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Plan of the talk

e Subgaussian embeddings/projections: Shahar Mendelson and NT-J

e Embeddings of convex bodies in /2 and ¢ nets: Yoram Gordon, Sasha
Litvak, Alain Pajor and NT-J

e Very economical “almost isometric” embeddings of ¢2 into ¢,
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Notation

R™ Rk (e;); the unit vector basis, |- | the Euclidean norm, S~ ! — sphere

(gi), (gi;) be independent N(0,1) r.v.

Fix n,k > 1; define

I:R" — RF
by )
Tt=2 2 gitie
i=1 j=1
for t = (¢;).

In other words, ' = [gij} Is k X n matrix
I'e; is the jth column of I, for 5 =1,...,n.
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Gaussian theorem

Theorem 1. There is c > 0 s.t.: Let T C S ! and E = (R*,| ||&)
satisfy ||z||g < |x|. Fixe > 0 and assume that

E sup | Zgzt | < ceE| ZgzezHE

te’T

With probability close to 1, 1" satisfies, for every t € T,
k

(1—)E[ ) gieille < [Tt < (1+)E| ZgzezllE
1=1 1 =1
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Special cases
:R*” > R If
0.(T) :=Esup il < cek i€ —:cel(F
(T) tET\Zg | IIZg I (E)

then
(1—e)l(E) <|Tt|lp < (1+e)l(E) forteT c S 1L

en <k, T =5""1 Gaussian Dvoretzky-type embedding of /% into E
Condition y/n < cel(F) appears in the familiar formulation going back to
Milman, around 1970

e n > k, Gaussian projection; if £ = (R¥,|-|) = ¢5 and T' C S™~! satisfies
Esup,er | S, giti| < ceVk, then T is almost an isometry on T';

Johnson-Lindenstrauss Lemma: if log|T| < cc*k then T' provides an
“almost distance-preserv.” mapping of T onto a subset of /5.
Generalized to any normed space E.
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Gaussian theorem, final comments

Theorem 1 easily follows (by a known argument) from the Gaussian min-max
theorem by Y. Gordon.

The present formulation was proposed in a recent paper by G. Schechtman
(who gave a proof by majorizing measures approach).

A vyet another proof by G. Pisier, based on his Gaussian measure
concentration theorem.

All three approaches use in an essential way that I' is a Gaussian operator.

We use the concentration of a random vector ||I't||g around its mean to
prove an isomorphic analog of Theorem 1, where the Gaussian operator is
replaced by an arbitrary subgaussian operator, under a cotype assumption
on the space FE.
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Subgaussian theorem; notation
The 15 norm of a random variable &:
1€]]py = inf {u > 0: Eexp (]¢]?/u?) < 2}.

{t @ symmetric measure on R", isotropic and L-subgaussian if:
letting X € R™ be a random vector distributed according to u

E(X,t)° = |t|? and || (X, ) ||y, < L|t|,  fort e R™
(a subgaussian decay of linear functionals, exp(—cu?/L?)).
An operator I" : R® — R¥ is L-subgaussian if (k X m matrix)
k
I't = Z (X, t) e; for teR",
i=1

where (X;)¥_, are independent random vectors as above.
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Subgaussian theorem; notation ||

A Banach space E has cotype ¢ > 2 with a constant 3, if for all finite
sequences (z;) in F,

(Z HzillqE)l/q < ﬁqEHZ&%

Y

E

where (g;); are independent Bernoulli random variables.

Corresponds to the “lower estimate” for [E in the parallelogram identity.

Examples: classical and non-commutative L,-spaces, Schatten classes S,,
for 1 < p < .
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Subgaussian theorem

Theorem 2. Jci,co,c3>0s.t.: LetT C S" 1and E = (RY, || -||g) with
|z||g < |x|, for x € R¥. Fix L > 0, assume that E has cotype q with a

constant 3, and that (recall ¢(E) = E|| Ele gi€illg)

& (CB/L2ﬁq\/a)
K su ztz = g* T S
upl St = (1) < L

U(E).

If I' is L-subgaussian then, with probability close to 1, for every t € T’

(c1/LBe/a) L(E) < |Tt||p < coLU(E).

Moreover, if I' is an operator with independent Bernoulli random entries
then the logarithmic factor in the hypothesis can be removed.
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Corollary for Rademacher embedding

Let £ = (R*,|| - ||g) with ||z||z < |z|, for z € R* and assume that E has

cotype g with a constant 3,. Let

n < (c3/Bi0) (U(E))>.

If I' is an operator with independent Bernoulli random entries then, with
probability close to 1, the random subspace F' := I'(R™) C R¥ spanned by
+1 vectors satisfies ||z||g ~ A|z|, for all z € F' (for a certain A > 0).

In particular, if the Euclidean unit ball on R¥ is the maximal volume ellipsoid
for E then the assertion holds once n < (c3/32q)k?/4.

Figiel-Lindenstrauss-Milman:  Thus we fully recover the dimension of
Euclidean subspaces in spaces with cotype ¢ obtained in FLM.
Subspaces here have more structure (but are isomorphic).
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Role of the cotype assumption |
For a Gaussian operator, with large probability, for all t € T,
(1—e)l(F) <|T't|g < (1+e)l(E).
So,

BTtz =E[> Y gitieille =B > gieills = €(E)
i i
does not depend on t € T'.

For a subgaussian operator, E||I't||z does depend on t € T'. Not good!
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Role of the cotype assumption ||

In spaces of cotype ¢ < oo, Rademacher and Gaussian averages are
equivalent.

Same is true for averages with respect to arbitrary independent symmetric
L-subgaussian r.v. In particular,

k
cl(F)=E Cillg < inf E||I't|| g <supE||I't|g < CUFE),
(E) H;g |z < inf E[|I't||5 SUp 1Tt e (E)

where ¢, C' depend on ¢, 3, and L (but not on E!)
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Concentration for individual vectors

Zle (X;,t) e;|| g around its mean.

Concentration result for each r.v.,

Let (&)F_, be i.i.d. symmetric L-subgaussian r.v. Let E = (R*. | - ||g),
such that for every x € FE, ||z||g < |x|. Then for every u > 2,

|

For Gaussian or bounded r.v., the estimate is valid without log k& factor.

k k
1) geille —E| ) Geills

> u) < 2exp(—cu?/L?logk).

We use for & = (X;,t) fori=1,... k, forafixedt € T.
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Approximation

Let I : R® — R* be L-subgaussian.

Let T C S 1 and E = (R*,|| - ||g), such that ||z||z < |z|, and, for each
t €T, the rv. § = (X, t) satisfy the concentration inequality.

Standard approximation: For € > 0, let A be an ¢ net for T with respect
to |- |, so that
T C U y+eBy.
yEA
We require the Lipschitz constant of [|[T'(:)||g: S" ! — R

Instead, let U :=T NeBY. Then, T'C A+ U and so sufficient to require
an upper bound for sup,y ||T'u||z with large probability.
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Norms of random operators
For any s > 1,

P (sup ITullg < cs H) > 1 —2exp(—s?),
uelU

where H := L(f*(T) + 5€(E)) and ¢ > 0 is an absolute constant.

Norm of a random operator:

sup [|[Tu|| = ||T" : (R™,conv U) — FE||.
ueclU

The Gaussian case contained in Chevet-Gordon inequality.

Subgaussian: by majorizing measure of Talagrand, for example by generic
chaining.
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Almost isometric embeddings into /)

/~ the space of all bounded sequences endowed with
|t||loo = sup; [ti], fort=(t;) € .

Every separable Banach space is isometric to a subspace of /..
(N = (RN, |- ls) : the unit ball is the cube

Fact. For every n and e > 0 there is N = N(n,¢€) s.t. every n-dimensional
normed space E is 1 + ¢ isomorphic to a subspace of /% .

Let £ = (R™,|| - ||), K the unit ball (a symmetric convex body in R"™).
sometimes we denote || - || = | - || k-

Ke={zeR":|(x,2)| <1, forall z € K}, the polar body.
Banach space duality: (R™, K°) can be identified to the dual space E*.
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Almost isometric embeddings into /) II

Let A C K° be an ¢ net in K°, thatis, K° C J,c y+eK".
Set N = |Al|, say A = (y;)i",.
Set I' : R®" — RY by I't = ((yi,t>)i<N c RV, Rows are ;.

Then ||T't]| oo = max; | (y;,t) | < ||t||]. Converse direction also easy, Together:

(T—=2)||t|| < |ITt]|oo < |2 for all t e R".

So the subspace I'(R™) C ¢% is (1 — &)~ isomorphic to E = (R", || -
for N = |A|. Thus N(n,e) = |A]|.

),
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€ nets

Let K C R™ symmetric convex body. For every € net A C K, (1/5)” < |A|
oppositely, there is always an € net A’ C K with |A/| < (3/5)”
(we take a maximal e-separated subset of K).

For a set of vectors in R", being an € net is not such a rare occurrence.

Randomness determined by K': a vector X is uniformly distributed on K if

P((X € 4)) = “

for every measurable A C R™.

Theorem 3. Letn >1,0<e¢e <1, and N = (4/e)*". Let K C R"
symmetric convex body, and X4,...,Xn be independent random vectors

uniformly distributed on K. Then with a probability close to 1, the set
A={X1,..., XN} forms an e-net in K.
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Random c-nets, sketch of proof

Lemma. Let K be a symmetric conver body in R"™. For every x € K
and for 0 < e <1 one has

KN(x+eK)|l > ‘% K‘

Seta=1-35, B=25. Fixx € K. Enough to show that
KN (z+eK) D azx+ BK.

Let 2 = ax + By, where y € K. Clearly, z € K. Write z =z + B(y — x).
Theny—x € 2K,s0z€ x+ 2K = x + K, as required.
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Random embedding into ¢
Combining Theorem 3 and Fact we get
Theorem 4. Let 0 < e < 1 and n < logN/2In(4/e). Let K be a

symmetric conver body in R"™. Let Xq,..., Xy be independent random
vectors uniformly distributed on K°. Consider I : R™ — R whose rows

are X1,..., XN
Then with probability close to 1 we have, for x € R",

(1 =¢) [lz]lx < IT2]lo < |2 x-

For sections of the cube (1 + €)-isomorphic to K:

n . log N
there exists a section if N > (g) , equivalently, n < log(g);
og p
log N
a random section if n < 06 i~
210g(g)
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Random Euclidean sections of the cube

X1, ..., Xy independent random vectors uniformly distributed on S™~1.
Let A={Xy,...,Xn}. T:R*"—=RN T'z=37" (z,X;)e,.

For any y € S™~! the normalized Lebesgue measure of a cap
{zeS™ ! | |z—y|<e}
is larger than or equal to (¢/2)™.

Theorem 5. Let 0 <e <1 and n <log N/2log(4/¢).
With probability close to 1, A forms an e-net on S™ 1, and the matriz
I' satisfies, for all x € R™,

(1—¢) |z| < |Teflec < ],
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Random spherical sections of the cube

@ the unit ball of /Y (i.e. the N-dimensional cube).
By Theorem 5, a random section (by E := I'R™) is almost an ellipsoid.

I'By cQNEC(1-¢) ' TBY.

On /X there is the natural Euclidean norm, we want to compare Q N E to
a standard Euclidean ball of a certain radius.

We show that I'BY is, up to %—J_FZ equivalent to the standard Euclidean ball

of radius \/N/n.

Thus a random section is almost spherical E :=TR"

1
(1—e)/N/nByNECQNEC 1+€\/N/nB§LﬂE.

— &
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Random spherical sections of the cube |l

Theorem 6. Under the assumptions of Theorem 5, with probability close
to 1, for all z € E =T'R"™ we have

1 —¢ N 1
2 <A/ = l2lloe € — 2]
1+ ¢ n 1 —¢

Lemma. Let 0 < e <1 and let N > n3/e*. With probability close to 1,

(1 =¢)lz| < [Tafy/n/N < (1+¢)|z,

for every x € R,

We show: for any 6 >0, P{||FIT*T —I|| <d}>1—0" Thus \/{T is
almost an isometry of the Euclidean norm.
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Dimension of random Euclidean sections |

Let 0 < e < 1. Whenever
n <log N /2log(4/¢),

then we produced a random embedding of /% in ¢ .
It is given by I' : R® — R,

Known: if E C /Y is (1 + €)-Euclidean then
dim F < C'log N/log(1/¢).
So the dimension n of a random embedding I' — as a function of ¢ —

is (asymptotically) as large as a dimension of a Euclidean embedding
can be, for any embedding.
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Dimension of random Euclidean sections |l

If G a matrix with independent N (0, 1) Gaussian entries, then n satisfying
n < clog N

is sufficient to get (1 + €)-embedding with large probability (Schechtman).

This is optimal if one requires large probability in the Haar — rotational
invariant — measure on the Grassman manifold)

Randomness given by I' allows as large dimension of sections as can be
(even for deterministic embeddings). Rotational invariant randomness much
more restrictive.
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