Anti-concentration Inequalities

Roman Vershynin Mark Rudelson

University of California, Davis
University of Missouri-Columbia

Phenomena in High Dimensions
Third Annual Conference
Samos, Greece
June 2007

Concentration and Anti-concentration

- Concentration phenomena: Nice random variables X are concentrated about their means.
- Examples:

1. Probability theory: $X=$ sum of independent random variables (concentration inequalities: Chernoff, Bernstein, Bennett, large deviation theory).
2. Geometric functional analysis: $X=$ Lipschitz function on the Euclidean sphere.

- How strong concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).
- Anti-concentration phenomena* nice random variables S concentrate no stronger than a Gaussian. (Locally well spread).

Concentration and Anti-concentration

- Concentration phenomena: Nice random variables X are concentrated about their means.
- Examples:

1. Probability theory: $X=$ sum of independent random variables (concentration inequalities: Chernoff, Bernstein, Bennett, ... ; large deviation theory).
2. Geometric functional analysis: $X=$ Lipschitz function on the Euclidean sphere.

- How strong concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).
- Anti-concentration phenomena: nice random variables S concentrate no stronger than a Gaussian. (Locally well spread)

Concentration and Anti-concentration

- Concentration phenomena: Nice random variables X are concentrated about their means.
- Examples:

1. Probability theory: $X=$ sum of independent random variables (concentration inequalities: Chernoff, Bernstein, Bennett, ...; large deviation theory).
2. Geometric functional analysis: $X=$ Lipschitz function on the Euclidean sphere.

- How strong concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).
- Anti-concentration phenomena: nice random variables S concentrate no stronger than a Gaussian. (Locally well spread)

Concentration and Anti-concentration

- Concentration phenomena: Nice random variables X are concentrated about their means.
- Examples:

1. Probability theory: $X=$ sum of independent random variables (concentration inequalities: Chernoff, Bernstein, Bennett, ...; large deviation theory).
2. Geometric functional analysis: $X=$ Lipschitz function on the Euclidean sphere.

- How strong concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).
- Anti-concentration phenomena: nice random variables S concentrate no stronger than a Gaussian. (Locally well spread).

Concentration and Anti-concentration

- Concentration inequalities:

$$
\mathbb{P}(|X-\mathbb{E} X|>\varepsilon) \leq ?
$$

- Anti-concentration inequalities: for a given (or all) v ,

$$
\mathbb{P}(|X-v| \leq \varepsilon) \leq ?
$$

- Concentration is better understood than anti-concentration.

Concentration and Anti-concentration

- Concentration inequalities:

$$
\mathbb{P}(|X-\mathbb{E} X|>\varepsilon) \leq ?
$$

- Anti-concentration inequalities: for a given (or all) v,

$$
\mathbb{P}(|X-v| \leq \varepsilon) \leq ?
$$

- Concentration is better understood than anti-concentration.

Concentration and Anti-concentration

- Concentration inequalities:

$$
\mathbb{P}(|X-\mathbb{E} X|>\varepsilon) \leq ?
$$

- Anti-concentration inequalities: for a given (or all) v,

$$
\mathbb{P}(|X-v| \leq \varepsilon) \leq ?
$$

- Concentration is better understood than anti-concentration.

Anti-concentration

Problem
Estimate Lévy's concentration function of a random variable X :

$$
p_{\varepsilon}(X):=\sup _{v \in \mathbb{R}} \mathbb{P}(|X-v| \leq \varepsilon)
$$

Probability Theory.

- For sums of independent random variables, studied by [Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esséen, Halasz, ...]
- For random processes (esp. Brownian motion), see the survey [Li-Shao]

Anti-concentration

Problem

Estimate Lévy's concentration function of a random variable X :

$$
p_{\varepsilon}(X):=\sup _{v \in \mathbb{R}} \mathbb{P}(|X-v| \leq \varepsilon) .
$$

1. Probability Theory.

- For sums of independent random variables, studied by [Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esséen, Halasz, ...]
- For random processes (esp. Brownian motion), see the survey [Li-Shao]

Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $=1$ and Lipschitz constant $=L$. Then

$$
\sigma(x:|f(x)| \leq \varepsilon) \leq \varepsilon^{c / L^{2}} .
$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].
- Interpretation. $K \subseteq \mathbb{R}^{n}:$ convex, symmetric set; $f(x)=\|x\|_{K}$
SBPT: asymptotic "dimension" of the spikes (parts of K far from the origin) is

Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $=1$ and Lipschitz constant $=L$. Then

$$
\sigma(x:|f(x)| \leq \varepsilon) \leq \varepsilon^{c / L^{2}} .
$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].
- Interpretation. $K \subseteq \mathbb{R}^{n}$: convex, symmetric SBPT: asymptotic "dimension" of the spikes (parts of K far from the origin) is

Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $=1$ and Lipschitz constant $=L$. Then

$$
\sigma(x:|f(x)| \leq \varepsilon) \leq \varepsilon^{c / L^{2}} .
$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].
- Interpretation. $K \subseteq \mathbb{R}^{n}$: convex, symmetric set; $f(x)=\|x\|_{K}$.
SBPT: asymptotic "dimension" of the spikes (parts of K far from the origin) is $\gtrsim 1 / L^{2}$.

Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $=1$ and Lipschitz constant $=L$. Then

$$
\sigma(x:|f(x)| \leq \varepsilon) \leq \varepsilon^{c / L^{2}} .
$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].
- Interpretation. $K \subseteq \mathbb{R}^{n}$: convex, symmetric set; $f(x)=\|x\|_{K}$.
SBPT: asymptotic "dimension" of the spikes (parts of K far from the origin) is $\gtrsim 1 / L^{2}$.
- Applied to Dvoretzky-type thms in [Klartag-V.]

Anti-concentration

$$
p_{\varepsilon}(X):=\sup _{v \in \mathbb{R}} \mathbb{P}(|X-v| \leq \varepsilon)
$$

- What estimate can we expect?
- For every random variable X with density, we have
- If X is discrete, this fails for small ε (because of the atoms), so we can only expect

Anti-concentration

$$
p_{\varepsilon}(X):=\sup _{v \in \mathbb{R}} \mathbb{P}(|X-v| \leq \varepsilon)
$$

- What estimate can we expect?
- For every random variable X with density, we have

$$
p_{\varepsilon}(X) \sim \varepsilon
$$

- If X is discrete, this fails for small ε (because of the atoms), so we can only expect

Anti-concentration

$$
p_{\varepsilon}(X):=\sup _{v \in \mathbb{R}} \mathbb{P}(|X-v| \leq \varepsilon)
$$

- What estimate can we expect?
- For every random variable X with density, we have

$$
p_{\varepsilon}(X) \sim \varepsilon
$$

- If X is discrete, this fails for small ε (because of the atoms), so we can only expect

$$
p_{\varepsilon}(X) \lesssim \varepsilon+\text { measure of an atom. }
$$

Anti-concentration

- Classical example: Sums of independent random variables

$$
S:=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

where ξ_{1}, \ldots, ξ_{n} are i.i.d. (we can think of ± 1), and $a=\left(a_{1}, \ldots, a_{n}\right)$ is a fixed vector of real coefficients

- An ideal estimate on the concentration function would be
where $e^{-c n}$ accounts for the size of atoms of S.

Anti-concentration

- Classical example: Sums of independent random variables

$$
S:=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

where ξ_{1}, \ldots, ξ_{n} are i.i.d. (we can think of ± 1), and $a=\left(a_{1}, \ldots, a_{n}\right)$ is a fixed vector of real coefficients

- An ideal estimate on the concentration function would be

$$
p_{\varepsilon}(a):=p_{\varepsilon}(S) \lesssim \varepsilon /\|a\|_{2}+e^{-c n}
$$

where $e^{-c n}$ accounts for the size of atoms of S.

Anti-concentration

- Ideal estimate:

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) \lesssim \varepsilon /\|a\|_{2}+e^{-c n} .
$$

- Trivial example: Gaussian sums,
with $\xi_{k}=$ standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.
- Nontrivial example: Bernoulli sums,
with $\xi_{k}= \pm 1$ symmetric i.i.d. random variables.
- The problem for Bernoulli sums is nontrivial even for $\varepsilon=0$, i.e. estimate the size of atoms of S.

This is the most studied case in the literature.

Anti-concentration

- Ideal estimate:

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) \lesssim \varepsilon /\|a\|_{2}+e^{-c n}
$$

- Trivial example: Gaussian sums, with $\xi_{k}=$ standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.
- Nontrivial example: Bernoulli sums, with $\xi_{k}= \pm 1$ symmetric i.i.d. random variables.
- The problem for Bernoulli sums is nontrivial even for $\varepsilon=0$, i.e. estimate the size of atoms of S. This is the most studied case in the literature.

Anti-concentration

- Ideal estimate:

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) \lesssim \varepsilon /\|a\|_{2}+e^{-c n}
$$

- Trivial example: Gaussian sums, with $\xi_{k}=$ standard normal i.i.d. random variables. The ideal estimate holds even without the exponential term.
- Nontrivial example: Bernoulli sums, with $\xi_{k}= \pm 1$ symmetric i.i.d. random variables.
- The problem for Bernoulli sums is nontrivial even for $\varepsilon=0$, i.e. estimate the size of atoms of S.

This is the most studied case in the lite rature.

Anti-concentration

- Ideal estimate:

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) \lesssim \varepsilon /\|a\|_{2}+e^{-c n}
$$

- Trivial example: Gaussian sums, with $\xi_{k}=$ standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.
- Nontrivial example: Bernoulli sums, with $\xi_{k}= \pm 1$ symmetric i.i.d. random variables.
- The problem for Bernoulli sums is nontrivial even for $\varepsilon=0$, i.e. estimate the size of atoms of S.

This is the most studied case in the literature.

Application: Random matrices

This was our main motivation.

- A : an $n \times n$ matrix with i.i.d. entries. What is the probability that A is singular? Ideal answer: $e^{-c n}$.
- Geometric picture.

Let X_{k} denote the column vectors of A.
A nonsingular $\Rightarrow X_{1} \notin \operatorname{span}\left(X_{2}, \ldots, X_{n}\right):=H$

- We condition on H (i.e. on X_{2}, \ldots, X_{n}); let a be the normal of H.

A nonsingular $\Rightarrow\left\langle a, X_{1}\right\rangle \neq 0$.
Write this in coordinates for $\boldsymbol{a}=\left(a_{k}\right)_{1}^{n}$ and $X=\left(\xi_{k}\right)_{1}^{n}$ (i.i.d):

- Thus, in order to solve the invertibility problem, we have to prove an anti-concentration inequality.

Application: Random matrices

This was our main motivation.

- A : an $n \times n$ matrix with i.i.d. entries. What is the probability that A is singular? Ideal answer: $e^{-c n}$.
- Geometric picture.

Let X_{k} denote the column vectors of A. A nonsingular $\Rightarrow X_{1} \notin \operatorname{span}\left(X_{2}, \ldots, X_{n}\right):=H$

A nonsingular $\Rightarrow\left\langle a, X_{1}\right\rangle \neq 0$.
Write this in coordinates for $\boldsymbol{a}=\left(a_{k}\right)_{1}^{n}$ and $X=\left(\xi_{k}\right)_{1}^{n}$ (i.i.d):

Application: Random matrices

This was our main motivation.

- A : an $n \times n$ matrix with i.i.d. entries. What is the probability that A is singular? Ideal answer: $e^{-c n}$.
- Geometric picture.

Let X_{k} denote the column vectors of A.
A nonsingular $\Rightarrow X_{1} \notin \operatorname{span}\left(X_{2}, \ldots, X_{n}\right):=H$

- We condition on H (i.e. on X_{2}, \ldots, X_{n}); let a be the normal of H.
A nonsingular $\Rightarrow\left\langle a, X_{1}\right\rangle \neq 0$.
Write this in coordinates for $\boldsymbol{a}=\left(a_{k}\right)_{1}^{n}$ and $X=\left(\xi_{k}\right)_{1}^{n}$ (i.i.d):

$$
\begin{gathered}
A \text { is nonsingular } \Rightarrow \sum_{k=1}^{n} a_{k} \xi_{k} \neq 0 \\
\mathbb{P}(A \text { is singular }) \geq p_{0}(a)
\end{gathered}
$$

Application: Random matrices

This was our main motivation.

- A : an $n \times n$ matrix with i.i.d. entries. What is the probability that A is singular? Ideal answer: $e^{-c n}$.
- Geometric picture.

Let X_{k} denote the column vectors of A.
A nonsingular $\Rightarrow X_{1} \notin \operatorname{span}\left(X_{2}, \ldots, X_{n}\right):=H$

- We condition on H (i.e. on X_{2}, \ldots, X_{n}); let a be the normal of H.
A nonsingular $\Rightarrow\left\langle a, X_{1}\right\rangle \neq 0$.
Write this in coordinates for $\boldsymbol{a}=\left(a_{k}\right)_{1}^{n}$ and $X=\left(\xi_{k}\right)_{1}^{n}$ (i.i.d):

$$
A \text { is nonsingular } \Rightarrow \sum_{k=1}^{n} a_{k} \xi_{k} \neq 0
$$

$$
\mathbb{P}(A \text { is singular }) \geq p_{0}(a) .
$$

- Thus, in order to solve the invertibility problem, we have to prove an anti-concentration inequality.

See Mark Ridelson's talk.

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon)
$$

```
- For concentrated vectors, e.g. a=(1,1,0,\ldots,0),
po(a) = \frac{1}{2}= const.
There are lots of cancelations in the sum S=\pm1 土1
- For spread vectors, the small ball probability gets better:
for a = (1,1,1,\ldots,1), we have pon a)=(\begin{array}{c}{n}\\{n/2}\end{array})/\mp@subsup{2}{}{n}
- This is a general fact:
```

[Littlewood-Offord], [Erdös, 1945]

- Still 'ots of cancelations in the sum $S= \pm 1 \pm 1 \cdots \pm 1$ How can one prevent cancelations?

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- For concentrated vectors, e.g. $a=(1,1,0, \ldots, 0)$,
$p_{0}(a)=\frac{1}{2}=$ const.
There are lots of cancelations in the sum $S= \pm 1 \pm 1$.
- This is a general fact:

- Still lots of cancelations in the sum S How can one prevent cancelations?

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- For concentrated vectors, e.g. $a=(1,1,0, \ldots, 0)$, $p_{0}(a)=\frac{1}{2}=$ const.
There are lots of cancelations in the sum $S= \pm 1 \pm 1$.
- For spread vectors, the small ball probability gets better: for $a=(1,1,1, \ldots, 1)$, we have $p_{0}(a)=\binom{n}{n / 2} / 2^{n} \sim n^{-1 / 2}$.

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- For concentrated vectors, e.g. $a=(1,1,0, \ldots, 0)$,

$$
p_{0}(a)=\frac{1}{2}=\text { const. }
$$

There are lots of cancelations in the sum $S= \pm 1 \pm 1$.

- For spread vectors, the small ball probability gets better: for $a=(1,1,1, \ldots, 1)$, we have $p_{0}(a)=\binom{n}{n / 2} / 2^{n} \sim n^{-1 / 2}$.
- This is a general fact:

If $a \geq 1$ pointwise, then $p_{0}(a) \leq p_{0}(1,1, \ldots, 1) \sim n^{-1 / 2}$. [Littlewood-Offord], [Erdös, 1945].

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- For concentrated vectors, e.g. $a=(1,1,0, \ldots, 0)$,

$$
p_{0}(a)=\frac{1}{2}=\text { const. }
$$

There are lots of cancelations in the sum $S= \pm 1 \pm 1$.

- For spread vectors, the small ball probability gets better: for $a=(1,1,1, \ldots, 1)$, we have $p_{0}(a)=\binom{n}{n / 2} / 2^{n} \sim n^{-1 / 2}$.
- This is a general fact:

If $a \geq 1$ pointwise, then $p_{0}(a) \leq p_{0}(1,1, \ldots, 1) \sim n^{-1 / 2}$. [Littlewood-Offord], [Erdös, 1945].

- Still lots of cancelations in the sum $S= \pm 1 \pm 1 \cdots \pm 1$. How can one prevent cancelations?

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon)
$$

- Will be less cancelations if the coefficients are essentially different: For $a=(1,2,3, \ldots)$, we have $p_{0}(a)$
- This is a general fact:
[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].
- Still lots of cancelations in the sum $S= \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums?

For what vectors a is the concentration function $p_{0}(a)$ small?
E.g. exponential rather than polynomial.

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- Will be less cancelations if the coefficients are essentially different: For $a=(1,2,3, \ldots)$, we have $p_{0}(a) \sim n^{-3 / 2}$.
- This is a general fact:

- Still lots of cancelations in the sum $S= \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums?

For what vectors a is the concentration function $p_{0}(a)$ small?
E.g. exponential rather than polynomial.

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- Will be less cancelations if the coefficients are essentially different: For $a=(1,2,3, \ldots)$, we have $p_{0}(a) \sim n^{-3 / 2}$.
- This is a general fact:

If $\left|a_{j}-a_{k}\right| \geq 1$ for $k \neq j$, then $p_{1}(a) \lesssim n^{-3 / 2}$.
[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S= \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums? For what vectors a is the concentration function $p_{0}(a)$ small?

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- Will be less cancelations if the coefficients are essentially different: For $a=(1,2,3, \ldots)$, we have $p_{0}(a) \sim n^{-3 / 2}$.
- This is a general fact:

If $\left|a_{j}-a_{k}\right| \geq 1$ for $k \neq j$, then $p_{1}(a) \lesssim n^{-3 / 2}$.
[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S= \pm 1 \pm 2 \cdots \pm n$.

For what vectors a is the concentration function $p_{0}(a)$ small?

Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S=\sum a_{k} \xi_{k}$, estimate the concentration function

$$
p_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon) .
$$

- Will be less cancelations if the coefficients are essentially different: For $a=(1,2,3, \ldots)$, we have $p_{0}(a) \sim n^{-3 / 2}$.
- This is a general fact:

If $\left|a_{j}-a_{k}\right| \geq 1$ for $k \neq j$, then $p_{1}(a) \lesssim n^{-3 / 2}$.
[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S= \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums?

For what vectors a is the concentration function $p_{0}(a)$ small?
E.g. exponential rather than polynomial.

Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the Inverse Littlewood-Offord Phenomenon:
- The only source of cancelations in random sums $S=\sum \pm a_{k}$ is a rich additive structure of the coefficients a_{k}.
- Cancelations can only occur when the coefficients a_{k} are arithmetically commensurable. Specifically, if there are lots of cancelations, then the coefficients a_{k} can be embedded into a short arithmetic progression.
\square If the small ball probability $p_{\varepsilon}(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.

Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the Inverse Littlewood-Offord Phenomenon:
- The only source of cancelations in random sums $S=\sum \pm a_{k}$ is a rich additive structure of the coefficients a_{k}.
- Cancelations can only occur when the coefficients a_{k} are
arithmetically commensurable. Specifically, if there are lots of cancelations, then the coefficients a_{k} can be embedded into a short arithmetic progression.
\square
The Inverse Littlewood-Offord Phenomenon
If the small ball probability $p_{-}(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.

Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the Inverse Littlewood-Offord Phenomenon:
- The only source of cancelations in random sums $S=\sum \pm a_{k}$ is a rich additive structure of the coefficients a_{k}.
- Cancelations can only occur when the coefficients a_{k} are arithmetically commensurable. Specifically, if there are lots of cancelations, then the coefficients a_{k} can be embedded into a short arithmetic progression.

Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the Inverse Littlewood-Offord Phenomenon:
- The only source of cancelations in random sums $S=\sum \pm a_{k}$ is a rich additive structure of the coefficients a_{k}.
- Cancelations can only occur when the coefficients a_{k} are arithmetically commensurable. Specifically, if there are lots of cancelations, then the coefficients a_{k} can be embedded into a short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability $p_{\varepsilon}(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)
Let a_{1}, \ldots, a_{n} be integers, and let $A \geq 1, \delta \in(0,1)$. Suppose for the random Bernoulli sums one has

$$
p_{0}(a) \geq n^{-A} .
$$

Then all except $O_{A, \varepsilon}\left(n^{\delta}\right)$ coefficients a_{k} are contained in the Minkowski sum of $O(A / \delta)$ arithmetic progressions of lengths $n^{\mathrm{O}_{A, \delta}(1)}$.

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)
Let a_{1}, \ldots, a_{n} be integers, and let $A \geq 1, \delta \in(0,1)$. Suppose for the random Bernoulli sums one has

$$
p_{0}(a) \geq n^{-A} .
$$

Then all except $O_{A, s}\left(n^{\delta}\right)$ coefficients a_{k} are contained in the Minkowski sum of $O(A / \delta)$ arithmetic progressions of lengths $n^{O_{A, \delta}(1)}$.

- Usefulness. One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of a.

2. We are interested in general small ball probabilities $p_{\varepsilon}(a)$ rather than the measure of atoms $p_{0}(a)$

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)

Let a_{1}, \ldots, a_{n} be integers, and let $A \geq 1, \delta \in(0,1)$. Suppose for the random Bernoulli sums one has

$$
p_{0}(a) \geq n^{-A} .
$$

Then all except $O_{A, s}\left(n^{\delta}\right)$ coefficients a_{k} are contained in the Minkowski sum of $O(A / \delta)$ arithmetic progressions of lengths $n^{O_{A, \delta}(1)}$.

- Usefulness. One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of a.
- Shortcomings. 1. We often have real coefficients $a_{k}(\operatorname{not} \mathbb{Z})$.

2. We are interested in general small ball probabilities $p_{\varepsilon}(a)$ rather than the measure of atoms $p_{0}(a)$.

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)

Let a_{1}, \ldots, a_{n} be integers, and let $A \geq 1, \delta \in(0,1)$. Suppose for the random Bernoulli sums one has

$$
p_{0}(a) \geq n^{-A} .
$$

Then all except $O_{A, \varepsilon}\left(n^{\delta}\right)$ coefficients a_{k} are contained in the Minkowski sum of $O(A / \delta)$ arithmetic progressions of lengths $n^{O_{A, \delta}(1)}$.

- Usefulness. One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of a.
- Shortcomings. 1. We often have real coefficients $a_{k}(\operatorname{not} \mathbb{Z})$.

2. We are interested in general small ball probabilities $p_{\varepsilon}(a)$ rather than the measure of atoms $p_{0}(a)$.

- Problem. Develop the Inverse L.-O. Phenomenon over \mathbb{R}.

Essential integers

- For real coefficient vectors $a=\left(a_{1}, \ldots, a_{n}\right)$, the embedding into an arithmetic progression must clearly be approximate (near an arithmetic progression).
- Thus we shall work over the essential integer vectors: almost all their coefficients (99\%) are almost integers (± 0.1).

Essential integers

- For real coefficient vectors $a=\left(a_{1}, \ldots, a_{n}\right)$, the embedding into an arithmetic progression must clearly be approximate (near an arithmetic progression).
- Thus we shall work over the essential integer vectors: almost all their coefficients (99\%) are almost integers (± 0.1).

Embedding into arithmetic progressions via LCD

- Goal: embed a vector $a \in \mathbb{R}^{n}$ into a short arithmetic progression (essentially). What is its length?
$D(a)=D_{\alpha, \kappa}(a)=\inf \{t>0:$ ta is a nonzero essential integer $\}$
(all except κ coefficients of ta are of dist. a from nonzero integers) - For $a \in \mathbb{Q}^{n}$, this is the usual LCD.
- The vector $D(a)$ a (and thus a itself) essentially embeds into an arithmetic progression of length $\|D(a) a\|_{\infty} \lesssim D(a)$. So, $D(a)$ being small means that a has rich additive structure.
- Therefore, the Inverse L.-O. Phenomenon should be: if the small ball probability $p_{\varepsilon}(a)$ is large, then $D(a)$ is small.

Embedding into arithmetic progressions via LCD

- Goal: embed a vector $a \in \mathbb{R}^{n}$ into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of a:

$$
D(a)=D_{\alpha, \kappa}(a)=\inf \{t>0: \text { ta is a nonzero essential integer }\}
$$

(all except κ coefficients of ta are of dist. α from nonzero integers).

\square So, $D(a)$ being small means that a has rich additive structure.
\square

Embedding into arithmetic progressions via LCD

- Goal: embed a vector $a \in \mathbb{R}^{n}$ into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of a:

$$
D(a)=D_{\alpha, \kappa}(a)=\inf \{t>0: \text { ta is a nonzero essential integer }\}
$$

(all except κ coefficients of ta are of dist. α from nonzero integers).

- For $a \in \mathbb{Q}^{n}$, this is the usual LCD.

Coordinates of $D(a)$ a

arithmetic progression of length $\|D(a) a\|_{\infty} \lesssim D(a)$.
So, $D(a)$ being small means that a has rich additive structure.

Embedding into arithmetic progressions via LCD

- Goal: embed a vector $a \in \mathbb{R}^{n}$ into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of a:

$$
D(a)=D_{\alpha, \kappa}(a)=\inf \{t>0: \text { ta is a nonzero essential integer }\}
$$

(all except κ coefficients of ta are of dist. α from nonzero integers).

- For $a \in \mathbb{Q}^{n}$, this is the usual LCD.

Coordinates of $D(a)$ a

- The vector $D(a) a$ (and thus a itself) essentially embeds into an arithmetic progression of length $\|D(a) a\|_{\infty} \lesssim D(a)$.
So, $D(a)$ being small means that a has rich additive structure.
if the small ball probability $p_{\varepsilon}(a)$ is large,

Embedding into arithmetic progressions via LCD

- Goal: embed a vector $a \in \mathbb{R}^{n}$ into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of a:

$$
D(a)=D_{\alpha, \kappa}(a)=\inf \{t>0: \text { ta is a nonzero essential integer }\}
$$

(all except κ coefficients of ta are of dist. α from nonzero integers).

- For $a \in \mathbb{Q}^{n}$, this is the usual LCD.

Coordinates of $D(a)$ a

κ exceptional coordinates

- The vector $D(a) a$ (and thus a itself) essentially embeds into an arithmetic progression of length $\|D(a) a\|_{\infty} \lesssim D(a)$. So, $D(a)$ being small means that a has rich additive structure.
- Therefore, the Inverse L.-O. Phenomenon should be: if the small ball probability $p_{\varepsilon}(a)$ is large, then $D(a)$ is small.

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Anti-Concentration)
Consider a sum of independent random variables

$$
S=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

where ξ_{k} are i.i.d. with third moments and $C_{1} \leq\left|a_{k}\right| \leq C_{2}$ for all k. Then, for every $\alpha \in(0,1), \kappa \in(0, n)$ and $\varepsilon \geq 0$ one has

$$
p_{\varepsilon}(S) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right)+e^{-c \alpha^{2} \kappa} .
$$

Recall: $D_{\alpha, \kappa}(a)$ is the essential LCD of a ($\pm \alpha$ and up to κ coefficients).

Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Anti-Concentration)
Consider a sum of independent random variables

$$
S=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

where ξ_{k} are i.i.d. with third moments and $C_{1} \leq\left|a_{k}\right| \leq C_{2}$ for all k. Then, for every $\alpha \in(0,1), \kappa \in(0, n)$ and $\varepsilon \geq 0$ one has

$$
p_{\varepsilon}(S) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right)+e^{-c \alpha^{2} \kappa} .
$$

Recall: $D_{\alpha, \kappa}(a)$ is the essential LCD of a ($\pm \alpha$ and up to κ coefficients). Partial case:

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Partial case:

- $\varepsilon=0$; thus $p_{0}(a)$ is the measure of atoms
- accuracy $\alpha=0.1$
- number of exceptional coefficients $\kappa=0.01 n$:
- By controlling the additive structure of a (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in n.

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Partial case:

- $\varepsilon=0$; thus $p_{0}(a)$ is the measure of atoms
- accuracy $\alpha=0.1$
- number of exceptional coefficients $\kappa=0.01 n$:

Inverse Littlewood-Offord Phenomenon

 99% of the coefficients of a are within 0.1 of an arithmetic progression of length $\sim n^{-1 / 2} / p_{0}(a)$.
Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Partial case:

- $\varepsilon=0$; thus $p_{0}(a)$ is the measure of atoms
- accuracy $\alpha=0.1$
- number of exceptional coefficients $\kappa=0.01 n$:

Inverse Littlewood-Offord Phenomenon

99% of the coefficients of a are within 0.1 of an arithmetic progression of length $\sim n^{-1 / 2} / p_{0}(a)$.

- By controlling the additive structure of a (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in n.

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Partial case:

- $\varepsilon=0$; thus $p_{0}(a)$ is the measure of atoms
- accuracy $\alpha=0.1$
- number of exceptional coefficients $\kappa=0.01 n$:

Inverse Littlewood-Offord Phenomenon

99% of the coefficients of a are within 0.1 of an arithmetic progression of length $\sim n^{-1 / 2} / p_{0}(a)$.

- By controlling the additive structure of a (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in n.

Examples:

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{k}}\left(\varepsilon+\frac{1}{D_{\alpha, k}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Examples. $\varepsilon=0$, accuracy $\alpha=0.1$, exceptional coeffs $\kappa=0.01 n$:

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Examples. $\varepsilon=0$, accuracy $\alpha=0.1$, exceptional coeffs $\kappa=0.01 n$:

- $a=(1,1, \ldots, 1)$. Then $D(a) \gtrsim$ const. Thus (ILO) gives

$$
p_{0}(a) \lesssim n^{-1 / 2} . \quad \text { Optimal (middle binomial). }
$$

- $a=(1,2, \ldots, n)$. To apply (ILO), we normalize and truncate:

The LCD of such vector is $\gtrsim n$. Then (ILO) gives

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Examples. $\varepsilon=0$, accuracy $\alpha=0.1$, exceptional coeffs $\kappa=0.01 n$:

- $a=(1,1, \ldots, 1)$. Then $D(a) \gtrsim$ const. Thus (ILO) gives

$$
p_{0}(a) \lesssim n^{-1 / 2} . \quad \text { Optimal (middle binomial). }
$$

- $a=(1,2, \ldots, n)$. To apply (ILO), we normalize and truncate:

$$
p_{0}(a)=p_{0}\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) \leq p_{0}\left(\frac{n / 2}{n}, \frac{n / 2+1}{n}, \ldots, \frac{n}{n}\right)
$$

The LCD of such vector is $\gtrsim n$. Then (ILO) gives

$$
p_{0}(a) \lesssim n^{-3 / 2} . \quad \text { Optimal. }
$$

Anti-concentration: the Littlewood-Offord Phenomenon

$$
\begin{equation*}
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right) \quad \text { if all }\left|a_{k}\right| \sim \text { const. } \tag{ILO}
\end{equation*}
$$

Examples. $\varepsilon=0$, accuracy $\alpha=0.1$, exceptional coeffs $\kappa=0.01 n$:

- $a=(1,1, \ldots, 1)$. Then $D(a) \gtrsim$ const. Thus (ILO) gives

$$
p_{0}(a) \lesssim n^{-1 / 2} . \quad \text { Optimal (middle binomial). }
$$

- $a=(1,2, \ldots, n)$. To apply (ILO), we normalize and truncate:

$$
p_{0}(a)=p_{0}\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) \leq p_{0}\left(\frac{n / 2}{n}, \frac{n / 2+1}{n}, \ldots, \frac{n}{n}\right)
$$

The LCD of such vector is $\gtrsim n$. Then (ILO) gives

$$
p_{0}(a) \lesssim n^{-3 / 2} . \quad \text { Optimal. }
$$

- a more irregular \Rightarrow can reduce $p_{0}(a)$ further.

Soft approach

- We will sketch the proof.

There are two approaches, soft and ergodic.

- Soft approach: deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum

$$
S \approx \text { Gaussian }
$$

Hence can approximate the concentration function

$$
p_{\varepsilon}(S) \approx p_{\varepsilon}(\text { Gaussian }) \sim \varepsilon
$$

- For this, one uses a non-asymptotic version of CLT [Berry-Esséen]:

Soft approach

- We will sketch the proof.

There are two approaches, soft and ergodic.

- Soft approach: deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum
$S \approx$ Gaussian.
Hence can approximate the concentration function
\square
- For this, one uses a non-asymptotic version of CLT [Berry-Esséen]:

Soft approach

- We will sketch the proof.

There are two approaches, soft and ergodic.

- Soft approach: deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum

$$
S \approx \text { Gaussian }
$$

Hence can approximate the concentration function

$$
p_{\varepsilon}(S) \approx p_{\varepsilon}(\text { Gaussian }) \sim \varepsilon
$$

- For this, one uses a non-asymptotic version of CLT [Berry-Esséen]:

Soft approach

- We will sketch the proof.

There are two approaches, soft and ergodic.

- Soft approach: deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum

$$
S \approx \text { Gaussian }
$$

Hence can approximate the concentration function

$$
p_{\varepsilon}(S) \approx p_{\varepsilon}(\text { Gaussian }) \sim \varepsilon
$$

- For this, one uses a non-asymptotic version of CLT [Berry-Esséen]:

Soft approach

Theorem (Berry-Esséen's Central Limit Theorem)

Consider a sum of independent random variables $S=\sum a_{k} \xi_{k}$, where ξ_{k} are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$
\left|\mathbb{P}\left(S /\|a\|_{2} \leq t\right)-\mathbb{P}(g \leq t)\right| \lesssim\left(\frac{\|a\|_{3}}{\|a\|_{2}}\right)^{3} \quad \text { for every } t .
$$

Soft approach

Theorem (Berry-Esséen's Central Limit Theorem)

Consider a sum of independent random variables $S=\sum a_{k} \xi_{k}$, where ξ_{k} are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$
\left|\mathbb{P}\left(S /\|a\|_{2} \leq t\right)-\mathbb{P}(g \leq t)\right| \lesssim\left(\frac{\|a\|_{3}}{\|a\|_{2}}\right)^{3} \quad \text { for every } t
$$

- The more spread the coefficient vector a, the better (RHS smaller). RHS minimized for $a=(1,1, \ldots, 1)$, for which it is $\left(\frac{n^{1 / 3}}{n^{1 / 2}}\right)^{3}=n^{-1 / 2}$. Thus the best bound the soft approach gives is $p_{0}(a) \leq n^{-1 / 2}$.

Soft approach

Theorem (Berry-Esséen's Central Limit Theorem)

Consider a sum of independent random variables $S=\sum a_{k} \xi_{k}$, where ξ_{k} are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$
\left|\mathbb{P}\left(S /\|a\|_{2} \leq t\right)-\mathbb{P}(g \leq t)\right| \lesssim\left(\frac{\|a\|_{3}}{\|a\|_{2}}\right)^{3} \quad \text { for every } t
$$

- The more spread the coefficient vector a, the better (RHS smaller). RHS minimized for $a=(1,1, \ldots, 1)$, for which it is $\left(\frac{n^{1 / 3}}{n^{1 / 2}}\right)^{3}=n^{-1 / 2}$. Thus the best bound the soft approach gives is $p_{0}(a) \leq n^{-1 / 2}$.
- Anti-concentration inequalities can not be based on ℓ_{p} norms of the coefficient vector a (which works nicely for the concentration inequalities, e.g. Bernstein's!).

Soft approach

Theorem (Berry-Esséen's Central Limit Theorem)

Consider a sum of independent random variables $S=\sum a_{k} \xi_{k}$, where ξ_{k} are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$
\left|\mathbb{P}\left(S /\|a\|_{2} \leq t\right)-\mathbb{P}(g \leq t)\right| \lesssim\left(\frac{\|a\|_{3}}{\|a\|_{2}}\right)^{3} \quad \text { for every } t
$$

- The more spread the coefficient vector a, the better (RHS smaller). RHS minimized for $a=(1,1, \ldots, 1)$, for which it is $\left(\frac{n^{1 / 3}}{n^{1 / 2}}\right)^{3}=n^{-1 / 2}$. Thus the best bound the soft approach gives is $p_{0}(a) \leq n^{-1 / 2}$.
- Anti-concentration inequalities can not be based on ℓ_{p} norms of the coefficient vector a (which works nicely for the concentration inequalities, e.g. Bernstein's!).
- The ℓ_{p} norms do not distinguish between $(1,1, \ldots, 1)$ and $\left(1+\frac{1}{n}, 1+\frac{2}{n}, \ldots, 1+\frac{n}{n}\right)$, for which concentration functions are different. The norms feel the bulk and ignore the fluctuations.

Ergodic approach

Instead of applying Berry-Esséen's CLT directly, use a tool from its proof: Esséen's inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen's Inequality)

The concentration function of any random variable S is bounded by the L^{1} norm of its characteristic function $\phi(t)=\mathbb{E} \exp (i S t)$:

$$
p_{\varepsilon}(S) \lesssim \int_{-\pi / 2}^{\pi / 2}|\phi(t / \varepsilon)| d t
$$

Ergodic approach

Instead of applying Berry-Esséen's CLT directly, use a tool from its proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen's Inequality)

The concentration function of any random variable S is bounded by the L^{1} norm of its characteristic function $\phi(t)=\mathbb{E} \exp (i S t)$:

$$
p_{\varepsilon}(S) \lesssim \int_{-\pi / 2}^{\pi / 2}|\phi(t / \varepsilon)| d t .
$$

- Proof: take Fourier transform.

We work with the example of Bernoulli sums $\left(\xi_{k}= \pm 1\right)$.
By the independence, the characteristic function of S factors

Ergodic approach

Instead of applying Berry-Esséen's CLT directly, use a tool from its proof: Esséen's inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen's Inequality)

The concentration function of any random variable S is bounded by the L^{1} norm of its characteristic function $\phi(t)=\mathbb{E} \exp (i S t)$:

$$
p_{\varepsilon}(S) \lesssim \int_{-\pi / 2}^{\pi / 2}|\phi(t / \varepsilon)| d t .
$$

- Proof: take Fourier transform.
- We use Esséen's Inequality for the random sum $S=\sum_{1}^{n} a_{k} \xi_{k}$. We work with the example of Bernoulli sums ($\xi_{k}= \pm 1$). By the independence, the characteristic function of S factors

$$
\phi(t)=\prod_{1}^{n} \phi_{k}(t), \quad \phi_{k}(t)=\mathbb{E} \exp \left(i a_{k} \xi_{k} t\right)=\cos \left(a_{k} t\right) .
$$

Ergodic approach

Then

$$
|\phi(t)|=\prod_{1}^{n}\left|\cos \left(a_{k} t\right)\right| \leq \exp (-f(t))
$$

where

$$
f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

By Esséen's Inequality,

Ergodic approach

Then

$$
|\phi(t)|=\prod_{1}^{n}\left|\cos \left(a_{k} t\right)\right| \leq \exp (-f(t))
$$

where

$$
f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

By Esséen’s Inequality,

$$
\begin{aligned}
p_{\varepsilon}(S) & \lesssim \int_{-\pi / 2}^{\pi / 2}|\phi(t / \varepsilon)| d t \leq \int_{-\pi / 2}^{\pi / 2} \exp (-f(t / \varepsilon)) d t \\
& \sim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t
\end{aligned}
$$

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- Ergodic approach: regard t as time; $\varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon}=$ long term average.
- A system of n particles $a_{k} t$ that move along \mathbb{T} at speeds a_{k} :
- The estimate is poor precisely when $f(t)$ is small \Leftrightarrow most particles return to the origin, making $\sin ^{2}\left(a_{k} t\right)$ small.
- We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) .
$$

- Ergodic approach: regard t as time; $\varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon}=$ long term average.
- A system of n particles $a_{k} t$ that move along \mathbb{T} at speeds a_{k} :

- The estimate is poor precisely when $f(t)$ is small \Leftrightarrow most particles return to the origin, making $\sin ^{2}\left(a_{k} t\right)$ small.
- We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- Ergodic approach: regard t as time; $\varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon}=$ long term average.
- A system of n particles $a_{k} t$ that move along \mathbb{T} at speeds a_{k} :

- The estimate is poor precisely when $f(t)$ is small \Leftrightarrow most particles return to the origin, making $\sin ^{2}\left(a_{k} t\right)$ small.
- We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- Ergodic approach: regard t as time; $\varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon}=$ long term average.
- A system of n particles $a_{k} t$ that move along \mathbb{T} at speeds a_{k} :

- The estimate is poor precisely when $f(t)$ is small \Leftrightarrow most particles return to the origin, making $\sin ^{2}\left(a_{k} t\right)$ small.
- We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- We need to understand how particles can move in the system.
- Two extreme types of systems (common in ergodic theory):

1. Quasi-random ("mixing"). Particles move as if independent.
2. Quasi-neriodic Particles "stick together"

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- We need to understand how particles can move in the system.
- Two extreme types of systems (common in ergodic theory):

1. Quasi-random ("mixing"). Particles move as if independent.
2. Quasi-periodic. Particles "stick together".

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) .
$$

1. Quasi-random systems.

- By "independence", the event that most particles are near the origin is exponentially rare (frequency $e^{-c n}$).
- Away from the origin, $\sin ^{2}\left(a_{k} t\right) \geq$ const, thus $f(t) \sim c n$.
- This leads to the bound
(ε is due to a constant initial time to depart from the origin).
- This is an ideal bound. Quasi-random systems are good.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) .
$$

1. Quasi-random systems.

- By "independence", the event that most particles are near the origin is exponentially rare (frequency $e^{-c n}$).
- Away from the origin, $\sin ^{2}\left(a_{k} t\right) \geq$ const, thus $f(t) \sim c n$.
- This leads to the bound
(ε is due to a constant initial time to depart from the origin). - This is an ideal bound. Quasi-random systems are good.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

1. Quasi-random systems.

- By "independence", the event that most particles are near the origin is exponentially rare (frequency $e^{-c n}$).
- Away from the origin, $\sin ^{2}\left(a_{k} t\right) \geq$ const, thus $f(t) \sim c n$.
- This leads to the bound

$$
p_{\varepsilon}(S) \lesssim \varepsilon+e^{-c n} .
$$

(ε is due to a constant initial time to depart from the origin).

- This is an ideal bound. Quasi-random systems are good.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

1. Quasi-random systems.

- By "independence", the event that most particles are near the origin is exponentially rare (frequency $e^{-c n}$).
- Away from the origin, $\sin ^{2}\left(a_{k} t\right) \geq$ const, thus $f(t) \sim c n$.
- This leads to the bound

$$
p_{\varepsilon}(S) \lesssim \varepsilon+e^{-c n} .
$$

(ε is due to a constant initial time to depart from the origin).

- This is an ideal bound. Quasi-random systems are good.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

2. Quasi-periodic systems.

- Example. $a=(1,1, \ldots, 1)$. Move as one particle. Thus $f(t) \sim n \sin ^{2} t$, and integration gives $p_{\varepsilon}(S) \lesssim n^{-1 / 2}$.
- More general example. Rational coefficients with small LCD. Then $t a_{k}$ often becomes an integer, i.e. the particles often return to the origin together.
- Main observation. Small LCD is the only reason for the almost periodicity of the system:

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

2. Quasi-periodic systems.

- Example. $a=(1,1, \ldots, 1)$. Move as one particle. Thus $f(t) \sim n \sin ^{2} t$, and integration gives $p_{\varepsilon}(S) \lesssim n^{-1 / 2}$.
- More general example. Rational coefficients with small LCD. Then $t a_{k}$ often becomes an integer, i.e. the particles often return to the origin together.
- Main observation. Small LCD is the only reason for the almost periodicity of the system:

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

2. Quasi-periodic systems.

- Example. $a=(1,1, \ldots, 1)$. Move as one particle. Thus $f(t) \sim n \sin ^{2} t$, and integration gives $p_{\varepsilon}(S) \lesssim n^{-1 / 2}$.
- More general example. Rational coefficients with small LCD. Then $t a_{k}$ often becomes an integer, i.e. the particles often return to the origin together.
- Main observation. Small LCD is the only reason for the almost periodicity of the system:

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

Observation (Quasi-periodicity and LCD)
If a system $\left(t a_{k}\right)$ is quasi-periodic then essential LCD of $\left(a_{k}\right)$ is small.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) .
$$

Observation (Quasi-periodicity and LCD)
If a system $\left(t a_{k}\right)$ is quasi-periodic then essential LCD of $\left(a_{k}\right)$ is small.

- Proof. Assume most of $t a_{k}$ often return near the origin together say, with frequency ω (i.e. spend portion of time ω near the origin).

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) .
$$

Observation (Quasi-periodicity and LCD)

If a system $\left(t a_{k}\right)$ is quasi-periodic then essential LCD of $\left(a_{k}\right)$ is small.

- Proof. Assume most of $t a_{k}$ often return near the origin together say, with frequency ω (i.e. spend portion of time ω near the origin).
- Equivalently, ta becomes an essential integer with frequency ω.
\exists two instances $0<t_{1}-t_{2}<1 / \omega$ in which $t_{1} a$ and $t_{2} a$ are different
essential integers.
- Subtract $\Rightarrow\left(t_{2}-t_{1}\right)$ a is also an essential integer.

By the definition of the essential LCD,

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

Observation (Quasi-periodicity and LCD)

If a system $\left(t a_{k}\right)$ is quasi-periodic then essential LCD of $\left(a_{k}\right)$ is small.

- Proof. Assume most of ta_{k} often return near the origin together say, with frequency ω (i.e. spend portion of time ω near the origin).
- Equivalently, ta becomes an essential integer with frequency ω.
- Thus ta becomes essential integer twice within time $\sim \frac{1}{\omega}$. \exists two instances $0<t_{1}-t_{2}<1 / \omega$ in which $t_{1} a$ and $t_{2} a$ are different essential integers.

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

Observation (Quasi-periodicity and LCD)

If a system $\left(t a_{k}\right)$ is quasi-periodic then essential LCD of $\left(a_{k}\right)$ is small.

- Proof. Assume most of $t a_{k}$ often return near the origin together say, with frequency ω (i.e. spend portion of time ω near the origin).
- Equivalently, ta becomes an essential integer with frequency ω.
- Thus ta becomes essential integer twice within time $\sim \frac{1}{\omega}$. \exists two instances $0<t_{1}-t_{2}<1 / \omega$ in which $t_{1} a$ and $t_{2} a$ are different essential integers.
- Subtract $\Rightarrow\left(t_{2}-t_{1}\right) a$ is also an essential integer. By the definition of the essential LCD,

$$
D(a) \leq t_{2}-t_{1}<\frac{1}{\omega}
$$

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- Conclusion of the proof.

1. If the essential LCD $D(a)$ is large, then the system is not quasi-periodic \Rightarrow closer to quasi-random.
2. For quasi-random systems, the concentration function $p_{\varepsilon}(S)$ is small.

- Ultimately, the argument gives

Ergodic approach

$$
p_{\varepsilon}(S) \lesssim \varepsilon \int_{-1 / \varepsilon}^{1 / \varepsilon} \exp (-f(t)) d t, \quad \text { where } f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)
$$

- Conclusion of the proof.

1. If the essential LCD $D(a)$ is large, then the system is not quasi-periodic \Rightarrow closer to quasi-random.
2. For quasi-random systems, the concentration function $p_{\varepsilon}(S)$ is small.

- Ultimately, the argument gives

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{n}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c n}
$$

Improvements

[O.Friedland-S.Sodin] recently simplified the argument:

- Used a more convenient notion of essential integers as vectors in \mathbb{R}^{n} that can be approximated by integer vectors within $\alpha \sqrt{n}$ in Euclidean distance.
- Bypassed Halasz's regularity argument (which I skipped) using a direct and simple analytic bound.

Using the anti-concentration inequality

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{n}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c n} .
$$

- In order to use the anti-concentration inequality, we need to know that LCD of a is large.
- Is LCD large for typical (i.e. random) coefficient vectors a?
- For random matrix problems, $a=$ normal to the random hyperplane spanned by $n-1$ i.i.d. vectors X_{k} in \mathbb{R}^{n} :

Using the anti-concentration inequality

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{n}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c n} .
$$

- In order to use the anti-concentration inequality, we need to know that LCD of a is large.
- Is LCD large for typical (i.e. random) coefficient vectors a?
- For random matrix problems, $a=$ normal to the random hyperplane spanned by $n-1$ i.i.d. vectors X_{k} in \mathbb{R}^{n} :

Using the anti-concentration inequality

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{n}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c n} .
$$

- In order to use the anti-concentration inequality, we need to know that LCD of a is large.
- Is LCD large for typical (i.e. random) coefficient vectors a?
- For random matrix problems, $a=$ normal to the random hyperplane spanned by $n-1$ i.i.d. vectors X_{k} in \mathbb{R}^{n} :

Using the anti-concentration inequality

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{n}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c n} .
$$

- In order to use the anti-concentration inequality, we need to know that LCD of a is large.
- Is LCD large for typical (i.e. random) coefficient vectors a?
- For random matrix problems, $a=$ normal to the random hyperplane spanned by $n-1$ i.i.d. vectors X_{k} in \mathbb{R}^{n} :

- Random Normal Theorem: $D(a) \geq e^{c n}$ with probability $1-e^{-c n}$.

