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concentrated about their means.

@ Examples:
1. Probability theory: X = sum of independent random variables
(concentration inequalities: Chernoff, Bernstein, Bennett, ... ;
large deviation theory).
2.Geometric functional analysis: X = Lipschitz function on the
Euclidean sphere.

@ How strong concentration should one expect?
No stronger than a Gaussian (Central Limit Theorem).

@ Anti-concentration phenomena: nice random variables S
concentrate no stronger than a Gaussian.
(Locally well spread).
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@ Anti-concentration inequalities: for a given (or all) v,
P(IX —v| <e) L?

@ Concentration is better understood than anti-concentration.
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Problem
Estimate Lévy’'s concentration function of a random variable X:

p=(X) :=sup P(|]X —v| <e).
VER

1. Probability Theory.

@ For sums of independent random variables, studied by
[Lévy, Kolmogorov, Littlewood-Offord, Erdds, Esséen, Halasz, .. .]

@ For random processes (esp. Brownian motion), see the survey
[Li-Shao]
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2. Geometric Functional Analysis. For Lipschitz functions:
Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S"1, o),
whose average over the sphere = 1 and Lipschitz constant = L. Then

o(x : [f(x)] <€) < e/

@ Conjectured by V.; [Latala-Oleszkiewicz]
deduced the Theorem from the B-conjecture,
solved by [Cordero-Fradelizi-Maurey].

@ Interpretation. K C R": convex, symmetric
set; f(x) = [|x]|k-
SBPT: asymptotic “dimension” of the spikes
(parts of K far from the origin) is > 1/L2.

@ Applied to Dvoretzky-type thms in [Klartag-V.]
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@ What estimate can we expect?
@ For every random variable X with density, we have

P:(X) ~ e.

Y S

—&

@ If X is discrete, this fails for small £ (because of the atoms),
S0 we can only expect

p-(X) < € + measure of an atom.
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@ Classical example: Sums of independent random variables

n
S = Z a &k
k=1

where &1, ..., &, are i.i.d. (we can think of 1),
and a = (ay,...,an) is a fixed vector of real coefficients

@ An ideal estimate on the concentration function would be
p-(a) :=p(S) S ¢/llall2 +e ™",

where e~ " accounts for the size of atoms of S.
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@ Ideal estimate:

pe(a) = supP(|S —v| <¢) S ¢/lallz +e "
veR
@ Trivial example: Gaussian sums,
with & = standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.

@ Nontrivial example: Bernoulli sums,
with & = +1 symmetric i.i.d. random variables.

@ The problem for Bernoulli sums is nontrivial even for ¢ = 0,
i.e. estimate the size of atoms of S.
This is the most studied case in the literature.
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Application: Random matrices

This was our main motivation.

@ A: an n x n matrix with i.i.d. entries.
What is the probability that A is singular?
Ideal answer: e~ °",
@ Geometric picture.
Let Xy denote the column vectors of A.
A nonsingular = X; ¢ span(Xa,...,X,) :=H
@ We condition on H (i.e. on Xa, ..., Xp); let a be the normal of H.
A nonsingular = (a, X;1) # 0.
Write this in coordinates for a = (ax)] and X = (&)} (i.i.d):

n
A is nonsingular = Z aék # 0.
k=1
P(Ais singular) > po(a).
@ Thus, in order to solve the invertibility problem, we have to prove
an anti-concentration inequality. See Mark Ridelson’s talk.
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@ For concentrated vectors, e.g. a = (1,1,0,...,0),
po(a) = 3 = const.
There are lots of cancelations in the sum S = +1 + 1.
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@ This is a general fact:
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[Littlewood-Offord], [Erdos, 1945].
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Littlewood-Offord Problem.
For Bernoulli sums S = > ax&, estimate the concentration function

p-(a) =supP(|S —v| < ¢).
VER

@ Will be less cancelations if the coefficients are essentially different:
Fora=(1,2,3,...), we have pg(a) ~ n—3/2,
@ This is a general fact:

If |ay — ax| > 1 for k # j, then py(a) < n=3%/2.
[Erd6s-Moser, 1965], [Sarkozi-Szemerédi, 1965], [Halasz, 1977].

@ Still lots of cancelations inthe sumS = +1+2.--£n.

@ Question. How to prevent cancelations in random sums?
For what vectors a is the concentration function pg(a) small?
E.g. exponential rather than polynomial.
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@ [Tao-Vu, 2006] proposed an explanation for cancelations, which
they called the Inverse Littlewood-Offord Phenomenon:

@ The only source of cancelations in random sums S = > +ay
is a rich additive structure of the coefficients ay.

@ Cancelations can only occur when the coefficients ay are
arithmetically commensurable. Specifically, if there are lots of
cancelations, then the coefficients a, can be embedded into a
short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability p.(a) is large, then the coefficient vector a
can be embedded into a short arithmetic progression.
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Theorem (Tao-Vu)

Leta;,...,ay be integers, and let A > 1, 6 € (0,1). Suppose for the
random Bernoulli sums one has

po(a) > n=A.

Then all except OA,E(n‘S) coefficients ay are contained in the Minkowski
sum of O(A/4) arithmetic progressions of lengths n®a.s(1),
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@ Usefulness. One can reduce the small ball probability to an
arbitrary polynomial order by controlling the additive structure of a.

@ Shortcomings. 1. We often have real coefficients ax (not Z).
2. We are interested in general small ball probabilities p.(a) rather
than the measure of atoms pg(a).

@ Problem. Develop the Inverse L.-O. Phenomenon over R.
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@ For real coefficient vectors a = (ay, . .., an), the embedding
into an arithmetic progression must clearly be approximate
(near an arithmetic progression).

@ Thus we shall work over the essential integer vectors:
almost all their coefficients (99%) are almost integers (+0.1).
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@ Goal: embed a vector a € R" into a short arithmetic progression
(essentially). What is its length?
@ Bounded by the essential least common denominator (LCD) of a:

D(a) = D,,x(a) = inf{t > 0: tais a nonzero essential integer} )

(all except « coefficients of ta are of dist. « from nonzero integers).
@ Fora e Q", this is the usual LCD.

Coordinates of D(a)a

—t—d——t——t+——t+—+ S+ S——— £

+

K exceptional coordinates

@ The vector D(a)a (and thus a itself) essentially embeds into an
arithmetic progression of length ||D(a)a||l.. < D(a).
So, D(a) being small means that a has rich additive structure.
@ Therefore, the Inverse L.-O. Phenomenon should be:

if the small ball probability p.(a) is large, then D(a) is small.
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Theorem (Anti-Concentration)
Consider a sum of independent random variables

n
S=) ak
k=1

where & are i.i.d. with third moments and C; < |ax| < C, for all k.
Then, for every a € (0,1), x € (0,n) and € > 0 one has

) i e—Ca?k

P=(S) 5 \jg (e Do (a)
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Recall: D, «(a) is the essential LCD of a (£« and up to « coefficients).

Partial case:
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p-(a) < \/12 (5 + Dat@l)> if all |ax| ~ const. (ILO)

Examples. ¢ = 0, accuracy a = 0.1, exceptional coeffs x = 0.01n:
@ a=(1,1,...,1). Then D(a) 2 const. Thus (ILO) gives

po(a) <n~Y/2.  Optimal (middle binomial).
@ a=(1,2,...,n). To apply (ILO), we normalize and truncate:
B 12 n n/2 n/2+1 n
Po(a) = pO(ﬁvﬁa'--aﬁ) < po(T,T,---,ﬁ>
The LCD of such vector is = n. Then (ILO) gives
po(a) <n~%?.  Optimal.

@ a more irregular = can reduce po(a) further.
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Soft approach

@ We will sketch the proof.
There are two approaches, soft and ergodic.

@ Soft approach: deduce anti-concentration inequalities from
Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].

@ By CLT, the random sum
S =~ Gaussian.
Hence can approximate the concentration function
P:(S) =~ p-(Gaussian) ~ e.

@ For this, one uses a non-asymptotic version of CLT
[Berry-Esséen]:
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Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables S =} ay &,

where & are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then
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for every t.
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Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables S =} ay &,

where & are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

‘]P’(S/HaHz <t)-P(g < t)‘ < (Hz”z)s

@ The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized fora = (1,1,...,1), for which itis (57, - ) =n-1/2,
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Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables S =} ay &,
where & are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

a &
P(S/llaflz <t) —=P(g <t)| < <H5‘Hz) for every t.

@ The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized for a = (1,1,...,1), for which it is (”1?2) =n-1/2,
Thus the best bound the soft approach gives is po(a) < n~ /2,

@ Anti-concentration inequalities can not be based on ¢, norms of
the coefficient vector a (which works nicely for the concentration
inequalities, e.g. Bernstein’s!).

@ The ¢, norms do not distinguish between (1,1,...,1) and
(1+3,1+2...,1+1), for which concentration functions are
different. The norms feel the bulk and ignore the fluctuations.



Ergodic approach

Instead of applying Berry-Esséen’s CLT directly, use a tool from its
proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)

The concentration function of any random variable S is bounded by the
L! norm of its characteristic function ¢(t) = E exp(iSt):
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p:(S) < / 6(t/2)] dt.
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Ergodic approach

Instead of applying Berry-Esséen’s CLT directly, use a tool from its
proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)

The concentration function of any random variable S is bounded by the
L! norm of its characteristic function ¢(t) = E exp(iSt):

/2

p(S) < / 6(t/2)] dt.

—7/2

@ Proof: take Fourier transform.

@ We use Esséen’s Inequality for the random sum S = Y7 ay .
We work with the example of Bernoulli sums (& = £1).
By the independence, the characteristic function of S factors

o) =[] oc(t),  ok(t) = Eexp(iacét) = cos(axt).
1




Ergodic approach
Then

ﬁ cos(axt)| < exp(—f(t)),
1

where

= isinz(akt).
1



Ergodic approach
Then

n
— ] I cos(act) < exp(~(t)),
1
where
n
= sin(at).
1

By Esséen’s Inequality,

w/2

w/2
MSS[QWWMmSLQwWﬂWDm

1/e
Ng/ exp(—f(t)) dt.

—1/e
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Ergodic approach

1/e

p-(s) 5= [

exp(—f(t))dt,  wheref(t) = i sin?(axt).
—1/e 1

@ Ergodic approach: regard t as time; Ef—l{ja = long term average.
@ A system of n particles axt that move along T at speeds ay:

akt

0

@ The estimate is poor precisely when f(t) is small
< most particles return to the origin, making sinz(akt) small.

@ We are thus interested in the recurrence properties of the system.
How often do most particles return to the origin?
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Ergodic approach

1/e

p-(s) 5= [

exp(—f(t))dt,  wheref(t) = i sin?(axt).
—1/e 1

@ We need to understand how particles can move in the system.
@ Two extreme types of systems (common in ergodic theory):

1. Quasi-random (“mixing”). Particles move as if independent.

2. Quasi-periodic. Particles “stick together”.
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Ergodic approach

1/e

n
p<(S) < 5/ exp(—f(t)) dt, where f(t) = Zsinz(akt).
—1/e 1
1. Quasi-random systems.

@ By “independence”, the event that most particles are near the
origin is exponentially rare (frequency e=").
@ Away from the origin, sin?(axt) > const, thus f(t) ~ cn.



Ergodic approach

1/e

n
p<(S) < 5/ exp(—f(t)) dt, where f(t) = Zsinz(akt).
—1/e 1
1. Quasi-random systems.

@ By “independence”, the event that most particles are near the
origin is exponentially rare (frequency e=").

@ Away from the origin, sin?(axt) > const, thus f(t) ~ cn.

@ This leads to the bound

p:(S) Se+e

(¢ is due to a constant initial time to depart from the origin).
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1/e

n
p<(S) < 5/ exp(—f(t)) dt, where f(t) = Zsinz(akt).
—1/e 1
1. Quasi-random systems.

@ By “independence”, the event that most particles are near the
origin is exponentially rare (frequency e=").

@ Away from the origin, sin?(axt) > const, thus f(t) ~ cn.

@ This leads to the bound

p:(S) Se+e

(¢ is due to a constant initial time to depart from the origin).
@ This is an ideal bound. Quasi-random systems are good.
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2. Quasi-periodic systems.
@ Example. a = (1,1,...,1). Move as one particle.

Thus f(t) ~ nsin?t, and integration gives p.(S) < n—1/2,
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1/e

p-(s) 5= [

exp(—f(t))dt,  wheref(t) = i sin?(axt).
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2. Quasi-periodic systems.

@ Example. a = (1,1,...,1). Move as one particle.

Thus f(t) ~ nsin?t, and integration gives p.(S) < n—1/2,

@ More general example. Rational coefficients with small LCD. Then
tax often becomes an integer, i.e. the particles often return to the
origin together.

@ Main observation. Small LCD is the only reason for the almost
periodicity of the system:
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Observation (Quasi-periodicity and LCD)
If a system (tayx) is quasi-periodic then essential LCD of (ax) is small.
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@ Proof. Assume most of tay often return near the origin together —
say, with frequency w (i.e. spend portion of time w near the origin).

@ Equivalently, ta becomes an essential integer with frequency w.

@ Thus ta becomes essential integer twice within time ~ %
Jtwo instances 0 < t; — t, < 1/w in which t;a and tpa are different
essential integers.
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1/e

p-(s) 5= [

exp(—f(t))dt,  wheref(t) = i sin?(axt).
—1/e 1

Observation (Quasi-periodicity and LCD)
If a system (tayx) is quasi-periodic then essential LCD of (ax) is small. J

@ Proof. Assume most of tay often return near the origin together —
say, with frequency w (i.e. spend portion of time w near the origin).

@ Equivalently, ta becomes an essential integer with frequency w.

@ Thus ta becomes essential integer twice within time ~ %
Jtwo instances 0 < t; — t, < 1/w in which t;a and tpa are different
essential integers.

@ Subtract = (t, — t;)a is also an essential integer.

By the definition of the essential LCD,

1
D(a)gtz—t1<i. ]

w
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@ Conclusion of the proof.
1. If the essential LCD D(a) is large,
then the system is not quasi-periodic = closer to quasi-random.

2. For quasi-random systems,
the concentration function p.(S) is small.



Ergodic approach

1/e

p-(S) < a/ exp(—f(t))dt,  wheref(t) = isinz(akt).
1

—1/e

@ Conclusion of the proof.
1. If the essential LCD D(a) is large,
then the system is not quasi-periodic = closer to quasi-random.

2. For quasi-random systems,
the concentration function p.(S) is small.

@ Ultimately, the argument gives

p=(a) S \% (5 + D(la)> +e o



Improvements
[O.Friedland-S.Sodin] recently simplified the argument:

@ Used a more convenient notion of essential integers as
vectors in R" that can be approximated by integer vectors within
a+/n in Euclidean distance.

@ Bypassed Halasz’s regularity argument (which | skipped) using a
direct and simple analytic bound.



Using the anti-concentration inequality

P-(a) 5 s ) e
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~vn D(a)

@ In order to use the anti-concentration inequality, we need to know
that LCD of ais large.



Using the anti-concentration inequality

085 Ui (< ) e

@ In order to use the anti-concentration inequality, we need to know
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@ Is LCD large for typical (i.e. random) coefficient vectors a?
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@ In order to use the anti-concentration inequality, we need to know
that LCD of ais large.

@ Is LCD large for typical (i.e. random) coefficient vectors a?

@ For random matrix problems, a = normal to the random
hyperplane spanned by n — 1 i.i.d. vectors X in R":




Using the anti-concentration inequality

p.(2) S =+ gg) T

@ In order to use the anti-concentration inequality, we need to know
that LCD of ais large.

@ Is LCD large for typical (i.e. random) coefficient vectors a?

@ For random matrix problems, a = normal to the random
hyperplane spanned by n — 1 i.i.d. vectors Xy in R":

@ Random Normal Theorem: D(a) > e®" with probability 1 — e~°".



