Rn.

Theorem 3. Let n ≥ 1, 0 < ε ≤ 1, and N = (4/ε)2n. Let K ⊂ Rn
symmetric convex body, and X1, . . . , XN be independent random vectors
uniformly distributed on K. Then with a probability close to 1, the set
Λ = {X1, . . . , XN} forms an ε-net in K.
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Random ε-nets, sketch of proof

Lemma. Let K be a symmetric convex body in Rn. For every x ∈ K
and for 0 < ε ≤ 1 one has

|K ∩ (x+ εK)| ≥
∣∣∣ε
2
K
∣∣∣ .

Set α = 1− ε
2, β = ε

2. Fix x ∈ K. Enough to show that

K ∩ (x+ εK) ⊃ αx+ βK.

Let z = αx+ βy, where y ∈ K. Clearly, z ∈ K. Write z = x+ β(y − x).
Then y − x ∈ 2K, so z ∈ x+ β2K = x+ εK, as required.
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Random embedding into `N∞
Combining Theorem 3 and Fact we get

Theorem 4. Let 0 < ε < 1 and n ≤ logN/2 ln(4/ε). Let K be a
symmetric convex body in Rn. Let X1, . . . , XN be independent random
vectors uniformly distributed on K◦. Consider Γ : Rn → RN whose rows
are X1, . . . , XN

Then with probability close to 1 we have, for x ∈ Rn,

(1− ε) ‖x‖K ≤ ‖Γx‖∞ ≤ ‖x‖K.

For sections of the cube (1 + ε)-isomorphic to K:

there exists a section if N ≥
(
3
ε

)n
, equivalently, n ≤ logN

log(3
ε)

;

a random section if n ≤ logN
2 log(4

ε)
.
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Random Euclidean sections of the cube

X1, . . . , XN independent random vectors uniformly distributed on Sn−1.

Let Λ = {X1, . . . , XN}. Γ : Rn → RN , Γx =
∑N
i=1 〈x,Xi〉 ei.

For any y ∈ Sn−1 the normalized Lebesgue measure of a cap{
x ∈ Sn−1 | |x− y| ≤ ε

}
is larger than or equal to (ε/2)n.

Theorem 5. Let 0 < ε < 1 and n ≤ logN/2 log(4/ε).
With probability close to 1, Λ forms an ε-net on Sn−1, and the matrix
Γ satisfies, for all x ∈ Rn,

(1− ε) |x| ≤ ‖Γx‖∞ ≤ |x|.

– 3rd Annual PHD Conference, Samos 20



Nicole Tomczak–Jaegermann

Random spherical sections of the cube

Q the unit ball of `N∞ (i.e. the N -dimensional cube).
By Theorem 5, a random section (by E := ΓRn) is almost an ellipsoid.

ΓBn2 ⊂ Q ∩ E ⊂ (1− ε)−1 ΓBn2 .

On `N∞ there is the natural Euclidean norm, we want to compare Q ∩ E to
a standard Euclidean ball of a certain radius.

We show that ΓBn2 is, up to 1+ε
1−ε, equivalent to the standard Euclidean ball

of radius
√
N/n.

Thus a random section is almost spherical E := ΓRn

(1− ε)
√
N/nBn2 ∩ E ⊂ Q ∩ E ⊂ 1 + ε

1− ε

√
N/nBn2 ∩ E.
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Random spherical sections of the cube II

Theorem 6. Under the assumptions of Theorem 5, with probability close
to 1, for all z ∈ E = ΓRn we have

1− ε

1 + ε
|z| ≤

√
N

n
‖z‖∞ ≤ 1

1− ε
|z|.

Lemma. Let 0 < ε < 1 and let N ≥ n3/ε4. With probability close to 1,

(1− ε)|x| ≤ |Γx|
√
n/N ≤ (1 + ε)|x|,

for every x ∈ R.

We show: for any δ > 0, P{‖ nNΓ∗Γ − I‖ < δ} ≥ 1 − δ′. Thus
√

n
NΓ is

almost an isometry of the Euclidean norm.
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Dimension of random Euclidean sections I

Let 0 < ε < 1. Whenever

n ≤ logN/2 log(4/ε),

then we produced a random embedding of `n2 in `N∞.
It is given by Γ : Rn → RN .

Known: if E ⊂ `N∞ is (1 + ε)-Euclidean then

dimE ≤ C logN/ log(1/ε).

So the dimension n of a random embedding Γ – as a function of ε –
is (asymptotically) as large as a dimension of a Euclidean embedding
can be, for any embedding.
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Dimension of random Euclidean sections II

If G a matrix with independent N(0, 1) Gaussian entries, then n satisfying

n ≤ ε logN

is sufficient to get (1 + ε)-embedding with large probability (Schechtman).

This is optimal if one requires large probability in the Haar – rotational
invariant – measure on the Grassman manifold)

Randomness given by Γ allows as large dimension of sections as can be
(even for deterministic embeddings). Rotational invariant randomness much
more restrictive.
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