Anti-concentration Inequalities

Roman Vershynin Mark Rudelson

University of California, Davis
University of Missouri-Columbia

Phenomena in High Dimensions
Third Annual Conference
Samos, Greece
June 2007
Concentration and Anti-concentration

- **Concentration phenomena**: Nice random variables X are concentrated about their means.

- **Examples**:
 1. **Probability theory**: $X = \text{sum of independent random variables}$ (concentration inequalities: Chernoff, Bernstein, Bennett, \ldots; large deviation theory).
 2. **Geometric functional analysis**: $X = \text{Lipschitz function on the Euclidean sphere}$.

- **How strong** concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).

- **Anti-concentration phenomena**: nice random variables S concentrate no stronger than a Gaussian. (Locally well spread).
Concentration and Anti-concentration

- **Concentration phenomena**: Nice random variables X are concentrated about their means.

- **Examples:**
 1. **Probability theory**: $X = \text{sum of independent random variables}$ (concentration inequalities: Chernoff, Bernstein, Bennett, . . . ; large deviation theory).
 2. **Geometric functional analysis**: $X = \text{Lipschitz function on the Euclidean sphere}.$

- **How strong** concentration should one expect?
 No stronger than a Gaussian (Central Limit Theorem).

- **Anti-concentration phenomena**: nice random variables S concentrate no stronger than a Gaussian.
 (Locally well spread).
Concentration and Anti-concentration

- **Concentration phenomena**: Nice random variables X are concentrated about their means.

- **Examples**:
 1. **Probability theory**: $X = \text{sum of independent random variables}$ (concentration inequalities: Chernoff, Bernstein, Bennett, \ldots; large deviation theory).
 2. **Geometric functional analysis**: $X = \text{Lipschitz function on the Euclidean sphere}$.

- **How strong** concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).

- **Anti-concentration phenomena**: nice random variables S concentrate no stronger than a Gaussian. (Locally well spread).
Concentration and Anti-concentration

- **Concentration phenomena**: Nice random variables X are concentrated about their means.

- **Examples**:
 1. **Probability theory**: $X = \text{sum of independent random variables}$ (concentration inequalities: Chernoff, Bernstein, Bennett, ...; large deviation theory).
 2. **Geometric functional analysis**: $X = \text{Lipschitz function on the Euclidean sphere}.$

- **How strong** concentration should one expect? No stronger than a Gaussian (Central Limit Theorem).

- **Anti-concentration phenomena**: nice random variables S concentrate *no stronger* than a Gaussian. (Locally well spread).
Concentration and Anti-concentration

- Concentration inequalities:
 \[\Pr(|X - \mathbb{E}X| > \varepsilon) \leq ? \]

- Anti-concentration inequalities: for a given (or all) \(v \),
 \[\Pr(|X - v| \leq \varepsilon) \leq ? \]

- Concentration is better understood than anti-concentration.
Concentration and Anti-concentration

- Concentration inequalities:
 \[P(|X - \mathbb{E}X| > \varepsilon) \leq ? \]

- Anti-concentration inequalities: for a given (or all) \(v \),
 \[P(|X - v| \leq \varepsilon) \leq ? \]

- Concentration is better understood than anti-concentration.
Concentration and Anti-concentration

- Concentration inequalities:

 \[\mathbb{P}(|X - \mathbb{E}X| > \varepsilon) \leq ? \]

- Anti-concentration inequalities: for a given (or all) \(v \),

 \[\mathbb{P}(|X - v| \leq \varepsilon) \leq ? \]

- Concentration is better understood than anti-concentration.
Anti-concentration

Problem

Estimate *Lévy’s concentration function* of a random variable X:

$$p_\varepsilon(X) := \sup_{v \in \mathbb{R}} \mathbb{P}(|X - v| \leq \varepsilon).$$

1. Probability Theory.
 - For *sums of independent random variables*, studied by [Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esséen, Halasz, ...]
 - For *random processes* (esp. Brownian motion), see the survey [Li-Shao]
Anti-concentration

Problem

Estimate Lévy’s concentration function of a random variable X:

$$p_\varepsilon(X) := \sup_{v \in \mathbb{R}} \mathbb{P}(|X - v| \leq \varepsilon).$$

1. Probability Theory.

- For sums of independent random variables, studied by [Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esséen, Halasz, ...]
- For random processes (esp. Brownian motion), see the survey [Li-Shao]
Anti-concentration

2. Geometric Functional Analysis. For \textit{Lipschitz functions}:

\textbf{Small Ball Probability Theorem}

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $= 1$ and Lipschitz constant $= L$. Then

$$\sigma(x : |f(x)| \leq \varepsilon) \leq \varepsilon^{c/L^2}.$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the \textit{B-conjecture}, solved by [Cordero-Fradelizi-Maurey].

- Interpretation. $K \subseteq \mathbb{R}^n$: convex, symmetric set; $f(x) = \|x\|_K$.
SBPT: asymptotic “dimension” of the spikes (parts of K far from the origin) is $\gtrsim 1/L^2$.

- Applied to Dvoretzky-type thms in [Klartag-V].
Small Ball Probability Theorem

Let \(f \) be a convex even function on the unit Euclidean sphere \((S^{n-1}, \sigma)\), whose average over the sphere = 1 and Lipschitz constant = \(L \). Then

\[
\sigma(x : |f(x)| \leq \varepsilon) \leq \varepsilon^{c/L^2}.
\]

Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the \textit{B-conjecture}, solved by [Cordero-Fradelizi-Maurey].

Interpretation. \(K \subseteq \mathbb{R}^n \): convex, symmetric set; \(f(x) = \|x\|_K \).

SBPT: asymptotic “dimension” of the spikes (parts of \(K \) far from the origin) is \(\gtrsim 1/L^2 \).

Applied to Dvoretzky-type thms in [Klartag-V].
Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $= 1$ and Lipschitz constant $= L$. Then

$$\sigma(x : |f(x)| \leq \varepsilon) \leq \varepsilon^{c/L^2}.$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].

- Interpretation. $K \subseteq \mathbb{R}^n$: convex, symmetric set; $f(x) = \|x\|_K$.

SBPT: asymptotic “dimension” of the spikes (parts of K far from the origin) is $\gtrsim 1/L^2$.

- Applied to Dvoretzky-type thms in [Klartag-V].
Anti-concentration

2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (S^{n-1}, σ), whose average over the sphere $= 1$ and Lipschitz constant $= L$. Then

$$\sigma(x : |f(x)| \leq \varepsilon) \leq \varepsilon^{c/L^2}.$$

- Conjectured by V.; [Latala-Oleszkiewicz] deduced the Theorem from the B-conjecture, solved by [Cordero-Fradelizi-Maurey].

- Interpretation. $K \subseteq \mathbb{R}^n$: convex, symmetric set; $f(x) = \|x\|_K$.

 SBPT: asymptotic “dimension” of the spikes (parts of K far from the origin) is $\gtrsim 1/L^2$.

- Applied to Dvoretzky-type thms in [Klartag-V.]
Anti-concentration

\[p_\varepsilon(X) := \sup_{v \in \mathbb{R}} \mathbb{P}(|X - v| \leq \varepsilon). \]

- What estimate can we expect?
- For every random variable \(X \) with density, we have
 \[p_\varepsilon(X) \sim \varepsilon. \]

- If \(X \) is discrete, this fails for small \(\varepsilon \) (because of the atoms), so we can only expect
 \[p_\varepsilon(X) \lesssim \varepsilon + \text{measure of an atom}. \]
Anti-concentration

\[p_\varepsilon(X) := \sup_{v \in \mathbb{R}} \mathbb{P}(|X - v| \leq \varepsilon). \]

- What estimate can we expect?
- For every random variable \(X \) with density, we have

\[p_\varepsilon(X) \sim \varepsilon. \]

If \(X \) is discrete, this fails for small \(\varepsilon \) (because of the atoms), so we can only expect

\[p_\varepsilon(X) \lessapprox \varepsilon + \text{measure of an atom}. \]
Anti-concentration

\[p_\varepsilon(X) := \sup_{v \in \mathbb{R}} \mathbb{P}(|X - v| \leq \varepsilon). \]

- What estimate can we expect?
- For every random variable \(X \) with density, we have \(p_\varepsilon(X) \sim \varepsilon \).

If \(X \) is discrete, this fails for small \(\varepsilon \) (because of the atoms), so we can only expect

\[p_\varepsilon(X) \lesssim \varepsilon + \text{measure of an atom}. \]
Anti-concentration

- Classical example: Sums of independent random variables

\[S := \sum_{k=1}^{n} a_k \xi_k \]

where \(\xi_1, \ldots, \xi_n \) are i.i.d. (we can think of \(\pm 1 \)), and \(a = (a_1, \ldots, a_n) \) is a fixed vector of real coefficients.

An ideal estimate on the concentration function would be

\[p_{\varepsilon}(a) := p_{\varepsilon}(S) \lesssim \varepsilon/\|a\|_2 + e^{-cn}, \]

where \(e^{-cn} \) accounts for the size of atoms of \(S \).
Anti-concentration

- **Classical example**: Sums of independent random variables
 \[S := \sum_{k=1}^{n} a_k \xi_k \]
 where \(\xi_1, \ldots, \xi_n \) are i.i.d. (we can think of \(\pm 1 \)), and \(a = (a_1, \ldots, a_n) \) is a fixed vector of real coefficients.

- **An ideal estimate** on the concentration function would be
 \[p_\varepsilon(a) := p_\varepsilon(S) \lesssim \varepsilon/\|a\|_2 + e^{-cn}, \]
 where \(e^{-cn} \) accounts for the size of atoms of \(S \).
Anti-concentration

○ Ideal estimate:

\[p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon) \lesssim \varepsilon / \|a\|_2 + e^{-cn}. \]

○ Trivial example: Gaussian sums,
 with \(\xi_k = \) standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.

○ Nontrivial example: Bernoulli sums,
 with \(\xi_k = \pm 1 \) symmetric i.i.d. random variables.
The problem for Bernoulli sums is nontrivial even for \(\varepsilon = 0 \),
i.e. estimate the size of atoms of \(S \).
This is the most studied case in the literature.
Anti-concentration

- **Ideal estimate:**
 \[p_{\varepsilon}(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon) \lesssim \varepsilon / \|a\|_2 + e^{-cn}. \]

- **Trivial example:** Gaussian sums,
 with \(\xi_k = \) standard normal i.i.d. random variables.
 The ideal estimate holds even without the exponential term.

- **Nontrivial example:** Bernoulli sums,
 with \(\xi_k = \pm 1 \) symmetric i.i.d. random variables.
 The problem for Bernoulli sums is nontrivial even for \(\varepsilon = 0 \),
 i.e. estimate the size of atoms of \(S \).
 This is the *most studied case* in the literature.
Anti-concentration

- Ideal estimate:

\[p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon) \lesssim \varepsilon/\|a\|_2 + e^{-cn}. \]

- Trivial example: Gaussian sums,
 with \(\xi_k = \) standard normal i.i.d. random variables.
 The ideal estimate holds even without the exponential term.

- Nontrivial example: Bernoulli sums,
 with \(\xi_k = \pm 1 \) symmetric i.i.d. random variables.
 The problem for Bernoulli sums is nontrivial even for \(\varepsilon = 0 \),
 i.e. estimate the size of atoms of \(S \).
 This is the most studied case in the literature.
Anti-concentration

- Ideal estimate:

\[p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon) \lesssim \varepsilon / \|a\|_2 + e^{-cn}. \]

- Trivial example: Gaussian sums, with \(\xi_k = \) standard normal i.i.d. random variables. The ideal estimate holds even without the exponential term.

- Nontrivial example: Bernoulli sums, with \(\xi_k = \pm 1 \) symmetric i.i.d. random variables.

- The problem for Bernoulli sums is nontrivial even for \(\varepsilon = 0 \), i.e. estimate the size of atoms of \(S \). This is the most studied case in the literature.
Application: Random matrices

This was our main motivation.

- **A:** an $n \times n$ matrix with i.i.d. entries.
 What is the probability that A is singular?
 Ideal answer: e^{-cn}.

- Geometric picture.
 Let X_k denote the column vectors of A.
 A nonsingular \Rightarrow $X_1 \not\in \text{span}(X_2, \ldots, X_n) := H$
 We condition on H (i.e. on X_2, \ldots, X_n); let a be the normal of H.
 A nonsingular $\Rightarrow \langle a, X_1 \rangle \neq 0$.
 Write this in coordinates for $a = (a_k)_1^n$ and $X = (\xi_k)_1^n$ (i.i.d):

 $$A \text{ is nonsingular} \Rightarrow \sum_{k=1}^n a_k \xi_k \neq 0.$$

 $$\mathbb{P}(A \text{ is singular}) \geq p_0(a).$$

- Thus, in order to solve the invertibility problem, we have to prove an anti-concentration inequality. See Mark Ridelson’s talk.
Application: Random matrices

This was our main motivation.

- **A**: an \(n \times n \) matrix with i.i.d. entries.
 What is the probability that \(A \) is singular?
 Ideal answer: \(e^{-cn} \).

- **Geometric picture.**
 Let \(X_k \) denote the column vectors of \(A \).
 \(A \) nonsingular \(\Rightarrow \) \(X_1 \not\in \text{span}(X_2, \ldots, X_n) := H \)

 - We condition on \(H \) (i.e. on \(X_2, \ldots, X_n \)); let \(a \) be the normal of \(H \).
 \(A \) nonsingular \(\Rightarrow \) \(\langle a, X_1 \rangle \neq 0 \).

 Write this in coordinates for \(a = (a_k)^n \) and \(X = (\xi_k)^n \) (i.i.d):

 \[
 A \text{ is nonsingular} \Rightarrow \sum_{k=1}^{n} a_k \xi_k \neq 0.
 \]

 \[
 \mathbb{P}(A \text{ is singular}) \geq p_0(a).
 \]

 Thus, in order to solve the invertibility problem, we \textit{have} to prove an anti-concentration inequality. See Mark Ridelson’s talk.
Application: Random matrices

This was our main motivation.

- A: an $n \times n$ matrix with i.i.d. entries.
 What is the probability that A is singular?
 Ideal answer: e^{-cn}.

- Geometric picture.
 Let X_k denote the column vectors of A.
 A nonsingular \Rightarrow $X_1 \not\in \text{span}(X_2, \ldots, X_n) := H$
 We condition on H (i.e. on X_2, \ldots, X_n); let a be the normal of H.
 A nonsingular $\Rightarrow \langle a, X_1 \rangle \neq 0$.
 Write this in coordinates for $a = (a_k)_1^n$ and $X = (\xi_k)_1^n$ (i.i.d):

 \[
 A \text{ is nonsingular } \Rightarrow \sum_{k=1}^{n} a_k \xi_k \neq 0.
 \]

 $\mathbb{P}(A \text{ is singular}) \geq \rho_0(a)$.

- Thus, in order to solve the invertibility problem, we have to prove an anti-concentration inequality. See Mark Ridelson’s talk.
Application: Random matrices

This was our main motivation.

- **A**: an \(n \times n \) matrix with i.i.d. entries. What is the probability that \(A \) is singular? Ideal answer: \(e^{-cn} \).

- **Geometric picture.**

 Let \(X_k \) denote the column vectors of \(A \).
 \(A \) nonsingular \(\Rightarrow \) \(X_1 \not\in \text{span}(X_2, \ldots, X_n) := H \)

 We condition on \(H \) (i.e. on \(X_2, \ldots, X_n \)); let \(a \) be the normal of \(H \).
 \(A \) nonsingular \(\Rightarrow \) \(\langle a, X_1 \rangle \neq 0 \).
 Write this in coordinates for \(a = (a_k)_1^n \) and \(X = (\xi_k)_1^n \) (i.i.d):

 \[
 A \text{ is nonsingular} \Rightarrow \sum_{k=1}^n a_k \xi_k \neq 0.
 \]

 \(\mathbb{P}(A \text{ is singular}) \geq p_0(a) \).

- Thus, in order to solve the invertibility problem, we have to prove an anti-concentration inequality. See Mark Ridelson’s talk.
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- For **concentrated vectors**, e.g. $a = (1, 1, 0, \ldots, 0)$, $p_0(a) = \frac{1}{2} = \text{const.}$
 There are lots of cancelations in the sum $S = \pm 1 \pm 1$.
- For **spread vectors**, the small ball probability gets better:
 for $a = (1, 1, 1, \ldots, 1)$, we have $p_0(a) = \binom{n}{n/2}/2^n \sim n^{-1/2}$.
- This is a general fact:

 If $a \geq 1$ pointwise, then $p_0(a) \leq p_0(1, 1, \ldots, 1) \sim n^{-1/2}$.

 [Littlewood-Offord], [Erdös, 1945].

- Still **lots of cancelations** in the sum $S = \pm 1 \pm 1 \cdots \pm 1$.
 How can one prevent cancelations?
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- For **concentrated vectors**, e.g. $a = (1, 1, 0, \ldots, 0)$, $p_0(a) = \frac{1}{2} = \text{const}$. There are lots of cancelations in the sum $S = \pm 1 \pm 1$.
- For **spread vectors**, the small ball probability gets better: for $a = (1, 1, 1, \ldots, 1)$, we have $p_0(a) = \left(\frac{n}{n/2}\right)/2^n \sim n^{-1/2}$.
- This is a general fact:

If $a \geq 1$ pointwise, then $p_0(a) \leq p_0(1, 1, \ldots, 1) \sim n^{-1/2}$. [Littlewood-Offord], [Erdös, 1945].

Still lots of cancelations in the sum $S = \pm 1 \pm 1 \cdots \pm 1$. How can one prevent cancelations?
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- For concentrated vectors, e.g. $a = (1, 1, 0, \ldots, 0)$, $p_0(a) = \frac{1}{2} = \text{const.}$
 There are lots of cancelations in the sum $S = \pm 1 \pm 1$.
- For spread vectors, the small ball probability gets better:
 for $a = (1, 1, 1, \ldots, 1)$, we have $p_0(a) = \binom{n}{n/2}/2^n \sim n^{-1/2}$.
- This is a general fact:

 If $a \geq 1$ pointwise, then $p_0(a) \leq p_0(1, 1, \ldots, 1) \sim n^{-1/2}$.

 [Littlewood-Offord], [Erdös, 1945].

Still lots of cancelations in the sum $S = \pm 1 \pm 1 \cdots \pm 1$.

How can one prevent cancelations?
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- For concentrated vectors, e.g. $a = (1, 1, 0, \ldots, 0)$, $p_0(a) = \frac{1}{2} = \text{const}$. There are lots of cancelations in the sum $S = \pm 1 \pm 1$.
- For spread vectors, the small ball probability gets better: for $a = (1, 1, 1, \ldots, 1)$, we have $p_0(a) = \left(\frac{n}{n/2}\right)/2^n \sim n^{-1/2}$.
- This is a general fact:

 If $a \geq 1$ pointwise, then $p_0(a) \leq p_0(1, 1, \ldots, 1) \sim n^{-1/2}$. [Littlewood-Offord, Erdős, 1945].

Still lots of cancelations in the sum $S = \pm 1 \pm 1 \cdots \pm 1$. How can one prevent cancelations?
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(\left| S - v \right| \leq \varepsilon).$$

- For **concentrated vectors**, e.g. $a = (1, 1, 0, \ldots, 0)$,
 $$p_0(a) = \frac{1}{2} = \text{const.}$$
 There are lots of cancelations in the sum $S = \pm 1 \pm 1$.
- For **spread vectors**, the small ball probability gets better:
 for $a = (1, 1, 1, \ldots, 1)$, we have
 $$p_0(a) = \binom{n}{n/2} / 2^n \sim n^{-1/2}.$$

This is a general fact:

If $a \geq 1$ pointwise, then

$$p_0(a) \leq p_0(1, 1, \ldots, 1) \sim n^{-1/2}.$$
[Littlewood-Offord], [Erdös, 1945].

- **Still lots of cancelations** in the sum $S = \pm 1 \pm 1 \cdots \pm 1$.
 How can one prevent cancelations?
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- Will be less cancelations if the coefficients are essentially different: For $a = (1, 2, 3, \ldots)$, we have $p_0(a) \sim n^{-3/2}$.
- This is a general fact:

If $|a_j - a_k| \geq 1$ for $k \neq j$, then $p_1(a) \lesssim n^{-3/2}$.

[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S = \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums? For what vectors a is the concentration function $p_0(a)$ small? E.g. exponential rather than polynomial.
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- Will be less cancelations if the coefficients are essentially different:
 For $a = (1, 2, 3, \ldots)$, we have $p_0(a) \sim n^{-3/2}$.

- This is a general fact:

 If $|a_j - a_k| \geq 1$ for $k \neq j$, then $p_1(a) \lesssim n^{-3/2}$.

 [Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S = \pm 1 \pm 2 \cdots \pm n$.

- Question. How to prevent cancelations in random sums?
 For what vectors a is the concentration function $p_0(a)$ small?
 E.g. exponential rather than polynomial.
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- Will be less cancelations if the coefficients are **essentially different**: For $a = (1, 2, 3, \ldots)$, we have $p_0(a) \sim n^{-3/2}$.

- This is a general fact:

 If $|a_j - a_k| \geq 1$ for $k \neq j$, then $p_1(a) \lesssim n^{-3/2}$.

 [Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S = \pm 1 \pm 2 \cdots \pm n$.

- Question. **How to prevent cancelations in random sums?** For what vectors a is the concentration function $p_0(a)$ small? E.g. exponential rather than polynomial.
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem. For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- Will be less cancelations if the coefficients are essentially different: For $a = (1, 2, 3, \ldots)$, we have $p_0(a) \sim n^{-3/2}$.

- This is a general fact:

If $|a_j - a_k| \geq 1$ for $k \neq j$, then $p_1(a) \lesssim n^{-3/2}$.

- [Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still *lots of cancelations* in the sum $S = \pm 1 \pm 2 \cdots \pm n$.

- Question. *How to prevent cancelations in random sums?* For what vectors a is the concentration function $p_0(a)$ small? E.g. exponential rather than polynomial.
Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.

For Bernoulli sums $S = \sum a_k \xi_k$, estimate the concentration function

$$p_\varepsilon(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \leq \varepsilon).$$

- Will be less cancelations if the coefficients are essentially different:
 For $a = (1, 2, 3, \ldots)$, we have $p_0(a) \sim n^{-3/2}$.
- This is a general fact:

If $|a_j - a_k| \geq 1$ for $k \neq j$, then $p_1(a) \lesssim n^{-3/2}$.

[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

- Still lots of cancelations in the sum $S = \pm 1 \pm 2 \cdots \pm n$.
- Question. How to prevent cancelations in random sums?
 For what vectors a is the concentration function $p_0(a)$ small?
 E.g. exponential rather than polynomial.
Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the *Inverse Littlewood-Offord Phenomenon*:

 - The only source of cancelations in random sums $S = \sum \pm a_k$ is a rich additive structure of the coefficients a_k.
 - Cancelations can only occur when the coefficients a_k are arithmetically commensurable. Specifically, if there are lots of cancelations, then the coefficients a_k can be embedded into a short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability $p_\epsilon(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.
Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the *Inverse Littlewood-Offord Phenomenon*:
 - The only source of cancelations in random sums $S = \sum \pm a_k$ is a rich *additive structure* of the coefficients a_k.
 - Cancelations can only occur when the coefficients a_k are *arithmetically commensurable*. Specifically, if there are lots of cancelations, then the coefficients a_k can be embedded into a short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability $p_\varepsilon(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.
Anti-concentration: the Littlewood-Offord Phenomenon

- [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the *Inverse Littlewood-Offord Phenomenon*:
 - The only source of cancelations in random sums $S = \sum \pm a_k$ is a rich **additive structure** of the coefficients a_k.
 - Cancelations can only occur when the coefficients a_k are **arithmetically commensurable**. Specifically, if there are lots of cancelations, then the coefficients a_k can be embedded into a short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability $p_\varepsilon(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.
Anti-concentration: the Littlewood-Offord Phenomenon

• [Tao-Vu, 2006] proposed an explanation for cancelations, which they called the *Inverse Littlewood-Offord Phenomenon*:

 • The only source of cancelations in random sums $S = \sum \pm a_k$ is a rich **additive structure** of the coefficients a_k.

 • Cancelations can only occur when the coefficients a_k are *arithmetically commensurable*. Specifically, if there are lots of cancelations, then the coefficients a_k can be embedded into a short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon

If the small ball probability $p_\epsilon(a)$ is large, then the coefficient vector a can be embedded into a short arithmetic progression.
Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)

Let a_1, \ldots, a_n be integers, and let $A \geq 1$, $\delta \in (0, 1)$. Suppose for the random Bernoulli sums one has

$$p_0(a) \geq n^{-A}.$$

Then all except $O_{A,\varepsilon}(n^\delta)$ coefficients a_k are contained in the Minkowski sum of $O(A/\delta)$ arithmetic progressions of lengths $n^{O_{A,\delta}(1)}$.

- **Usefulness.** One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of a.
- **Shortcomings.** 1. We often have real coefficients a_k (not \mathbb{Z}).
 2. We are interested in general small ball probabilities $p_\varepsilon(a)$ rather than the measure of atoms $p_0(a)$.
- **Problem.** Develop the Inverse L.-O. Phenomenon over \mathbb{R}.
Theorem (Tao-Vu)

Let \(a_1, \ldots, a_n \) be integers, and let \(A \geq 1, \delta \in (0, 1) \). Suppose for the random Bernoulli sums one has

\[
p_0(a) \geq n^{-A}.
\]

Then all except \(O_{A,\varepsilon}(n^\delta) \) coefficients \(a_k \) are contained in the Minkowski sum of \(O(A/\delta) \) arithmetic progressions of lengths \(n^{O_{A,\delta}(1)} \).

- **Usefulness.** One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of \(a \).

- **Shortcomings.** 1. We often have real coefficients \(a_k \) (not \(\mathbb{Z} \)). 2. We are interested in general small ball probabilities \(p_{\varepsilon}(a) \) rather than the measure of atoms \(p_0(a) \).

- **Problem.** Develop the Inverse L.-O. Phenomenon over \(\mathbb{R} \).
Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)

Let a_1, \ldots, a_n be integers, and let $A \geq 1$, $\delta \in (0, 1)$. Suppose for the random Bernoulli sums one has

$$p_0(a) \geq n^{-A}.$$

Then all except $O_{A,\varepsilon}(n^\delta)$ coefficients a_k are contained in the Minkowski sum of $O(A/\delta)$ arithmetic progressions of lengths $n^{O_{A,\delta}(1)}$.

- **Usefulness.** One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of a.

- **Shortcomings.** 1. We often have real coefficients a_k (not \mathbb{Z}).

 2. We are interested in general small ball probabilities $p_\varepsilon(a)$ rather than the measure of atoms $p_0(a)$.

- **Problem.** Develop the Inverse L.-O. Phenomenon over \mathbb{R}.
Theorem (Tao-Vu)

Let \(a_1, \ldots, a_n\) be integers, and let \(A \geq 1, \delta \in (0, 1)\). Suppose for the random Bernoulli sums one has

\[
p_0(a) \geq n^{-A}.
\]

Then all except \(O_{A,\varepsilon}(n^\delta)\) coefficients \(a_k\) are contained in the Minkowski sum of \(O(A/\delta)\) arithmetic progressions of lengths \(n^{O_{A,\delta}(1)}\).

Usefulness. One can reduce the small ball probability to an arbitrary polynomial order by controlling the additive structure of \(a\).

Shortcomings. 1. We often have real coefficients \(a_k\) (not \(\mathbb{Z}\)).

2. We are interested in general small ball probabilities \(p_{\varepsilon}(a)\) rather than the measure of atoms \(p_0(a)\).

Problem. Develop the Inverse L.-O. Phenomenon over \(\mathbb{R}\).
Essential integers

For real coefficient vectors $a = (a_1, \ldots, a_n)$, the embedding into an arithmetic progression must clearly be approximate (near an arithmetic progression).

Thus we shall work over the essential integer vectors: almost all their coefficients (99%) are almost integers (± 0.1).
Essential integers

- For *real* coefficient vectors $a = (a_1, \ldots, a_n)$, the embedding into an arithmetic progression must clearly be *approximate* (*near* an arithmetic progression).

- Thus we shall work over the *essential integer* vectors: *almost* all their coefficients (99%) are *almost* integers (± 0.1).
Embedding into arithmetic progressions via LCD

- **Goal:** embed a vector \(a \in \mathbb{R}^n \) into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of \(a \):

\[
D(a) = D_{\alpha, \kappa}(a) = \inf\{ t > 0 : ta \text{ is a nonzero essential integer} \}
\]

(all except \(\kappa \) coefficients of \(ta \) are of dist. \(\alpha \) from nonzero integers).
- For \(a \in \mathbb{Q}^n \), this is the usual LCD.

The vector \(D(a)a \) (and thus \(a \) itself) essentially embeds into an arithmetic progression of length \(\|D(a)a\|_\infty \lesssim D(a) \).
So, \(D(a) \) being small means that \(a \) has rich additive structure.
- Therefore, the Inverse L.-O. Phenomenon should be:

 if the small ball probability \(p_{\varepsilon}(a) \) is large, then \(D(a) \) is small.
Embedding into arithmetic progressions via LCD

- **Goal:** embed a vector \(a \in \mathbb{R}^n \) into a short arithmetic progression (essentially). What is its length?
- Bounded by the **essential least common denominator (LCD)** of \(a \):

\[
D(a) = D_{\alpha,\kappa}(a) = \inf\{t > 0 : ta \text{ is a nonzero essential integer} \}
\]

(all except \(\kappa \) coefficients of \(ta \) are of dist. \(\alpha \) from nonzero integers).
- For \(a \in \mathbb{Q}^n \), this is the usual LCD.

The vector \(D(a)a \) (and thus \(a \) itself) essentially embeds into an arithmetic progression of length \(\|D(a)a\|_\infty \lesssim D(a) \).
So, \(D(a) \) being small means that \(a \) has rich additive structure.
- Therefore, the Inverse L.-O. Phenomenon should be:
 if the small ball probability \(p_\epsilon(a) \) is large, then \(D(a) \) is small.
Embedding into arithmetic progressions via LCD

- **Goal:** embed a vector \(a \in \mathbb{R}^n \) into a short arithmetic progression (essentially). What is its length?
- Bounded by the essential least common denominator (LCD) of \(a \):

\[
D(a) = D_{\alpha,\kappa}(a) = \inf\{ t > 0 : ta \text{ is a nonzero essential integer} \}
\]

(all except \(\kappa \) coefficients of \(ta \) are of dist. \(\alpha \) from nonzero integers).
- For \(a \in \mathbb{Q}^n \), this is the usual LCD.

The vector \(D(a)a \) (and thus \(a \) itself) essentially embeds into an arithmetic progression of length \(\|D(a)a\|_\infty \lesssim D(a) \). So, \(D(a) \) being small means that \(a \) has rich additive structure.
- Therefore, the Inverse L.-O. Phenomenon should be: *if the small ball probability \(p_\varepsilon(a) \) is large, then \(D(a) \) is small.*
Embedding into arithmetic progressions via LCD

- **Goal:** embed a vector \(a \in \mathbb{R}^n \) into a short arithmetic progression (essentially). What is its length?
- Bounded by the **essential least common denominator (LCD)** of \(a \):

\[
D(a) = D_{\alpha,\kappa}(a) = \inf\{ t > 0 : ta \text{ is a nonzero essential integer} \}
\]

(all except \(\kappa \) coefficients of \(ta \) are of dist. \(\alpha \) from nonzero integers).
- For \(a \in \mathbb{Q}^n \), this is the usual LCD.

The vector \(D(a)a \) (and thus \(a \) itself) essentially embeds into an arithmetic progression of length \(\|D(a)a\|_{\infty} \lesssim D(a) \).

So, \(D(a) \) being small means that \(a \) has rich additive structure.

Therefore, the Inverse L.-O. Phenomenon should be:

if the small ball probability \(p_\varepsilon(a) \) is large, then \(D(a) \) is small.
Embedding into arithmetic progressions via LCD

- **Goal:** embed a vector $a \in \mathbb{R}^n$ into a short arithmetic progression (essentially). What is its length?
- Bounded by the **essential least common denominator (LCD)** of a:

 \[D(a) = D_{\alpha, \kappa}(a) = \inf \{ t > 0 : ta \text{ is a nonzero essential integer} \} \]

 (all except κ coefficients of ta are of dist. α from nonzero integers).

- For $a \in \mathbb{Q}^n$, this is the usual LCD.

- The vector $D(a)a$ (and thus a itself) essentially embeds into an arithmetic progression of length $\|D(a)a\|_{\infty} \lesssim D(a)$.
 So, $D(a)$ being small means that a has rich additive structure.

- Therefore, the Inverse L.-O. Phenomenon should be:
 if the small ball probability $p_\varepsilon(a)$ is large, then $D(a)$ is small.
Theorem (Anti-Concentration)

Consider a sum of independent random variables

\[S = \sum_{k=1}^{n} a_k \xi_k \]

where \(\xi_k \) are i.i.d. with third moments and \(C_1 \leq |a_k| \leq C_2 \) for all \(k \).

Then, for every \(\alpha \in (0, 1) \), \(\kappa \in (0, n) \) and \(\varepsilon \geq 0 \) one has

\[
p_\varepsilon(S) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha, \kappa}(a)} \right) + e^{-c\alpha^2\kappa}.
\]

Recall: \(D_{\alpha, \kappa}(a) \) is the essential LCD of \(a \) (\(\pm \alpha \) and up to \(\kappa \) coefficients).
Theorem (Anti-Concentration)

Consider a sum of independent random variables

\[S = \sum_{k=1}^{n} a_k \xi_k \]

where \(\xi_k \) are i.i.d. with third moments and \(C_1 \leq |a_k| \leq C_2 \) for all \(k \).

Then, for every \(\alpha \in (0, 1) \), \(\kappa \in (0, n) \) and \(\varepsilon \geq 0 \) one has

\[p_{\varepsilon}(S) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha, \kappa}(a)} \right) + e^{-c\alpha^2\kappa}. \]

Recall: \(D_{\alpha, \kappa}(a) \) is the essential LCD of \(a \) (\(\pm \alpha \) and up to \(\kappa \) coefficients).

Partial case:
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Partial case:

- \(\varepsilon = 0 \); thus \(p_0(a) \) is the measure of atoms
- accuracy \(\alpha = 0.1 \)
- number of exceptional coefficients \(\kappa = 0.01n \):

Inverse Littlewood-Offord Phenomenon

99\% of the coefficients of \(a \) are within 0.1 of an arithmetic progression of length \(\sim n^{-1/2}/p_0(a) \).

- By controlling the additive structure of \(a \) (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in \(n \).

Examples:
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \text{ if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Partial case:

- \(\varepsilon = 0 \); thus \(p_0(a) \) is the measure of atoms
- accuracy \(\alpha = 0.1 \)
- number of exceptional coefficients \(\kappa = 0.01n \):

Inverse Littlewood-Offord Phenomenon

99% of the coefficients of \(a \) are within 0.1 of an arithmetic progression of length \(\sim n^{-1/2}/p_0(a) \).

- By controlling the additive structure of \(a \) (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in \(n \).

Examples:
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \]

if all \(|a_k| \sim \text{const.} \) \quad \text{(ILO)}

Partial case:

- \(\varepsilon = 0 \); thus \(p_0(a) \) is the measure of atoms
- accuracy \(\alpha = 0.1 \)
- number of exceptional coefficients \(\kappa = 0.01n \):

Inverse Littlewood-Offord Phenomenon

99\% of the coefficients of \(a \) are within 0.1 of an arithmetic progression of length \(\sim n^{-1/2}/p_0(a) \).

- By controlling the additive structure of \(a \) (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in \(n \).

Examples:
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Partial case:

- \(\varepsilon = 0 \); thus \(p_0(a) \) is the measure of atoms
- accuracy \(\alpha = 0.1 \)
- number of exceptional coefficients \(\kappa = 0.01n \):

Inverse Littlewood-Offord Phenomenon

99% of the coefficients of \(a \) are within 0.1 of an arithmetic progression of length \(\sim n^{-1/2}/p_0(a) \).

- By controlling the additive structure of \(a \) (removing progressions), we can force the concentration function to arbitrarily small level, up to exponential in \(n \).

Examples:
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Examples. \(\varepsilon = 0 \), accuracy \(\alpha = 0.1 \), exceptional coeffs \(\kappa = 0.01n \):

- \(a = (1, 1, \ldots, 1) \). Then \(D(a) \gtrsim \text{const.} \). Thus (ILO) gives
 \[p_0(a) \lesssim n^{-1/2}. \quad \text{Optimal (middle binomial).} \]

- \(a = (1, 2, \ldots, n) \). To apply (ILO), we normalize and truncate:
 \[p_0(a) = p_0 \left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n} \right) \leq p_0 \left(\frac{n/2}{n}, \frac{n/2+1}{n}, \ldots, \frac{n}{n} \right) \]
 The LCD of such vector is \(\gtrsim n \). Then (ILO) gives
 \[p_0(a) \lesssim n^{-3/2}. \quad \text{Optimal.} \]

- a more irregular \(\Rightarrow \) can reduce \(p_0(a) \) further.
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} (\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)}) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Examples. \(\varepsilon = 0 \), accuracy \(\alpha = 0.1 \), exceptional coeffs \(\kappa = 0.01n \):

- \(a = (1, 1, \ldots, 1) \). Then \(D(a) \gtrsim \text{const.} \). Thus (ILO) gives
 \[p_0(a) \lesssim n^{-1/2}. \quad \text{Optimal (middle binomial).} \]

- \(a = (1, 2, \ldots, n) \). To apply (ILO), we normalize and truncate:
 \[p_0(a) = p_0\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) \leq p_0\left(\frac{n/2}{n}, \frac{n/2+1}{n}, \ldots, \frac{n}{n}\right) \]

 The LCD of such vector is \(\gtrsim n \). Then (ILO) gives
 \[p_0(a) \lesssim n^{-3/2}. \quad \text{Optimal.} \]

- A more irregular \(\Rightarrow \) can reduce \(p_0(a) \) further.
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Examples. \(\varepsilon = 0 \), accuracy \(\alpha = 0.1 \), exceptional coeffs \(\kappa = 0.01n \):

- \(a = (1, 1, \ldots, 1) \). Then \(D(a) \gtrsim \text{const.} \). Thus (ILO) gives
 \[p_0(a) \lesssim n^{-1/2}. \quad \text{Optimal (middle binomial).} \]

- \(a = (1, 2, \ldots, n) \). To apply (ILO), we normalize and truncate:
 \[p_0(a) = p_0\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) \leq p_0\left(\frac{n/2}{n}, \frac{n/2+1}{n}, \ldots, \frac{n}{n}\right) \]
 The LCD of such vector is \(\gtrsim n \). Then (ILO) gives
 \[p_0(a) \lesssim n^{-3/2}. \quad \text{Optimal.} \]

- A more irregular \(\Rightarrow \) can reduce \(p_0(a) \) further.
Anti-concentration: the Littlewood-Offord Phenomenon

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{\kappa}} \left(\varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) \quad \text{if all } |a_k| \sim \text{const.} \quad \text{(ILO)} \]

Examples. \(\varepsilon = 0 \), accuracy \(\alpha = 0.1 \), exceptional coeffs \(\kappa = 0.01n \):

- \(a = (1, 1, \ldots, 1) \). Then \(D(a) \gtrsim \text{const.} \). Thus (ILO) gives
 \[p_0(a) \lesssim n^{-1/2}. \quad \text{Optimal (middle binomial).} \]

- \(a = (1, 2, \ldots, n) \). To apply (ILO), we normalize and truncate:
 \[p_0(a) = p_0\left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) \leq p_0\left(\frac{n/2}{n}, \frac{n/2+1}{n}, \ldots, \frac{n}{n}\right) \]
 The LCD of such vector is \(\gtrsim n \). Then (ILO) gives
 \[p_0(a) \lesssim n^{-3/2}. \quad \text{Optimal.} \]

- A more irregular \(\Rightarrow \) can reduce \(p_0(a) \) further.
Soft approach

- We will sketch the proof.
- There are two approaches, soft and ergodic.
- **Soft approach:** deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum

\[S \approx \text{Gaussian}. \]

Hence can approximate the concentration function

\[p_\varepsilon(S) \approx p_\varepsilon(\text{Gaussian}) \sim \varepsilon. \]

- For this, one uses a non-asymptotic version of CLT [Berry-Esséen]:
Soft approach

- We will sketch the proof.
 There are two approaches, soft and ergodic.

- **Soft approach**: deduce anti-concentration inequalities from **Central Limit Theorem**. [Litvak-Pajor-Rudelson-Tomczak].

- By CLT, the random sum

 \[S \approx \text{Gaussian}. \]

 Hence can approximate the concentration function

 \[p_\varepsilon(S) \approx p_\varepsilon(\text{Gaussian}) \sim \varepsilon. \]

- For this, one uses a *non-asymptotic* version of CLT [Berry-Esséen]:
Soft approach

- We will sketch the proof.
 There are two approaches, soft and ergodic.
- **Soft approach**: deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].
- By CLT, the random sum

\[S \approx \text{Gaussian}. \]

Hence can approximate the concentration function

\[p_\epsilon(S) \approx p_\epsilon(\text{Gaussian}) \sim \epsilon. \]

- For this, one uses a *non-asymptotic* version of CLT [Berry-Esséen]:
Soft approach

- We will sketch the proof.
 There are two approaches, soft and ergodic.

- **Soft approach:** deduce anti-concentration inequalities from Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].

- By CLT, the random sum

\[
S \approx \text{Gaussian.}
\]

Hence can approximate the concentration function

\[
p_\varepsilon(S) \approx p_\varepsilon(\text{Gaussian}) \sim \varepsilon.
\]

- For this, one uses a *non-asymptotic* version of CLT [Berry-Esséen]:
Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables $S = \sum a_k \xi_k$, where ξ_k are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$|\Pr(S/\|a\|_2 \leq t) - \Pr(g \leq t)| \lesssim \left(\frac{\|a\|_3}{\|a\|_2}\right)^3$$

for every t.

- The more spread the coefficient vector a, the better (RHS smaller).
 RHS minimized for $a = (1, 1, \ldots, 1)$, for which it is $\left(\frac{n^{1/3}}{n^{1/2}}\right)^3 = n^{-1/2}$.
 Thus the best bound the soft approach gives is $p_0(a) \leq n^{-1/2}$.
- Anti-concentration inequalities can not be based on ℓ_p norms of the coefficient vector a (which works nicely for the concentration inequalities, e.g. Bernstein’s!).
- The ℓ_p norms do not distinguish between $(1, 1, \ldots, 1)$ and $(1 + \frac{1}{n}, 1 + \frac{2}{n}, \ldots, 1 + \frac{n}{n})$, for which concentration functions are different. The norms feel the bulk and ignore the fluctuations.
Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables $S = \sum a_k \xi_k$, where ξ_k are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$\left| \mathbb{P} \left(\frac{S}{\|a\|_2} \leq t \right) - \mathbb{P}(g \leq t) \right| \lesssim \left(\frac{\|a\|_3}{\|a\|_2} \right)^3$$

for every t.

- The more *spread* the coefficient vector a, the better (RHS smaller). RHS minimized for $a = (1, 1, \ldots, 1)$, for which it is $\left(\frac{n^{1/3}}{n^{1/2}} \right)^3 = n^{-1/2}$. Thus the best bound the soft approach gives is $p_0(a) \leq n^{-1/2}$.
- Anti-concentration inequalities can not be based on ℓ_p norms of the coefficient vector a (which works nicely for the concentration inequalities, e.g. Bernstein’s!).
- The ℓ_p norms do not distinguish between $(1, 1, \ldots, 1)$ and $(1 + \frac{1}{n}, 1 + \frac{2}{n}, \ldots, 1 + \frac{n}{n})$, for which concentration functions are different. The norms feel the bulk and ignore the fluctuations.
Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables $S = \sum a_k \xi_k$, where ξ_k are i.i.d. centered with variance 1 and finite third moments. Let g be the standard normal random variable. Then

$$\left| \mathbb{P}(S/\|a\|_2 \leq t) - \mathbb{P}(g \leq t) \right| \lesssim \left(\frac{\|a\|_3}{\|a\|_2} \right)^3$$

for every t.

- The more spread the coefficient vector a, the better (RHS smaller). RHS minimized for $a = (1, 1, \ldots, 1)$, for which it is $\left(\frac{n^{1/3}}{n^{1/2}} \right)^3 = n^{-1/2}$. Thus the best bound the soft approach gives is $p_0(a) \leq n^{-1/2}$.
- Anti-concentration inequalities can not be based on ℓ_p norms of the coefficient vector a (which works nicely for the concentration inequalities, e.g. Bernstein’s!).
- The ℓ_p norms do not distinguish between $(1, 1, \ldots, 1)$ and $(1 + \frac{1}{n}, 1 + \frac{2}{n}, \ldots, 1 + \frac{n}{n})$, for which concentration functions are different. The norms feel the bulk and ignore the fluctuations.
Theorem (Berry-Esséen’s Central Limit Theorem)

Consider a sum of independent random variables \(S = \sum a_k \xi_k \), where \(\xi_k \) are i.i.d. centered with variance 1 and finite third moments. Let \(g \) be the standard normal random variable. Then

\[
|\mathbb{P}(S/\|a\|_2 \leq t) - \mathbb{P}(g \leq t)| \lesssim \left(\frac{\|a\|_3}{\|a\|_2} \right)^3 \quad \text{for every } t.
\]

- The more spread the coefficient vector \(a \), the better (RHS smaller). RHS minimized for \(a = (1, 1, \ldots, 1) \), for which it is \(\left(\frac{n^{1/3}}{n^{1/2}} \right)^3 = n^{-1/2} \). Thus the best bound the soft approach gives is \(p_0(a) \leq n^{-1/2} \).
- Anti-concentration inequalities cannot be based on \(\ell_p \) norms of the coefficient vector \(a \) (which works nicely for the concentration inequalities, e.g. Bernstein’s!).
- The \(\ell_p \) norms do not distinguish between \((1, 1, \ldots, 1)\) and \((1 + \frac{1}{n}, 1 + \frac{2}{n}, \ldots, 1 + \frac{n}{n})\), for which concentration functions are different. The norms feel the bulk and ignore the fluctuations.
Ergodic approach

Instead of applying Berry-Esséen’s CLT directly, use a tool from its proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)

The concentration function of any random variable S is bounded by the L^1 norm of its characteristic function $\phi(t) = \mathbb{E} \exp(iSt)$:

$$p_\varepsilon(S) \lesssim \int_{-\pi/2}^{\pi/2} |\phi(t/\varepsilon)| \; dt.$$

- **Proof:** take Fourier transform.
- We use Esséen’s Inequality for the random sum $S = \sum_{k=1}^n a_k \xi_k$. We work with the example of Bernoulli sums ($\xi_k = \pm 1$). By the independence, the characteristic function of S factors

$$\phi(t) = \prod_{k=1}^n \phi_k(t), \quad \phi_k(t) = \mathbb{E} \exp(i a_k \xi_k t) = \cos(a_k t).$$
Ergodic approach

Instead of applying Berry-Esséen’s CLT directly, use a tool from its proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)

The concentration function of any random variable S is bounded by the L^1 norm of its characteristic function $\phi(t) = \mathbb{E} \exp(itS)$:

$$p_\varepsilon(S) \lesssim \int_{-\pi/2}^{\pi/2} |\phi(t/\varepsilon)| \, dt.$$

Proof: take Fourier transform.

- We use Esséen’s Inequality for the random sum $S = \sum_1^n a_k \xi_k$. We work with the example of Bernoulli sums ($\xi_k = \pm 1$).
- By the independence, the characteristic function of S factors

$$\phi(t) = \prod_1^n \phi_k(t), \quad \phi_k(t) = \mathbb{E} \exp(ia_k \xi_k t) = \cos(a_k t).$$
Ergodic approach

Instead of applying Berry-Esséen’s CLT directly, use a tool from its proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)

The concentration function of any random variable S is bounded by the L^1 norm of its characteristic function $\phi(t) = \mathbb{E} \exp(iSt)$:

$$p_{\varepsilon}(S) \lesssim \int_{-\pi/2}^{\pi/2} |\phi(t/\varepsilon)| \, dt.$$

- **Proof**: take Fourier transform.
- We use Esséen’s Inequality for the random sum $S = \sum_1^n a_k \xi_k$. We work with the example of Bernoulli sums ($\xi_k = \pm 1$).
 - By the independence, the characteristic function of S factors

$$\phi(t) = \prod_1^n \phi_k(t), \quad \phi_k(t) = \mathbb{E} \exp(ia_k \xi_k t) = \cos(a_k t).$$
Ergodic approach

Then

\[|\phi(t)| = \prod_{1}^{n} |\cos(a_k t)| \leq \exp(-f(t)), \]

where

\[f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

By Esséen's Inequality,

\[p_\epsilon(S) \lesssim \int_{-\pi/2}^{\pi/2} |\phi(t/\epsilon)| \, dt \leq \int_{-\pi/2}^{\pi/2} \exp(-f(t/\epsilon)) \, dt \]

\[\sim \epsilon \int_{-1/\epsilon}^{1/\epsilon} \exp(-f(t)) \, dt. \]
Ergodic approach

Then

\[|\phi(t)| = \prod_{1}^{n} |\cos(a_k t)| \leq \exp(-f(t)), \]

where

\[f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

By Esséen’s Inequality,

\[p_\varepsilon(S) \lesssim \int_{-\pi/2}^{\pi/2} |\phi(t/\varepsilon)| \, dt \leq \int_{-\pi/2}^{\pi/2} \exp(-f(t/\varepsilon)) \, dt \]

\[\sim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt. \]
Ergodic approach

$$p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt,$$
where

$$f(t) = \sum_{1}^{n} \sin^2(a_k t).$$

- Ergodic approach: regard t as time; $\varepsilon \int_{-1/\varepsilon}^{1/\varepsilon}$ = long term average.
- A system of n particles $a_k t$ that move along \mathbb{T} at speeds a_k:

- The estimate is poor precisely when $f(t)$ is small \iff most particles return to the origin, making $\sin^2(a_k t)$ small.
- We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where} \ f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- Ergodic approach: regard \(t \) as time; \(\varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \) = long term average.
- A system of \(n \) particles \(a_k t \) that move along \(\mathbb{T} \) at speeds \(a_k \):

 - The estimate is poor precisely when \(f(t) \) is small \(\iff \) most particles return to the origin, making \(\sin^2(a_k t) \) small.
 - We are thus interested in the recurrence properties of the system. How often do most particles return to the origin?
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- **Ergodic approach**: regard \(t \) as *time*; \(\varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} = \) long term average.
- A system of \(n \) particles \(a_k t \) that move along \(\mathbb{T} \) at speeds \(a_k \):

 ![Diagram of a system of particles moving along a circle]

- The estimate is *poor* precisely when \(f(t) \) is small \(\iff \) most particles *return to the origin*, making \(\sin^2(a_k t) \) small.
- We are thus interested in the *recurrence properties* of the system. *How often* do most particles return to the origin?
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- **Ergodic approach:** regard \(t \) as *time*; \(\varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \) = long term average.
- **A system of \(n \) particles \(a_k t \) that move along \(\mathbb{T} \) at speeds \(a_k \):

 ![Diagram](image)

- The estimate is *poor* precisely when \(f(t) \) is small
 \(\iff \) most particles *return to the origin*, making \(\sin^2(a_k t) \) small.
- We are thus interested in the *recurrence properties* of the system. *How often* do most particles return to the origin?
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- **Ergodic approach**: regard \(t \) as *time*; \(\varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \) = long term average.
- **A system of \(n \) particles** \(a_k t \) that move along \(\mathbb{T} \) at speeds \(a_k \):

![Circle with points at \(a_k t \) and 0](image)

- The estimate is *poor* precisely when \(f(t) \) is small \(\iff \) most particles *return to the origin*, making \(\sin^2(a_k t) \) small.
- **We are thus interested in the recurrence properties** of the system. *How often* do most particles return to the origin?
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- We need to understand how particles can move in the system.
- Two extreme types of systems (common in ergodic theory):
 1. Quasi-random ("mixing"). Particles move as if independent.
 2. Quasi-periodic. Particles "stick together".
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- We need to understand \textit{how particles can move in the system}.
- Two extreme types of systems (common in ergodic theory):
 1. Quasi-random ("mixing"). Particles move as if independent.
 2. Quasi-periodic. Particles “stick together”.
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

1. Quasi-random systems.

- By “independence”, the event that most particles are near the origin is exponentially rare (frequency \(e^{-cn} \)).
- Away from the origin, \(\sin^2(a_k t) \geq \text{const} \), thus \(f(t) \sim cn \).
- This leads to the bound

\[p_\varepsilon(S) \lesssim \varepsilon + e^{-cn}. \]

(\(\varepsilon \) is due to a constant initial time to depart from the origin).

- This is an ideal bound. Quasi-random systems are good.
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where} \quad f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

1. Quasi-random systems.

- By “independence”, the event that most particles are near the origin is exponentially rare (frequency \(e^{-cn} \)).
- Away from the origin, \(\sin^2(a_k t) \geq \text{const} \), thus \(f(t) \sim cn \).
- This leads to the bound

\[p_\varepsilon(S) \lesssim \varepsilon + e^{-cn}. \]

(\(\varepsilon \) is due to a constant initial time to depart from the origin).
- This is an ideal bound. Quasi-random systems are good.
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

1. Quasi-random systems.

 - By “independence”, the event that most particles are near the origin is exponentially rare (frequency \(e^{-cn} \)).

 - Away from the origin, \(\sin^2(a_k t) \geq \text{const} \), thus \(f(t) \sim cn \).

 - This leads to the bound
 \[p_\varepsilon(S) \lesssim \varepsilon + e^{-cn}. \]

 (\(\varepsilon \) is due to a constant initial time to depart from the origin).

 - This is an ideal bound. Quasi-random systems are good.
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

1. Quasi-random systems.

- By “independence”, the event that most particles are near the origin is exponentially rare (frequency \(e^{-cn} \)).
- Away from the origin, \(\sin^2(a_k t) \geq \text{const} \), thus \(f(t) \sim cn \).
- This leads to the bound

\[p_\varepsilon(S) \lesssim \varepsilon + e^{-cn}. \]

(\(\varepsilon \) is due to a constant initial time to depart from the origin).
- This is an ideal bound. Quasi-random systems are good.
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

2. Quasi-periodic systems.

- **Example.** \(a = (1, 1, \ldots, 1) \). Move as one particle. Thus \(f(t) \sim n \sin^2 t \), and integration gives \(p_\varepsilon(S) \lesssim n^{-1/2} \).

- **More general example.** Rational coefficients with small LCD. Then \(ta_k \) often becomes an integer, i.e. the particles often return to the origin together.

- **Main observation.** Small LCD is the only reason for the almost periodicity of the system:
Ergodic approach

\[
p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t).
\]

2. Quasi-periodic systems.

- Example. \(a = (1, 1, \ldots, 1) \). Move as one particle. Thus \(f(t) \sim n \sin^2 t \), and integration gives \(p_\varepsilon(S) \lesssim n^{-1/2} \).

- More general example. Rational coefficients with small LCD. Then \(ta_k \) often becomes an integer, i.e. the particles often return to the origin together.

- Main observation. Small LCD is the only reason for the almost periodicity of the system:
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

2. Quasi-periodic systems.

- **Example.** \(a = (1, 1, \ldots, 1) \). Move as one particle. Thus \(f(t) \sim n \sin^2 t \), and integration gives \(p_\varepsilon(S) \lesssim n^{-1/2} \).

- **More general example.** Rational coefficients with small LCD. Then \(ta_k \) often becomes an integer, i.e. the particles often return to the origin together.

- **Main observation.** Small LCD is the only reason for the almost periodicity of the system:
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

Observation (Quasi-periodicity and LCD)

If a system \((ta_k)\) is quasi-periodic then essential LCD of \((a_k)\) is small.

- Proof. Assume most of \(ta_k\) often return near the origin together – say, with frequency \(\omega\) (i.e. spend portion of time \(\omega\) near the origin).
- Equivalently, \(ta\) becomes an essential integer with frequency \(\omega\).
- Thus \(ta\) becomes essential integer twice within time \(\sim \frac{1}{\omega}\).
- \(\exists\) two instances \(0 < t_1 - t_2 < \frac{1}{\omega}\) in which \(t_1 a\) and \(t_2 a\) are different essential integers.
- Subtract \(\Rightarrow (t_2 - t_1)a\) is also an essential integer.
- By the definition of the essential LCD,

\[D(a) \leq t_2 - t_1 < \frac{1}{\omega}. \]
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

Observation (Quasi-periodicity and LCD)

If a system \((t\,a_k)\) is quasi-periodic then essential LCD of \((a_k)\) is small.

- **Proof.** Assume most of \(t\,a_k\) often return near the origin together — say, with frequency \(\omega\) (i.e. spend portion of time \(\omega\) near the origin).
- Equivalently, \(t\,a\) becomes an essential integer with frequency \(\omega\).
- Thus \(t\,a\) becomes essential integer twice within time \(\sim \frac{1}{\omega}\).
- \(\exists\) two instances \(0 < t_1 - t_2 < \frac{1}{\omega}\) in which \(t_1\,a\) and \(t_2\,a\) are different essential integers.
- Subtract \(\Rightarrow (t_2 - t_1)a\) is also an essential integer.

By the definition of the essential LCD,

\[D(a) \leq t_2 - t_1 < \frac{1}{\omega}. \]
Ergodic approach

$$p_\varepsilon(S) \leq \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{k=1}^{n} \sin^2(a_k t).$$

Observation (Quasi-periodicity and LCD)

If a system \((ta_k)\) is quasi-periodic then essential LCD of \((a_k)\) is small.

- **Proof.** Assume most of \(ta_k\) often return near the origin together – say, with frequency \(\omega\) (i.e. spend portion of time \(\omega\) near the origin).
- Equivalently, \(ta\) becomes an **essential integer** with frequency \(\omega\).
- Thus \(ta\) becomes essential integer twice within time \(\sim \frac{1}{\omega}\).
- \(\exists\) two instances \(0 < t_1 - t_2 < 1/\omega\) in which \(t_1 a\) and \(t_2 a\) are different essential integers.
- Subtract \(\Rightarrow (t_2 - t_1) a\) is also an essential integer.

By the definition of the essential LCD,

$$D(a) \leq t_2 - t_1 < \frac{1}{\omega}.$$
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(\alpha_k t). \]

Observation (Quasi-periodicity and LCD)

If a system \((ta_k)\) is quasi-periodic then essential LCD of \((a_k)\) is small.

- **Proof.** Assume most of \(ta_k\) often return near the origin together – say, with frequency \(\omega\) (i.e. spend portion of time \(\omega\) near the origin).
- Equivalently, \(ta\) becomes an essential integer with frequency \(\omega\).
- Thus \(ta\) becomes essential integer twice within time \(\sim \frac{1}{\omega}\).
- \(\exists\) two instances \(0 < t_1 - t_2 < \frac{1}{\omega}\) in which \(t_1a\) and \(t_2a\) are different essential integers.
- Subtract \(\Rightarrow (t_2 - t_1)a\) is also an essential integer.

By the definition of the essential LCD,

\[D(a) \leq t_2 - t_1 < \frac{1}{\omega}. \]
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

Observation (Quasi-periodicity and LCD)

If a system \((t a_k)\) is quasi-periodic then essential LCD of \((a_k)\) is small.

- **Proof.** Assume most of \(t a_k\) often return near the origin together – say, with frequency \(\omega\) (i.e. spend portion of time \(\omega\) near the origin).
- Equivalently, \(t a\) becomes an essential integer with frequency \(\omega\).
- Thus \(t a\) becomes essential integer twice within time \(\sim \frac{1}{\omega}\).
- \(\exists\) two instances \(0 < t_1 - t_2 < 1/\omega\) in which \(t_1 a\) and \(t_2 a\) are different essential integers.
- Subtract \(\Rightarrow (t_2 - t_1)a\) is also an essential integer.
- By the definition of the essential LCD,

\[D(a) \leq t_2 - t_1 < \frac{1}{\omega}. \]
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \ dt, \quad \text{where } f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- **Conclusion of the proof.**
 1. If the essential LCD \(D(a) \) is large, then the system is *not* quasi-periodic \(\Rightarrow \) closer to *quasi-random*.
 2. For quasi-random systems, the concentration function \(p_\varepsilon(S) \) is small.

- Ultimately, the argument gives

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]
Ergodic approach

\[p_\varepsilon(S) \lesssim \varepsilon \int_{-1/\varepsilon}^{1/\varepsilon} \exp(-f(t)) \, dt, \quad \text{where} \quad f(t) = \sum_{1}^{n} \sin^2(a_k t). \]

- **Conclusion of the proof.**
 1. If the essential LCD \(D(a) \) is large, then the system is *not* quasi-periodic \(\Rightarrow \) closer to *quasi-random*.
 2. For quasi-random systems, the concentration function \(p_\varepsilon(S) \) is small.

- Ultimately, the argument gives

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]
[O.Friedland-S.Sodin] recently simplified the argument:

- Used a more convenient notion of essential integers as vectors in \mathbb{R}^n that can be approximated by integer vectors within $\alpha \sqrt{n}$ in Euclidean distance.
- Bypassed Halasz’s regularity argument (which I skipped) using a direct and simple analytic bound.
Using the anti-concentration inequality

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]

- In order to use the anti-concentration inequality, we need to know that LCD of \(a \) is \textit{large}.
- Is LCD large for typical (i.e. random) coefficient vectors \(a \)?
- For random matrix problems, \(a = \) normal to the random hyperplane spanned by \(n - 1 \) i.i.d. vectors \(X_k \) in \(\mathbb{R}^n \):

\[D(a) \geq e^{cn} \text{ with probability } 1 - e^{-cn}. \]
Using the anti-concentration inequality

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]

- In order to use the anti-concentration inequality, we need to know that LCD of \(a \) is large.
- Is LCD large for typical (i.e. random) coefficient vectors \(a \)?
- For random matrix problems, \(a = \) normal to the random hyperplane spanned by \(n - 1 \) i.i.d. vectors \(X_k \) in \(\mathbb{R}^n \):
 - Random Normal Theorem: \(D(a) \geq e^{cn} \) with probability \(1 - e^{-cn} \).
Using the anti-concentration inequality

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]

- In order to use the anti-concentration inequality, we need to know that LCD of \(a \) is large.
- Is LCD large for typical (i.e. random) coefficient vectors \(a \)?
- For random matrix problems, \(a = \) normal to the random hyperplane spanned by \(n - 1 \) i.i.d. vectors \(X_k \) in \(\mathbb{R}^n \):

 ![Diagram of a random hyperplane spanned by vectors]

- Random Normal Theorem: \(D(a) \geq e^{cn} \) with probability \(1 - e^{-cn} \).
Using the anti-concentration inequality

\[p_\varepsilon(a) \lesssim \frac{1}{\sqrt{n}} \left(\varepsilon + \frac{1}{D(a)} \right) + e^{-cn}. \]

- In order to use the anti-concentration inequality, we need to know that LCD of \(a \) is large.
- Is LCD large for typical (i.e. random) coefficient vectors \(a \)?
- For random matrix problems, \(a = \) normal to the random hyperplane spanned by \(n - 1 \) i.i.d. vectors \(X_k \) in \(\mathbb{R}^n \):

![Diagram of normal distribution]

- Random Normal Theorem: \(D(a) \geq e^{cn} \) with probability \(1 - e^{-cn} \).