Embeddings under various notions of randomness

Nicole Tomczak-Jaegermann
June 25, 2007

Plan of the talk

- Subgaussian embeddings/projections: Shahar Mendelson and NT-J
- Embeddings of convex bodies in ℓ_{∞}^{N} and ε nets: Yoram Gordon, Sasha Litvak, Alain Pajor and NT-J
- Very economical "almost isometric" embeddings of ℓ_{2}^{n} into ℓ_{∞}^{N}

Notation

$\mathbb{R}^{n}, \mathbb{R}^{k},\left(e_{i}\right)_{i}$ the unit vector basis, $|\cdot|$ the Euclidean norm, S^{n-1} - sphere $\left(g_{i}\right),\left(g_{i j}\right)$ be independent $N(0,1)$ r.v.

Fix $n, k \geq 1$; define

$$
\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

by

$$
\Gamma t=\sum_{i=1}^{k} \sum_{j=1}^{n} g_{i j} t_{j} e_{i}
$$

for $t=\left(t_{j}\right)$.
In other words, $\Gamma=\left[g_{i j}\right]$ is $k \times n$ matrix
Γe_{j} is the j th column of Γ, for $j=1, \ldots, n$.

Gaussian theorem

Theorem 1. There is $c>0$ s.t.: Let $T \subset S^{n-1}$ and $E=\left(\mathbb{R}^{k},\| \|_{E}\right)$ satisfy $\|x\|_{E} \leq|x|$. Fix $\varepsilon>0$ and assume that

$$
\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} g_{i} t_{i}\right| \leq c \varepsilon \mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E}
$$

With probability close to $1, \Gamma$ satisfies, for every $t \in T$,

$$
(1-\varepsilon) \mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E} \leq\|\Gamma t\|_{E} \leq(1+\varepsilon) \mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E}
$$

Special cases

$\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} . \quad$ If

$$
\ell_{*}(T):=\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} g_{i} t_{i}\right| \leq c \varepsilon \mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E}=: c \varepsilon \ell(E)
$$

then

$$
(1-\varepsilon) \ell(E) \leq\|\Gamma t\|_{E} \leq(1+\varepsilon) \ell(E) \quad \text { for } t \in T \subset S^{n-1} .
$$

- $n \leq k, T=S^{n-1}$: Gaussian Dvoretzky-type embedding of ℓ_{2}^{n} into E Condition $\sqrt{n} \leq c \varepsilon \ell(E)$ appears in the familiar formulation going back to Milman, around 1970
- $n \geq k$, Gaussian projection; if $E=\left(\mathbb{R}^{k},|\cdot|\right)=\ell_{2}^{k}$ and $T \subset S^{n-1}$ satisfies $\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} g_{i} t_{i}\right| \leq c \varepsilon \sqrt{k}$, then Γ is almost an isometry on T;

Johnson-Lindenstrauss Lemma: if $\log |T| \leq c^{\prime} \varepsilon^{2} k$ then Γ provides an "almost distance-preserv." mapping of T onto a subset of ℓ_{2}^{k}. Generalized to any normed space E.

Gaussian theorem, final comments

Theorem 1 easily follows (by a known argument) from the Gaussian min-max theorem by Y. Gordon.

The present formulation was proposed in a recent paper by G. Schechtman (who gave a proof by majorizing measures approach).

A yet another proof by G. Pisier, based on his Gaussian measure concentration theorem.

All three approaches use in an essential way that Γ is a Gaussian operator.
We use the concentration of a random vector $\|\Gamma t\|_{E}$ around its mean to prove an isomorphic analog of Theorem 1, where the Gaussian operator is replaced by an arbitrary subgaussian operator, under a cotype assumption on the space E.

Subgaussian theorem; notation

The ψ_{2} norm of a random variable ξ : $\|\xi\|_{\psi_{2}}=\inf \left\{u>0: \mathbb{E} \exp \left(|\xi|^{2} / u^{2}\right) \leq 2\right\}$.
μ a symmetric measure on \mathbb{R}^{n}, isotropic and L-subgaussian if: letting $X \in \mathbb{R}^{n}$ be a random vector distributed according to μ

$$
\mathbb{E}\langle X, t\rangle^{2}=|t|^{2} \text { and }\|\langle X, t\rangle\|_{\psi_{2}} \leq L|t|, \quad \text { for } t \in \mathbb{R}^{n} .
$$

(a subgaussian decay of linear functionals, $\exp \left(-c u^{2} / L^{2}\right)$).
An operator $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is L-subgaussian if

$$
\Gamma t=\sum_{i=1}^{k}\left\langle X_{i}, t\right\rangle e_{i} \quad \text { for } \quad t \in \mathbb{R}^{n},
$$

where $\left(X_{i}\right)_{i=1}^{k}$ are independent random vectors as above.

Subgaussian theorem; notation II

A Banach space E has cotype $q \geq 2$ with a constant β_{q} if for all finite sequences $\left(z_{i}\right)$ in E,

$$
\left(\sum_{i}\left\|z_{i}\right\|_{E}^{q}\right)^{1 / q} \leq \beta_{q} \mathbb{E}\left\|\sum_{i} \varepsilon_{i} z_{i}\right\|_{E}
$$

where $\left(\varepsilon_{i}\right)_{i}$ are independent Bernoulli random variables.
Corresponds to the "lower estimate" for \mathbb{E} in the parallelogram identity.

Examples: classical and non-commutative L_{p}-spaces, Schatten classes S_{p}, for $1 \leq p<\infty$.

Subgaussian theorem

Theorem 2. $\exists c_{1}, c_{2}, c_{3}>0$ s.t.: Let $T \subset S^{n-1}$ and $E=\left(\mathbb{R}^{k},\|\cdot\|_{E}\right)$ with $\|x\|_{E} \leq|x|$, for $x \in \mathbb{R}^{k}$. Fix $L>0$, assume that E has cotype q with a constant β_{q} and that $\quad\left(\right.$ recall $\ell(E):=\mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E}$)

$$
\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} g_{i} t_{i}\right|=: \ell_{*}(T) \leq \frac{\left(c_{3} / L^{2} \beta_{q} \sqrt{q}\right)}{\sqrt{\log k}} \ell(E) .
$$

If Γ is L-subgaussian then, with probability close to 1 , for every $t \in T$

$$
\left(c_{1} / L \beta_{q} \sqrt{q}\right) \ell(E) \leq\|\Gamma t\|_{E} \leq c_{2} L \ell(E) .
$$

Moreover, if Γ is an operator with independent Bernoulli random entries then the logarithmic factor in the hypothesis can be removed.

Corollary for Rademacher embedding

Let $E=\left(\mathbb{R}^{k},\|\cdot\|_{E}\right)$ with $\|x\|_{E} \leq|x|$, for $x \in \mathbb{R}^{k}$ and assume that E has cotype q with a constant β_{q}. Let

$$
n \leq\left(c_{3} / \beta_{q}^{2} q\right)(\ell(E))^{2}
$$

If Γ is an operator with independent Bernoulli random entries then, with probability close to 1 , the random subspace $F:=\Gamma\left(\mathbb{R}^{n}\right) \subset \mathbb{R}^{k}$ spanned by ± 1 vectors satisfies $\|z\|_{E} \sim A|z|$, for all $z \in F$ (for a certain $A>0$).

In particular, if the Euclidean unit ball on \mathbb{R}^{k} is the maximal volume ellipsoid for E then the assertion holds once $n \leq\left(c_{3} / \beta_{q}^{2} q\right) k^{2 / q}$.

Figiel-Lindenstrauss-Milman: Thus we fully recover the dimension of Euclidean subspaces in spaces with cotype q obtained in FLM. Subspaces here have more structure (but are isomorphic).

Role of the cotype assumption I

For a Gaussian operator, with large probability, for all $t \in T$,

$$
(1-\varepsilon) \ell(E) \leq\|\Gamma t\|_{E} \leq(1+\varepsilon) \ell(E)
$$

So,

$$
\mathbb{E}\|\Gamma t\|_{E}=\mathbb{E}\left\|\sum_{i} \sum_{j} g_{i j} t_{j} e_{i}\right\|_{E}=\mathbb{E}\left\|\sum_{i} g_{i} e_{i}\right\|_{E}=\ell(E)
$$

does not depend on $t \in T$.
For a subgaussian operator, $\mathbb{E}\|\Gamma t\|_{E}$ does depend on $t \in T$. Not good!

Role of the cotype assumption II

In spaces of cotype $q<\infty$, Rademacher and Gaussian averages are equivalent.

Same is true for averages with respect to arbitrary independent symmetric L-subgaussian r.v. In particular,

$$
c \ell(E)=\mathbb{E}\left\|\sum_{i=1}^{k} g_{i} e_{i}\right\|_{E} \leq \inf _{t \in T} \mathbb{E}\|\Gamma t\|_{E} \leq \sup _{t \in T} \mathbb{E}\|\Gamma t\|_{E} \leq C \ell(E),
$$

where c, C depend on q, β_{q} and L (but not on E !)

Concentration for individual vectors

Concentration result for each r.v., $\left\|\sum_{i=1}^{k}\left\langle X_{i}, t\right\rangle e_{i}\right\|_{E}$ around its mean.
Let $\left(\xi_{i}\right)_{i=1}^{k}$ be i.i.d. symmetric L-subgaussian r.v. Let $E=\left(\mathbb{R}^{k},\|\cdot\|_{E}\right)$, such that for every $x \in E,\|x\|_{E} \leq|x|$. Then for every $u \geq 2$,

$$
\mathbb{P}\left(\left|\left\|\sum_{i=1}^{k} \xi_{i} e_{i}\right\|_{E}-\mathbb{E}\left\|\sum_{i=1}^{k} \xi_{i} e_{i}\right\|_{E}\right| \geq u\right) \leq 2 \exp \left(-c u^{2} / L^{2} \log k\right)
$$

For Gaussian or bounded r.v., the estimate is valid without $\log k$ factor.
We use for $\xi_{i}=\left\langle X_{i}, t\right\rangle$ for $i=1, \ldots, k$, for a fixed $t \in T$.

Approximation

Let $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be L-subgaussian.
Let $T \subset S^{n-1}$ and $E=\left(\mathbb{R}^{k},\|\cdot\|_{E}\right)$, such that $\|x\|_{E} \leq|x|$, and, for each $t \in T$, the r.v. $\xi_{i}=\left\langle X_{i}, t\right\rangle$ satisfy the concentration inequality.

Standard approximation: For $\varepsilon>0$, let Λ be an ε net for T with respect to $|\cdot|$, so that

$$
T \subset \bigcup_{y \in \Lambda} y+\varepsilon B_{2}^{n}
$$

We require the Lipschitz constant of $\|\Gamma(\cdot)\|_{E}: S^{n-1} \rightarrow \mathbb{R}$
Instead, let $U:=T \cap \varepsilon B_{2}^{n}$. Then, $T \subset \Lambda+U$ and so sufficient to require an upper bound for $\sup _{u \in U}\|\Gamma u\|_{E}$ with large probability.

Norms of random operators

For any $s \geq 1$,

$$
\mathbb{P}\left(\sup _{u \in U}\|\Gamma u\|_{E} \leq c s H\right) \geq 1-2 \exp \left(-s^{2}\right)
$$

where $H:=L\left(\ell_{*}(T)+\varepsilon \ell(E)\right)$ and $c>0$ is an absolute constant.
Norm of a random operator:

$$
\sup _{u \in U}\|\Gamma u\|=\| \Gamma:\left(\mathbb{R}^{n}, \text { conv } U\right) \rightarrow E \| .
$$

The Gaussian case contained in Chevet-Gordon inequality.
Subgaussian: by majorizing measure of Talagrand, for example by generic chaining.

Almost isometric embeddings into ℓ_{∞}^{N}

ℓ_{∞} the space of all bounded sequences endowed with

$$
\|t\|_{\infty}=\sup _{i}\left|t_{i}\right|, \quad \text { for } t=\left(t_{i}\right) \in \ell_{\infty}
$$

Every separable Banach space is isometric to a subspace of ℓ_{∞}.
$\ell_{\infty}^{N}=\left(\mathbb{R}^{N},\|\cdot\|_{\infty}\right)$: the unit ball is the cube
Fact. For every n and $\varepsilon>0$ there is $N=N(n, \varepsilon)$ s.t. every n-dimensional normed space E is $1+\varepsilon$ isomorphic to a subspace of ℓ_{∞}^{N}.

Let $E=\left(\mathbb{R}^{n},\|\cdot\|\right), K$ the unit ball (a symmetric convex body in \mathbb{R}^{n}). sometimes we denote $\|\cdot\|=\|\cdot\|_{K}$.
$K^{\circ}=\left\{z \in \mathbb{R}^{n}:|\langle x, z\rangle| \leq 1\right.$, for all $\left.x \in K\right\}$, the polar body. Banach space duality: $\left(\mathbb{R}^{n}, K^{\circ}\right)$ can be identified to the dual space E^{*}.

Almost isometric embeddings into ℓ_{∞}^{N} II

Let $\Lambda \subset K^{\circ}$ be an ε net in K°, that is, $K^{\circ} \subset \bigcup_{y \in \Lambda} y+\varepsilon K^{\circ}$.
Set $N=|\Lambda|$, say $\Lambda=\left(y_{i}\right)_{i=1}^{N}$.
Set $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ by $\Gamma t=\left(\left\langle y_{i}, t\right\rangle\right)_{i \leq N} \in \mathbb{R}^{N} . \quad$ Rows are y_{i}.
Then $\|\Gamma t\|_{\infty}=\max _{i}\left|\left\langle y_{i}, t\right\rangle\right| \leq\|t\|$. Converse direction also easy, Together:

$$
(1-\varepsilon)\|t\| \leq\|\Gamma t\|_{\infty} \leq\|t\| \quad \text { for all } \quad t \in \mathbb{R}^{n} .
$$

So the subspace $\Gamma\left(\mathbb{R}^{n}\right) \subset \ell_{\infty}^{N}$ is $(1-\varepsilon)^{-1}$ isomorphic to $E=\left(\mathbb{R}^{n},\|\cdot\|\right)$, for $N=|\Lambda|$. Thus $N(n, \varepsilon)=|\Lambda|$.

ε nets

Let $K \subset \mathbb{R}^{n}$ symmetric convex body. For every ε net $\Lambda \subset K,(1 / \varepsilon)^{n} \leq|\Lambda|$ oppositely, there is always an ε net $\Lambda^{\prime} \subset K$ with $\left|\Lambda^{\prime}\right| \leq(3 / \varepsilon)^{n}$ (we take a maximal ε-separated subset of K).

For a set of vectors in \mathbb{R}^{n}, being an ε net is not such a rare occurrence.
Randomness determined by K : a vector X is uniformly distributed on K if

$$
\mathbb{P}(\{X \in A\})=\frac{|K \cap A|}{|K|}
$$

for every measurable $A \subset \mathbb{R}^{n}$.
Theorem 3. Let $n \geq 1,0<\varepsilon \leq 1$, and $N=(4 / \varepsilon)^{2 n}$. Let $K \subset \mathbb{R}^{n}$ symmetric convex body, and X_{1}, \ldots, X_{N} be independent random vectors uniformly distributed on K. Then with a probability close to 1 , the set $\Lambda=\left\{X_{1}, \ldots, X_{N}\right\}$ forms an ε-net in K.

Random ε-nets, sketch of proof

Lemma. Let K be a symmetric convex body in \mathbb{R}^{n}. For every $x \in K$ and for $0<\varepsilon \leq 1$ one has

$$
|K \cap(x+\varepsilon K)| \geq\left|\frac{\varepsilon}{2} K\right| .
$$

Set $\alpha=1-\frac{\varepsilon}{2}, \beta=\frac{\varepsilon}{2}$. Fix $x \in K$. Enough to show that

$$
K \cap(x+\varepsilon K) \supset \alpha x+\beta K
$$

Let $z=\alpha x+\beta y$, where $y \in K$. Clearly, $z \in K$. Write $z=x+\beta(y-x)$. Then $y-x \in 2 K$, so $z \in x+\beta 2 K=x+\varepsilon K$, as required.

Random embedding into ℓ_{∞}^{N}

Combining Theorem 3 and Fact we get
Theorem 4. Let $0<\varepsilon<1$ and $n \leq \log N / 2 \ln (4 / \varepsilon)$. Let K be a symmetric convex body in \mathbb{R}^{n}. Let X_{1}, \ldots, X_{N} be independent random vectors uniformly distributed on K°. Consider $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ whose rows are X_{1}, \ldots, X_{N}
Then with probability close to 1 we have, for $x \in \mathbb{R}^{n}$,

$$
(1-\varepsilon)\|x\|_{K} \leq\|\Gamma x\|_{\infty} \leq\|x\|_{K} .
$$

For sections of the cube $(1+\varepsilon)$-isomorphic to K :
there exists a section if $N \geq\left(\frac{3}{\varepsilon}\right)^{n}$, equivalently, $n \leq \frac{\log N}{\log \left(\frac{3}{\varepsilon}\right)}$;
a random section if $n \leq \frac{\log N}{2 \log \left(\frac{4}{\varepsilon}\right)}$.

Random Euclidean sections of the cube

X_{1}, \ldots, X_{N} independent random vectors uniformly distributed on S^{n-1}.
Let $\Lambda=\left\{X_{1}, \ldots, X_{N}\right\} . \quad \Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, \Gamma x=\sum_{i=1}^{N}\left\langle x, X_{i}\right\rangle e_{i}$.
For any $y \in S^{n-1}$ the normalized Lebesgue measure of a cap
$\left\{x \in S^{n-1}| | x-y \mid \leq \varepsilon\right\}$
is larger than or equal to $(\varepsilon / 2)^{n}$.
Theorem 5. Let $0<\varepsilon<1$ and $n \leq \log N / 2 \log (4 / \varepsilon)$.
With probability close to $1, \Lambda$ forms an ε-net on S^{n-1}, and the matrix Γ satisfies, for all $x \in \mathbb{R}^{n}$,

$$
(1-\varepsilon)|x| \leq\|\Gamma x\|_{\infty} \leq|x| .
$$

Random spherical sections of the cube

Q the unit ball of ℓ_{∞}^{N} (i.e. the N-dimensional cube).
By Theorem 5, a random section (by $E:=\Gamma \mathbb{R}^{n}$) is almost an ellipsoid.

$$
\Gamma B_{2}^{n} \subset Q \cap E \subset(1-\varepsilon)^{-1} \Gamma B_{2}^{n} .
$$

On ℓ_{∞}^{N} there is the natural Euclidean norm, we want to compare $Q \cap E$ to a standard Euclidean ball of a certain radius.

We show that ΓB_{2}^{n} is, up to $\frac{1+\varepsilon}{1-\varepsilon}$, equivalent to the standard Euclidean ball of radius $\sqrt{N / n}$.
Thus a random section is almost spherical $\quad E:=\Gamma \mathbb{R}^{n}$

$$
(1-\varepsilon) \sqrt{N / n} B_{2}^{n} \cap E \subset Q \cap E \subset \frac{1+\varepsilon}{1-\varepsilon} \sqrt{N / n} B_{2}^{n} \cap E .
$$

Random spherical sections of the cube II

Theorem 6. Under the assumptions of Theorem 5, with probability close to 1 , for all $z \in E=\Gamma \mathbb{R}^{n}$ we have

$$
\frac{1-\varepsilon}{1+\varepsilon}|z| \leq \sqrt{\frac{N}{n}}\|z\|_{\infty} \leq \frac{1}{1-\varepsilon}|z| .
$$

Lemma. Let $0<\varepsilon<1$ and let $N \geq n^{3} / \varepsilon^{4}$. With probability close to 1 ,

$$
(1-\varepsilon)|x| \leq|\Gamma x| \sqrt{n / N} \leq(1+\varepsilon)|x|,
$$

for every $x \in \mathbb{R}$.
We show: for any $\delta>0, \quad \mathbb{P}\left\{\left\|\frac{n}{N} \Gamma^{*} \Gamma-I\right\|<\delta\right\} \geq 1-\delta^{\prime}$. Thus $\sqrt{\frac{n}{N}} \Gamma$ is almost an isometry of the Euclidean norm.

Dimension of random Euclidean sections I

Let $0<\varepsilon<1$. Whenever

$$
n \leq \log N / 2 \log (4 / \varepsilon)
$$

then we produced a random embedding of ℓ_{2}^{n} in ℓ_{∞}^{N}. It is given by $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$.

Known: if $E \subset \ell_{\infty}^{N}$ is $(1+\varepsilon)$-Euclidean then

$$
\operatorname{dim} E \leq C \log N / \log (1 / \varepsilon)
$$

So the dimension n of a random embedding Γ - as a function of ε is (asymptotically) as large as a dimension of a Euclidean embedding can be, for any embedding.

Dimension of random Euclidean sections II

If G a matrix with independent $N(0,1)$ Gaussian entries, then n satisfying

$$
n \leq \varepsilon \log N
$$

is sufficient to get $(1+\varepsilon)$-embedding with large probability (Schechtman).

This is optimal if one requires large probability in the Haar - rotational invariant - measure on the Grassman manifold)

Randomness given by Γ allows as large dimension of sections as can be (even for deterministic embeddings). Rotational invariant randomness much more restrictive.

