Embeddings under various notions of randomness

Nicole Tomczak-Jaegermann

June 25, 2007

Plan of the talk

- Subgaussian embeddings/projections: Shahar Mendelson and NT-J
- Embeddings of convex bodies in ℓ_∞^N and ε nets: Yoram Gordon, Sasha Litvak, Alain Pajor and NT-J
- Very economical "almost isometric" embeddings of ℓ_2^n into ℓ_∞^N

Notation

 \mathbb{R}^n , \mathbb{R}^k , $(e_i)_i$ the unit vector basis, $|\cdot|$ the Euclidean norm, S^{n-1} – sphere (g_i) , (g_{ij}) be independent N(0,1) r.v.

Fix $n, k \ge 1$; define

$$\Gamma: \mathbb{R}^n \to \mathbb{R}^k$$

by

$$\Gamma t = \sum_{i=1}^{k} \sum_{j=1}^{n} g_{ij} t_j e_i$$

for $t = (t_j)$.

In other words, $\Gamma = [g_{ij}]$ is $k \times n$ matrix Γe_j is the *j*th column of Γ , for $j = 1, \ldots, n$.

Gaussian theorem

Theorem 1. There is c > 0 s.t.: Let $T \subset S^{n-1}$ and $E = (\mathbb{R}^k, \| \|_E)$ satisfy $\|x\|_E \leq |x|$. Fix $\varepsilon > 0$ and assume that

$$\mathbb{E}\sup_{t\in T} |\sum_{i=1}^{n} g_i t_i| \le c \varepsilon \mathbb{E} \|\sum_{i=1}^{k} g_i e_i\|_E.$$

With probability close to 1, Γ satisfies, for every $t \in T$,

$$(1-\varepsilon)\mathbb{E}\|\sum_{i=1}^{k}g_{i}e_{i}\|_{E} \leq \|\Gamma t\|_{E} \leq (1+\varepsilon)\mathbb{E}\|\sum_{i=1}^{k}g_{i}e_{i}\|_{E}.$$

Special cases

$$\Gamma: \mathbb{R}^n \to \mathbb{R}^k. \quad \text{If} \\ \ell_*(T) := \mathbb{E} \sup_{t \in T} |\sum_{i=1}^n g_i t_i| \leq c \varepsilon \mathbb{E} \|\sum_{i=1}^k g_i e_i\|_E =: c \varepsilon \ell(E)$$

then

 $(1-\varepsilon)\ell(E) \le \|\Gamma t\|_E \le (1+\varepsilon)\ell(E)$ for $t \in T \subset S^{n-1}$.

• $n \leq k$, $T = S^{n-1}$: Gaussian Dvoretzky-type embedding of ℓ_2^n into ECondition $\sqrt{n} \leq c \, \varepsilon \ell(E)$ appears in the familiar formulation going back to Milman, around 1970

• $n \ge k$, Gaussian projection; if $E = (\mathbb{R}^k, |\cdot|) = \ell_2^k$ and $T \subset S^{n-1}$ satisfies $\mathbb{E} \sup_{t \in T} |\sum_{i=1}^n g_i t_i| \le c \varepsilon \sqrt{k}$, then Γ is almost an isometry on T;

Johnson-Lindenstrauss Lemma: if $\log |T| \leq c' \varepsilon^2 k$ then Γ provides an "almost distance-preserv." mapping of T onto a subset of ℓ_2^k . Generalized to any normed space E.

Gaussian theorem, final comments

Theorem 1 easily follows (by a known argument) from the Gaussian min-max theorem by Y. Gordon.

The present formulation was proposed in a recent paper by G. Schechtman (who gave a proof by majorizing measures approach).

A yet another proof by G. Pisier, based on his Gaussian measure concentration theorem.

All three approaches use in an *essential* way that Γ is a Gaussian operator.

We use the concentration of a random vector $||\Gamma t||_E$ around its mean to prove an *isomorphic* analog of Theorem 1, where the Gaussian operator is replaced by an arbitrary *subgaussian* operator, under a cotype assumption on the space E.

Subgaussian theorem; notation

The ψ_2 norm of a random variable ξ : $\|\xi\|_{\psi_2} = \inf \left\{ u > 0 : \mathbb{E} \exp \left(|\xi|^2 / u^2 \right) \le 2 \right\}.$

 μ a symmetric measure on \mathbb{R}^n , isotropic and *L*-subgaussian if: letting $X \in \mathbb{R}^n$ be a random vector distributed according to μ

$$\mathbb{E}\langle X,t\rangle^2 = |t|^2 \text{ and } ||\langle X,t\rangle||_{\psi_2} \le L|t|, \quad \text{for } t \in \mathbb{R}^n.$$

(a subgaussian decay of linear functionals, $\exp(-cu^2/L^2)$).

An operator $\Gamma : \mathbb{R}^n \to \mathbb{R}^k$ is *L*-subgaussian if $(k \times n \text{ matrix})$

$$\Gamma t = \sum_{i=1}^{k} \langle X_i, t \rangle e_i \quad \text{for} \quad t \in \mathbb{R}^n,$$

where $(X_i)_{i=1}^k$ are independent random vectors as above.

^{- 3}rd Annual PHD Conference, Samos

Subgaussian theorem; notation II

A Banach space E has cotype $q\geq 2$ with a constant β_q if for all finite sequences (z_i) in E,

$$\left(\sum_{i} \|z_{i}\|_{E}^{q}\right)^{1/q} \leq \beta_{q} \mathbb{E} \left\|\sum_{i} \varepsilon_{i} z_{i}\right\|_{E},$$

where $(\varepsilon_i)_i$ are independent Bernoulli random variables.

Corresponds to the "lower estimate" for $\mathbb E$ in the parallelogram identity.

Examples: classical and non-commutative $L_p\mbox{-spaces},$ Schatten classes $S_p,$ for $1\leq p<\infty.$

Subgaussian theorem

Theorem 2. $\exists c_1, c_2, c_3 > 0 \text{ s.t.: Let } T \subset S^{n-1} \text{ and } E = (\mathbb{R}^k, \|\cdot\|_E) \text{ with } \|x\|_E \leq |x|, \text{ for } x \in \mathbb{R}^k.$ Fix L > 0, assume that E has cotype q with a constant β_q and that (recall $\ell(E) := \mathbb{E} \|\sum_{i=1}^k g_i e_i\|_E$)

$$\mathbb{E}\sup_{t\in T} \left|\sum_{i=1}^{n} g_{i}t_{i}\right| =: \ell_{*}(T) \leq \frac{\left(c_{3}/L^{2}\beta_{q}\sqrt{q}\right)}{\sqrt{\log k}} \ell(E).$$

If Γ is L-subgaussian then, with probability close to 1, for every $t \in T$

$$(c_1/L\beta_q\sqrt{q})\,\ell(E) \le \|\Gamma t\|_E \le c_2L\,\ell(E).$$

Moreover, if Γ is an operator with independent Bernoulli random entries then the logarithmic factor in the hypothesis can be removed.

^{- 3}rd Annual PHD Conference, Samos

Corollary for Rademacher embedding

Let $E = (\mathbb{R}^k, \|\cdot\|_E)$ with $\|x\|_E \leq |x|$, for $x \in \mathbb{R}^k$ and assume that E has cotype q with a constant β_q . Let

$$n \leq (c_3/\beta_q^2 q) \ (\ell(E))^2.$$

If Γ is an operator with independent Bernoulli random entries then, with probability close to 1, the random subspace $F := \Gamma(\mathbb{R}^n) \subset \mathbb{R}^k$ spanned by ± 1 vectors satisfies $||z||_E \sim A|z|$, for all $z \in F$ (for a certain A > 0).

In particular, if the Euclidean unit ball on \mathbb{R}^k is the maximal volume ellipsoid for E then the assertion holds once $n \leq (c_3/\beta_q^2 q)k^{2/q}$.

Figiel-Lindenstrauss-Milman: Thus we fully recover the dimension of Euclidean subspaces in spaces with cotype q obtained in FLM. Subspaces here have more structure (but are isomorphic).

^{- 3}rd Annual PHD Conference, Samos

Role of the cotype assumption I

For a Gaussian operator, with large probability, for all $t \in T$,

$$(1-\varepsilon)\ell(E) \le \|\Gamma t\|_E \le (1+\varepsilon)\ell(E).$$

So,

$$\mathbb{E}\|\Gamma t\|_E = \mathbb{E}\|\sum_i \sum_j g_{ij}t_j e_i\|_E = \mathbb{E}\|\sum_i g_i e_i\|_E = \ell(E)$$

does not depend on $t \in T$.

For a subgaussian operator, $\mathbb{E} \| \Gamma t \|_E$ does depend on $t \in T$. Not good!

Role of the cotype assumption II

In spaces of cotype $q < \infty,$ Rademacher and Gaussian averages are equivalent.

Same is true for averages with respect to arbitrary independent symmetric L-subgaussian r.v. In particular,

$$c\ell(E) = \mathbb{E} \|\sum_{i=1}^{k} g_i e_i\|_E \le \inf_{t \in T} \mathbb{E} \|\Gamma t\|_E \le \sup_{t \in T} \mathbb{E} \|\Gamma t\|_E \le C\ell(E),$$

where c, C depend on q, β_q and L (but not on E!)

Concentration for individual vectors

Concentration result for each r.v., $\|\sum_{i=1}^k \langle X_i, t \rangle e_i\|_E$ around its mean.

Let $(\xi_i)_{i=1}^k$ be i.i.d. symmetric *L*-subgaussian r.v. Let $E = (\mathbb{R}^k, \|\cdot\|_E)$, such that for every $x \in E$, $\|x\|_E \leq |x|$. Then for every $u \geq 2$,

$$\mathbb{P}\left(\left|\|\sum_{i=1}^{k} \xi_{i} e_{i}\|_{E} - \mathbb{E}\|\sum_{i=1}^{k} \xi_{i} e_{i}\|_{E}\right| \ge u\right) \le 2\exp(-c u^{2}/L^{2}\log k).$$

For Gaussian or bounded r.v., the estimate is valid without $\log k$ factor.

We use for $\xi_i = \langle X_i, t \rangle$ for $i = 1, \ldots, k$, for a fixed $t \in T$.

Approximation

Let $\Gamma : \mathbb{R}^n \to \mathbb{R}^k$ be *L*-subgaussian.

Let $T \subset S^{n-1}$ and $E = (\mathbb{R}^k, \|\cdot\|_E)$, such that $\|x\|_E \leq |x|$, and, for each $t \in T$, the r.v. $\xi_i = \langle X_i, t \rangle$ satisfy the concentration inequality.

Standard approximation: For $\varepsilon > 0$, let Λ be an ε net for T with respect to $|\cdot|$, so that

$$T \subset \bigcup_{y \in \Lambda} y + \varepsilon B_2^n.$$

We require the Lipschitz constant of $\|\Gamma(\cdot)\|_E: S^{n-1} \to \mathbb{R}$

Instead, let $U := T \cap \varepsilon B_2^n$. Then, $T \subset \Lambda + U$ and so sufficient to require an upper bound for $\sup_{u \in U} \|\Gamma u\|_E$ with large probability.

^{- 3}rd Annual PHD Conference, Samos

Norms of random operators

For any $s \ge 1$,

$$\mathbb{P}\left(\sup_{u\in U} \|\Gamma u\|_{E} \le cs H\right) \ge 1 - 2\exp(-s^{2}),$$

where $H := L\Big(\ell_*(T) + \varepsilon \ell(E)\Big)$ and c > 0 is an absolute constant.

Norm of a random operator:

$$\sup_{u \in U} \|\Gamma u\| = \|\Gamma : (\mathbb{R}^n, \operatorname{conv} U) \to E\|.$$

The Gaussian case contained in Chevet-Gordon inequality.

Subgaussian: by majorizing measure of Talagrand, for example by generic chaining.

^{- 3}rd Annual PHD Conference, Samos

Almost isometric embeddings into ℓ_∞^N

 ℓ_{∞} the space of all bounded sequences endowed with $||t||_{\infty} = \sup_{i} |t_{i}|, \text{ for } t = (t_{i}) \in \ell_{\infty}.$

Every separable Banach space is isometric to a subspace of ℓ_{∞} .

 $\ell_\infty^N = (\mathbb{R}^N, \|\cdot\|_\infty): ext{ the unit ball is the cube}$

Fact. For every n and $\varepsilon > 0$ there is $N = N(n, \varepsilon)$ s.t. every n-dimensional normed space E is $1 + \varepsilon$ isomorphic to a subspace of ℓ_{∞}^{N} .

Let $E = (\mathbb{R}^n, \|\cdot\|)$, K the unit ball (a symmetric convex body in \mathbb{R}^n). sometimes we denote $\|\cdot\| = \|\cdot\|_K$.

 $K^{\circ} = \{z \in \mathbb{R}^n : |\langle x, z \rangle| \leq 1, \text{ for all } x \in K\}$, the polar body. Banach space duality: $(\mathbb{R}^n, K^{\circ})$ can be identified to the dual space E^* .

Almost isometric embeddings into ℓ_{∞}^{N} II

Let $\Lambda \subset K^{\circ}$ be an ε net in K° , that is, $K^{\circ} \subset \bigcup_{y \in \Lambda} y + \varepsilon K^{\circ}$. Set $N = |\Lambda|$, say $\Lambda = (y_i)_{i=1}^N$. Set $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ by $\Gamma t = (\langle y_i, t \rangle)_{i \leq N} \in \mathbb{R}^N$. Rows are y_i . Then $\|\Gamma t\|_{\infty} = \max_i |\langle y_i, t \rangle| \leq \|t\|$. Converse direction also easy, Together:

 $(1-\varepsilon)\|t\| \le \|\Gamma t\|_{\infty} \le \|t\|$ for all $t \in \mathbb{R}^n$.

So the subspace $\Gamma(\mathbb{R}^n) \subset \ell_{\infty}^N$ is $(1 - \varepsilon)^{-1}$ isomorphic to $E = (\mathbb{R}^n, \|\cdot\|)$, for $N = |\Lambda|$. Thus $N(n, \varepsilon) = |\Lambda|$.

ε nets

Let $K \subset \mathbb{R}^n$ symmetric convex body. For every ε net $\Lambda \subset K$, $(1/\varepsilon)^n \leq |\Lambda|$ oppositely, there is always an ε net $\Lambda' \subset K$ with $|\Lambda'| \leq (3/\varepsilon)^n$ (we take a maximal ε -separated subset of K).

For a set of vectors in \mathbb{R}^n , being an ε net is not such a rare occurrence.

Randomness determined by K: a vector X is uniformly distributed on K if

$$\mathbb{P}\left(\{X \in A\}\right) = \frac{|K \cap A|}{|K|}$$

for every measurable $A \subset \mathbb{R}^n$.

Theorem 3. Let $n \ge 1$, $0 < \varepsilon \le 1$, and $N = (4/\varepsilon)^{2n}$. Let $K \subset \mathbb{R}^n$ symmetric convex body, and X_1, \ldots, X_N be independent random vectors uniformly distributed on K. Then with a probability close to 1, the set $\Lambda = \{X_1, \ldots, X_N\}$ forms an ε -net in K.

Random ε -nets, sketch of proof

Lemma. Let K be a symmetric convex body in \mathbb{R}^n . For every $x \in K$ and for $0 < \varepsilon \leq 1$ one has

$$|K \cap (x + \varepsilon K)| \ge \left|\frac{\varepsilon}{2} K\right|.$$

Set $\alpha = 1 - \frac{\varepsilon}{2}$, $\beta = \frac{\varepsilon}{2}$. Fix $x \in K$. Enough to show that

 $K \cap (x + \varepsilon K) \supset \alpha x + \beta K.$

Let $z = \alpha x + \beta y$, where $y \in K$. Clearly, $z \in K$. Write $z = x + \beta(y - x)$. Then $y - x \in 2K$, so $z \in x + \beta 2K = x + \varepsilon K$, as required.

Random embedding into ℓ_∞^N

Combining Theorem 3 and Fact we get

Theorem 4. Let $0 < \varepsilon < 1$ and $n \leq \log N/2 \ln(4/\varepsilon)$. Let K be a symmetric convex body in \mathbb{R}^n . Let X_1, \ldots, X_N be independent random vectors uniformly distributed on K^o. Consider $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ whose rows are X_1, \ldots, X_N Then with probability close to 1 we have, for $x \in \mathbb{R}^n$,

$$(1-\varepsilon) \|x\|_K \le \|\Gamma x\|_\infty \le \|x\|_K.$$

For sections of the cube $(1 + \varepsilon)$ -isomorphic to K:

there exists a section if $N \ge \left(\frac{3}{\varepsilon}\right)^n$, equivalently, $n \le \frac{\log N}{\log(\frac{3}{\varepsilon})}$; a random section if $n \le \frac{\log N}{2\log(\frac{4}{\varepsilon})}$.

Random Euclidean sections of the cube

 X_1, \ldots, X_N independent random vectors uniformly distributed on S^{n-1} .

Let $\Lambda = \{X_1, \ldots, X_N\}$. $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$, $\Gamma x = \sum_{i=1}^N \langle x, X_i \rangle e_i$.

For any $y \in S^{n-1}$ the normalized Lebesgue measure of a cap $\{x \in S^{n-1} \mid |x-y| \leq \varepsilon\}$ is larger than or equal to $(\varepsilon/2)^n$.

Theorem 5. Let $0 < \varepsilon < 1$ and $n \leq \log N/2 \log(4/\varepsilon)$. With probability close to 1, Λ forms an ε -net on S^{n-1} , and the matrix Γ satisfies, for all $x \in \mathbb{R}^n$,

$$(1-\varepsilon) |x| \le ||\Gamma x||_{\infty} \le |x|.$$

Random spherical sections of the cube

Q the unit ball of ℓ_{∞}^{N} (i.e. the N-dimensional cube). By Theorem 5, a random section (by $E := \Gamma \mathbb{R}^{n}$) is almost an ellipsoid.

$$\Gamma B_2^n \subset Q \cap E \subset (1 - \varepsilon)^{-1} \ \Gamma B_2^n.$$

On ℓ_{∞}^N there is the natural Euclidean norm, we want to compare $Q \cap E$ to a standard Euclidean ball of a certain radius.

We show that ΓB_2^n is, up to $\frac{1+\varepsilon}{1-\varepsilon}$, equivalent to the standard Euclidean ball of radius $\sqrt{N/n}$. Thus a random section is almost spherical $E := \Gamma \mathbb{R}^n$

$$(1-\varepsilon)\sqrt{N/n}\,B_2^n\cap E\subset Q\cap E\subset \frac{1+\varepsilon}{1-\varepsilon}\sqrt{N/n}\,B_2^n\cap E.$$

Random spherical sections of the cube II

Theorem 6. Under the assumptions of Theorem 5, with probability close to 1, for all $z \in E = \Gamma \mathbb{R}^n$ we have

$$\frac{1-\varepsilon}{1+\varepsilon} |z| \le \sqrt{\frac{N}{n}} ||z||_{\infty} \le \frac{1}{1-\varepsilon} |z|.$$

Lemma. Let $0 < \varepsilon < 1$ and let $N \ge n^3/\varepsilon^4$. With probability close to 1,

$$(1-\varepsilon)|x| \le |\Gamma x|\sqrt{n/N} \le (1+\varepsilon)|x|,$$

for every $x \in \mathbb{R}$.

We show: for any $\delta > 0$, $\mathbb{P}\{\|\frac{n}{N}\Gamma^*\Gamma - I\| < \delta\} \ge 1 - \delta'$. Thus $\sqrt{\frac{n}{N}}\Gamma$ is almost an isometry of the Euclidean norm.

Dimension of random Euclidean sections I

Let $0 < \varepsilon < 1$. Whenever

 $n \le \log N/2\log(4/\varepsilon),$

then we produced a *random* embedding of ℓ_2^n in ℓ_{∞}^N . It is given by $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$.

Known: if $E \subset \ell_{\infty}^{N}$ is $(1 + \varepsilon)$ -Euclidean then

 $\dim E \le C \log N / \log(1/\varepsilon).$

So the dimension n of a random embedding Γ – as a function of ε – is (asymptotically) as large as a dimension of a Euclidean embedding can be, for any embedding.

Dimension of random Euclidean sections II

If G a matrix with independent N(0,1) Gaussian entries, then n satisfying

 $n \leq \varepsilon \log N$

is sufficient to get $(1 + \varepsilon)$ -embedding with large probability (Schechtman).

This is optimal if one requires large probability in the Haar – rotational invariant – measure on the Grassman manifold)

Randomness given by Γ allows as large dimension of sections as can be (even for deterministic embeddings). Rotational invariant randomness much more restrictive.

^{- 3}rd Annual PHD Conference, Samos