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Concentration and Anti-concentration
Concentration phenomena: Nice random variables X are
concentrated about their means.

Examples:
1. Probability theory: X = sum of independent random variables
(concentration inequalities: Chernoff, Bernstein, Bennett, . . . ;
large deviation theory).
2.Geometric functional analysis: X = Lipschitz function on the
Euclidean sphere.

How strong concentration should one expect?
No stronger than a Gaussian (Central Limit Theorem).

Anti-concentration phenomena: nice random variables S
concentrate no stronger than a Gaussian.
(Locally well spread).
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Concentration and Anti-concentration
Concentration inequalities:

P(|X − EX | > ε) ≤?

Anti-concentration inequalities: for a given (or all) v ,

P(|X − v | ≤ ε) ≤?

Concentration is better understood than anti-concentration.
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Anti-concentration

Problem
Estimate Lévy’s concentration function of a random variable X :

pε(X ) := sup
v∈R

P(|X − v | ≤ ε).

1. Probability Theory.

For sums of independent random variables, studied by
[Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esséen, Halasz, . . . ]

For random processes (esp. Brownian motion), see the survey
[Li-Shao]
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Anti-concentration
2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (Sn−1, σ),
whose average over the sphere = 1 and Lipschitz constant = L. Then

σ(x : |f (x)| ≤ ε) ≤ εc/L2
.

Conjectured by V.; [Latala-Oleszkiewicz]
deduced the Theorem from the B-conjecture,
solved by [Cordero-Fradelizi-Maurey].

Interpretation. K ⊆ Rn: convex, symmetric
set; f (x) = ‖x‖K .
SBPT: asymptotic “dimension” of the spikes
(parts of K far from the origin) is & 1/L2.

Applied to Dvoretzky-type thms in [Klartag-V.]



Anti-concentration
2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (Sn−1, σ),
whose average over the sphere = 1 and Lipschitz constant = L. Then

σ(x : |f (x)| ≤ ε) ≤ εc/L2
.

Conjectured by V.; [Latala-Oleszkiewicz]
deduced the Theorem from the B-conjecture,
solved by [Cordero-Fradelizi-Maurey].

Interpretation. K ⊆ Rn: convex, symmetric
set; f (x) = ‖x‖K .
SBPT: asymptotic “dimension” of the spikes
(parts of K far from the origin) is & 1/L2.

Applied to Dvoretzky-type thms in [Klartag-V.]



Anti-concentration
2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (Sn−1, σ),
whose average over the sphere = 1 and Lipschitz constant = L. Then

σ(x : |f (x)| ≤ ε) ≤ εc/L2
.

Conjectured by V.; [Latala-Oleszkiewicz]
deduced the Theorem from the B-conjecture,
solved by [Cordero-Fradelizi-Maurey].

Interpretation. K ⊆ Rn: convex, symmetric
set; f (x) = ‖x‖K .
SBPT: asymptotic “dimension” of the spikes
(parts of K far from the origin) is & 1/L2.

Applied to Dvoretzky-type thms in [Klartag-V.]



Anti-concentration
2. Geometric Functional Analysis. For Lipschitz functions:

Small Ball Probability Theorem

Let f be a convex even function on the unit Euclidean sphere (Sn−1, σ),
whose average over the sphere = 1 and Lipschitz constant = L. Then

σ(x : |f (x)| ≤ ε) ≤ εc/L2
.

Conjectured by V.; [Latala-Oleszkiewicz]
deduced the Theorem from the B-conjecture,
solved by [Cordero-Fradelizi-Maurey].

Interpretation. K ⊆ Rn: convex, symmetric
set; f (x) = ‖x‖K .
SBPT: asymptotic “dimension” of the spikes
(parts of K far from the origin) is & 1/L2.

Applied to Dvoretzky-type thms in [Klartag-V.]



Anti-concentration

pε(X ) := sup
v∈R

P(|X − v | ≤ ε).

What estimate can we expect?
For every random variable X with density, we have

pε(X ) ∼ ε.

If X is discrete, this fails for small ε (because of the atoms),
so we can only expect

pε(X ) . ε + measure of an atom.
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Anti-concentration
Classical example: Sums of independent random variables

S :=
n∑

k=1

akξk

where ξ1, . . . , ξn are i.i.d. (we can think of ±1),
and a = (a1, . . . , an) is a fixed vector of real coefficients

An ideal estimate on the concentration function would be

pε(a) := pε(S) . ε/‖a‖2 + e−cn,

where e−cn accounts for the size of atoms of S.
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Anti-concentration
Ideal estimate:

pε(a) = sup
v∈R

P(|S − v | ≤ ε) . ε/‖a‖2 + e−cn.

Trivial example: Gaussian sums,
with ξk = standard normal i.i.d. random variables.
The ideal estimate holds even without the exponential term.

Nontrivial example: Bernoulli sums,
with ξk = ±1 symmetric i.i.d. random variables.

The problem for Bernoulli sums is nontrivial even for ε = 0,
i.e. estimate the size of atoms of S.
This is the most studied case in the literature.
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Application: Random matrices
This was our main motivation.

A: an n × n matrix with i.i.d. entries.
What is the probability that A is singular?
Ideal answer: e−cn.

Geometric picture.
Let Xk denote the column vectors of A.
A nonsingular ⇒ X1 6∈ span(X2, . . . , Xn) := H
We condition on H (i.e. on X2, . . . , Xn); let a be the normal of H.
A nonsingular ⇒ 〈a, X1〉 6= 0.
Write this in coordinates for a = (ak )n

1 and X = (ξk )n
1 (i.i.d):

A is nonsingular ⇒
n∑

k=1

akξk 6= 0.

P(A is singular) ≥ p0(a).

Thus, in order to solve the invertibility problem, we have to prove
an anti-concentration inequality. See Mark Ridelson’s talk.
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Anti-concentration: the Littlewood-Offord Problem

Littlewood-Offord Problem.
For Bernoulli sums S =

∑
akξk , estimate the concentration function

pε(a) = sup
v∈R

P(|S − v | ≤ ε).

For concentrated vectors, e.g. a = (1, 1, 0, . . . , 0),
p0(a) = 1

2 = const.
There are lots of cancelations in the sum S = ±1± 1.
For spread vectors, the small ball probability gets better:
for a = (1, 1, 1, . . . , 1), we have p0(a) =

( n
n/2

)
/2n ∼ n−1/2.

This is a general fact:

If a ≥ 1 pointwise, then p0(a) ≤ p0(1, 1, . . . , 1) ∼ n−1/2.
[Littlewood-Offord], [Erdös, 1945].

Still lots of cancelations in the sum S = ±1± 1 · · · ± 1.
How can one prevent cancelations?
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Littlewood-Offord Problem.
For Bernoulli sums S =

∑
akξk , estimate the concentration function

pε(a) = sup
v∈R

P(|S − v | ≤ ε).

Will be less cancelations if the coefficients are essentially different:
For a = (1, 2, 3, . . .), we have p0(a) ∼ n−3/2.

This is a general fact:

If |aj − ak | ≥ 1 for k 6= j , then p1(a) . n−3/2.
[Erdös-Moser, 1965], [Sárközi-Szemerédi, 1965], [Hálasz, 1977].

Still lots of cancelations in the sum S = ±1± 2 · · · ± n.

Question. How to prevent cancelations in random sums?
For what vectors a is the concentration function p0(a) small?
E.g. exponential rather than polynomial.
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Anti-concentration: the Littlewood-Offord Phenomenon
[Tao-Vu, 2006] proposed an explanation for cancelations, which
they called the Inverse Littlewood-Offord Phenomenon:

The only source of cancelations in random sums S =
∑
±ak

is a rich additive structure of the coefficients ak .

Cancelations can only occur when the coefficients ak are
arithmetically commensurable. Specifically, if there are lots of
cancelations, then the coefficients ak can be embedded into a
short arithmetic progression.

The Inverse Littlewood-Offord Phenomenon
If the small ball probability pε(a) is large, then the coefficient vector a
can be embedded into a short arithmetic progression.
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Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Tao-Vu)
Let a1, . . . , an be integers, and let A ≥ 1, δ ∈ (0, 1). Suppose for the
random Bernoulli sums one has

p0(a) ≥ n−A.

Then all except OA,ε(nδ) coefficients ak are contained in the Minkowski
sum of O(A/δ) arithmetic progressions of lengths nOA,δ(1).

Usefulness. One can reduce the small ball probability to an
arbitrary polynomial order by controlling the additive structure of a.

Shortcomings. 1. We often have real coefficients ak (not Z).
2. We are interested in general small ball probabilities pε(a) rather
than the measure of atoms p0(a).

Problem. Develop the Inverse L.-O. Phenomenon over R.
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Usefulness. One can reduce the small ball probability to an
arbitrary polynomial order by controlling the additive structure of a.

Shortcomings. 1. We often have real coefficients ak (not Z).
2. We are interested in general small ball probabilities pε(a) rather
than the measure of atoms p0(a).

Problem. Develop the Inverse L.-O. Phenomenon over R.



Essential integers
For real coefficient vectors a = (a1, . . . , an), the embedding
into an arithmetic progression must clearly be approximate
(near an arithmetic progression).

Thus we shall work over the essential integer vectors:
almost all their coefficients (99%) are almost integers (±0.1).
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Embedding into arithmetic progressions via LCD
Goal: embed a vector a ∈ Rn into a short arithmetic progression
(essentially). What is its length?
Bounded by the essential least common denominator (LCD) of a:

D(a) = Dα,κ(a) = inf{t > 0 : ta is a nonzero essential integer}

(all except κ coefficients of ta are of dist. α from nonzero integers).
For a ∈ Qn, this is the usual LCD.

The vector D(a)a (and thus a itself) essentially embeds into an
arithmetic progression of length ‖D(a)a‖∞ . D(a).
So, D(a) being small means that a has rich additive structure.
Therefore, the Inverse L.-O. Phenomenon should be:
if the small ball probability pε(a) is large, then D(a) is small.
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Anti-concentration: the Littlewood-Offord Phenomenon

Theorem (Anti-Concentration)
Consider a sum of independent random variables

S =
n∑

k=1

akξk

where ξk are i.i.d. with third moments and C1 ≤ |ak | ≤ C2 for all k.
Then, for every α ∈ (0, 1), κ ∈ (0, n) and ε ≥ 0 one has

pε(S) .
1√
κ

(
ε +

1
Dα,κ(a)

)
+ e−cα2κ.

Recall: Dα,κ(a) is the essential LCD of a (±α and up to κ coefficients).

Partial case:
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pε(a) .
1√
κ

(
ε +

1
Dα,κ(a)

)
if all |ak | ∼ const. (ILO)

Partial case:

ε = 0; thus p0(a) is the measure of atoms
accuracy α = 0.1
number of exceptional coefficients κ = 0.01n:

Inverse Littlewood-Offord Phenomenon
99% of the coefficients of a are within 0.1 of an arithmetic progression
of length ∼ n−1/2/p0(a).

By controlling the additive structure of a (removing progressions),
we can force the concentration function to arbitrarily small level,
up to exponential in n.

Examples:
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pε(a) .
1√
κ

(
ε +

1
Dα,κ(a)

)
if all |ak | ∼ const. (ILO)

Examples. ε = 0, accuracy α = 0.1, exceptional coeffs κ = 0.01n:

a = (1, 1, . . . , 1). Then D(a) & const. Thus (ILO) gives

p0(a) . n−1/2. Optimal (middle binomial).

a = (1, 2, . . . , n). To apply (ILO), we normalize and truncate:

p0(a) = p0

(1
n

,
2
n

, . . . ,
n
n

)
≤ p0

(n/2
n

,
n/2 + 1

n
, . . . ,

n
n

)
The LCD of such vector is & n. Then (ILO) gives

p0(a) . n−3/2. Optimal.

a more irregular ⇒ can reduce p0(a) further.
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Soft approach
We will sketch the proof.
There are two approaches, soft and ergodic.

Soft approach: deduce anti-concentration inequalities from
Central Limit Theorem. [Litvak-Pajor-Rudelson-Tomczak].

By CLT, the random sum

S ≈ Gaussian.

Hence can approximate the concentration function

pε(S) ≈ pε(Gaussian) ∼ ε.

For this, one uses a non-asymptotic version of CLT
[Berry-Esséen]:
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Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)
Consider a sum of independent random variables S =

∑
akξk ,

where ξk are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

∣∣P(S/‖a‖2 ≤ t)− P(g ≤ t)
∣∣ .

(‖a‖3

‖a‖2

)3
for every t .

The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized for a = (1, 1, . . . , 1), for which it is

(n1/3

n1/2

)3
= n−1/2.

Thus the best bound the soft approach gives is p0(a) ≤ n−1/2.
Anti-concentration inequalities can not be based on `p norms of
the coefficient vector a (which works nicely for the concentration
inequalities, e.g. Bernstein’s!).
The `p norms do not distinguish between (1, 1, . . . , 1) and
(1 + 1

n , 1 + 2
n , . . . , 1 + n

n ), for which concentration functions are
different. The norms feel the bulk and ignore the fluctuations.



Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)
Consider a sum of independent random variables S =

∑
akξk ,

where ξk are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

∣∣P(S/‖a‖2 ≤ t)− P(g ≤ t)
∣∣ .

(‖a‖3

‖a‖2

)3
for every t .

The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized for a = (1, 1, . . . , 1), for which it is

(n1/3

n1/2

)3
= n−1/2.

Thus the best bound the soft approach gives is p0(a) ≤ n−1/2.
Anti-concentration inequalities can not be based on `p norms of
the coefficient vector a (which works nicely for the concentration
inequalities, e.g. Bernstein’s!).
The `p norms do not distinguish between (1, 1, . . . , 1) and
(1 + 1

n , 1 + 2
n , . . . , 1 + n

n ), for which concentration functions are
different. The norms feel the bulk and ignore the fluctuations.



Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)
Consider a sum of independent random variables S =

∑
akξk ,

where ξk are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

∣∣P(S/‖a‖2 ≤ t)− P(g ≤ t)
∣∣ .

(‖a‖3

‖a‖2

)3
for every t .

The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized for a = (1, 1, . . . , 1), for which it is

(n1/3

n1/2

)3
= n−1/2.

Thus the best bound the soft approach gives is p0(a) ≤ n−1/2.
Anti-concentration inequalities can not be based on `p norms of
the coefficient vector a (which works nicely for the concentration
inequalities, e.g. Bernstein’s!).
The `p norms do not distinguish between (1, 1, . . . , 1) and
(1 + 1

n , 1 + 2
n , . . . , 1 + n

n ), for which concentration functions are
different. The norms feel the bulk and ignore the fluctuations.



Soft approach

Theorem (Berry-Esséen’s Central Limit Theorem)
Consider a sum of independent random variables S =

∑
akξk ,

where ξk are i.i.d. centered with variance 1 and finite third moments.
Let g be the standard normal random variable. Then

∣∣P(S/‖a‖2 ≤ t)− P(g ≤ t)
∣∣ .

(‖a‖3

‖a‖2

)3
for every t .

The more spread the coefficient vector a, the better (RHS smaller).
RHS minimized for a = (1, 1, . . . , 1), for which it is

(n1/3

n1/2

)3
= n−1/2.

Thus the best bound the soft approach gives is p0(a) ≤ n−1/2.
Anti-concentration inequalities can not be based on `p norms of
the coefficient vector a (which works nicely for the concentration
inequalities, e.g. Bernstein’s!).
The `p norms do not distinguish between (1, 1, . . . , 1) and
(1 + 1

n , 1 + 2
n , . . . , 1 + n

n ), for which concentration functions are
different. The norms feel the bulk and ignore the fluctuations.



Ergodic approach
Instead of applying Berry-Esséen’s CLT directly, use a tool from its
proof: Esséen’s inequality. This method goes back to [Halasz, 1977].

Proposition (Esséen’s Inequality)
The concentration function of any random variable S is bounded by the
L1 norm of its characteristic function φ(t) = E exp(iSt):

pε(S) .
∫ π/2

−π/2
|φ(t/ε)| dt .

Proof: take Fourier transform.
We use Esséen’s Inequality for the random sum S =

∑n
1 akξk .

We work with the example of Bernoulli sums (ξk = ±1).
By the independence, the characteristic function of S factors

φ(t) =
n∏
1

φk (t), φk (t) = E exp(iakξk t) = cos(ak t).
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Ergodic approach
Then

|φ(t)| =
n∏
1

| cos(ak t)| ≤ exp(−f (t)),

where

f (t) =
n∑
1

sin2(ak t).

By Esséen’s Inequality,

pε(S) .
∫ π/2

−π/2
|φ(t/ε)| dt ≤

∫ π/2

−π/2
exp(−f (t/ε)) dt

∼ ε

∫ 1/ε

−1/ε
exp(−f (t)) dt .



Ergodic approach
Then

|φ(t)| =
n∏
1

| cos(ak t)| ≤ exp(−f (t)),

where

f (t) =
n∑
1

sin2(ak t).

By Esséen’s Inequality,

pε(S) .
∫ π/2

−π/2
|φ(t/ε)| dt ≤

∫ π/2

−π/2
exp(−f (t/ε)) dt

∼ ε

∫ 1/ε

−1/ε
exp(−f (t)) dt .



Ergodic approach

pε(S) . ε

∫ 1/ε

−1/ε
exp(−f (t)) dt , where f (t) =

n∑
1

sin2(ak t).

Ergodic approach: regard t as time; ε
∫ 1/ε
−1/ε = long term average.

A system of n particles ak t that move along T at speeds ak :

The estimate is poor precisely when f (t) is small
⇔ most particles return to the origin, making sin2(ak t) small.

We are thus interested in the recurrence properties of the system.
How often do most particles return to the origin?
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∫ 1/ε

−1/ε
exp(−f (t)) dt , where f (t) =

n∑
1

sin2(ak t).

We need to understand how particles can move in the system.

Two extreme types of systems (common in ergodic theory):

1. Quasi-random (“mixing”). Particles move as if independent.

2. Quasi-periodic. Particles “stick together”.
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sin2(ak t).

1. Quasi-random systems.

By “independence”, the event that most particles are near the
origin is exponentially rare (frequency e−cn).

Away from the origin, sin2(ak t) ≥ const, thus f (t) ∼ cn.

This leads to the bound

pε(S) . ε + e−cn.

(ε is due to a constant initial time to depart from the origin).

This is an ideal bound. Quasi-random systems are good.
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2. Quasi-periodic systems.

Example. a = (1, 1, . . . , 1). Move as one particle.
Thus f (t) ∼ n sin2 t , and integration gives pε(S) . n−1/2.

More general example. Rational coefficients with small LCD. Then
tak often becomes an integer, i.e. the particles often return to the
origin together.

Main observation. Small LCD is the only reason for the almost
periodicity of the system:
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Observation (Quasi-periodicity and LCD)
If a system (tak ) is quasi-periodic then essential LCD of (ak ) is small.

Proof. Assume most of tak often return near the origin together –
say, with frequency ω (i.e. spend portion of time ω near the origin).
Equivalently, ta becomes an essential integer with frequency ω.
Thus ta becomes essential integer twice within time ∼ 1

ω .
∃ two instances 0 < t1 − t2 < 1/ω in which t1a and t2a are different
essential integers.
Subtract ⇒ (t2 − t1)a is also an essential integer.
By the definition of the essential LCD,

D(a) ≤ t2 − t1 <
1
ω

.
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Conclusion of the proof.
1. If the essential LCD D(a) is large,
then the system is not quasi-periodic ⇒ closer to quasi-random.

2. For quasi-random systems,
the concentration function pε(S) is small.

Ultimately, the argument gives

pε(a) .
1√
n

(
ε +

1
D(a)

)
+ e−cn.
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Improvements
[O.Friedland-S.Sodin] recently simplified the argument:

Used a more convenient notion of essential integers as
vectors in Rn that can be approximated by integer vectors within
α
√

n in Euclidean distance.

Bypassed Halasz’s regularity argument (which I skipped) using a
direct and simple analytic bound.



Using the anti-concentration inequality

pε(a) .
1√
n

(
ε +

1
D(a)

)
+ e−cn.

In order to use the anti-concentration inequality, we need to know
that LCD of a is large.

Is LCD large for typical (i.e. random) coefficient vectors a?

For random matrix problems, a = normal to the random
hyperplane spanned by n − 1 i.i.d. vectors Xk in Rn:

Random Normal Theorem: D(a) ≥ ecn with probability 1− e−cn.
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