Projections and Liftings on the Sphere

Wolfgang Weil (U Karlsruhe)
joint work with M. Kiderlen (U Aarhus) and P. Goodey (U Oklahoma)

3rd Annual Conference - PHD

Samos, June 2007

Motivation 1: Projection Mean Bodies

$K \subset \mathbb{R}^{d}$ a convex body, $h(K, \cdot)$ support function of K, \mathcal{L}_{k} the Grassmannian of k-dimensional subspaces, $k \in\{1, \ldots, d-1\}$, $K \mid L$ orthogonal projection of K onto $L \in \mathcal{L}_{k}$.

The k-th projection mean body $P_{k}(K)$ of K is the Minkowski average of the projections $K \mid L$ (averaged with the invariant probability measure $d L$ on \mathcal{L}_{k}):

$$
h\left(P_{k}(K), \cdot\right)=\int_{\mathcal{L}_{k}} h(K \mid L, \cdot) d L
$$

For $k=d-1$ this body was first considered by Schneider (1977), who showed:

$$
P_{d-1}(K) \text { homothetic to } K \Longleftrightarrow K \text { is a ball. }
$$

The injectivity of the operator $p_{k}: K \mapsto P_{k}(K), k \geq 2$, was investigated by several authors (Spriestersbach, Goodey, Jiang, Kiderlen).

Current state:
p_{k} is injective for $k=3$ and $k \geq d / 2$,
p_{2} is injective $\Longleftrightarrow d \neq 14$,
the cases $3<k<d / 2$ are open.

Analytic interpretation of

$$
h(K, \cdot) \mapsto \int_{\mathcal{L}_{k}} h(K \mid L, \cdot) d L:
$$

The function $f=h(K, \cdot)$ on S^{d-1} is
a) restricted (projected) to $S^{d-1} \cap L$,
b) then the restriction is lifted (by linear extension) back to S^{d-1} and
c) the result is averaged over all L.

Thus p_{k} appears as a (special case of a) mean lifted projection on S^{d-1} (applied to $h(K, \cdot)$).

Motivation 2: Directional Distribution

X spatially homogeneous random field of convex particles in \mathbb{R}^{d} (a stationary point process on \mathcal{K}^{d}), $\equiv_{d-1}(K, \cdot)$ support measure on $\mathbb{R}^{d} \times S^{d-1}$ (concentrated on the normal bundle of K),
$\bar{S}_{d-1}(X, \cdot)$ the specific surface area measure of X is the derivative of

$$
\mathbb{E} \sum_{K \in X} \bar{\Xi}_{d-1}(K, \cdot)
$$

w.r.t. λ_{d}.

After normalization, $\bar{S}_{d-1}(X, \cdot)$ describes the distribution of the outer normal in a typical boundary point of X.

Suppose, the section process $X \cap L$ is observed, for randomly chosen $L \in \mathcal{L}_{k}$.

Can $\bar{S}_{k-1}(X \cap L, \cdot)$ be used to determine (estimate) $\bar{S}_{d-1}(X, \cdot)$?
If $\bar{S}_{k-1}(X \cap L, \cdot)$ is seen as a kind of projection of $\mu:=\bar{S}_{d-1}(X, \cdot)$ onto $S^{d-1} \cap L$, we can use the trivial extension of this measure to S^{d-1}, average over all L and obtain a transformed image $b_{k}(\mu)$.

Is the resulting operator b_{k} injective?
Is it worth to lift the measures $\bar{S}_{k-1}(X \cap L, \cdot)$ in a different way to S^{d-1} before averaging (in order to improve the injectivity properties)?

Spherical Projections and Liftings

For $f \in \mathcal{C}\left(S^{d-1}\right), j \in(-k, \infty]$ and $L \in \mathcal{L}_{k}$, we define the j weighted spherical projection $\pi_{L, j} f$ of f :

$$
\left(\pi_{L, j} f\right)(u)=\int_{H^{d-k}(L, u)} f(v)\langle u, v\rangle^{k+j-1} d v, \quad u \in S^{d-1} \cap L
$$

where integration is over the half-sphere

$$
H^{d-k}(L, u)=\left\{x \in S^{d-1} \backslash L^{\perp}: \frac{x \mid L}{\|x \mid L\|}=u\right\}
$$

$\pi_{L, \infty} f$ is the restriction of f to $S^{d-1} \cap L$.

Similarly, for a measure μ on $S^{d-1} \cap L$ and $m \in(-k, \infty]$, the m-weighted spherical lifting $\pi_{L, m}^{*} \mu$ of μ is defined as

$$
\left(\pi_{L, m}^{*} \mu\right)(A)=\int_{S^{d-1} \backslash L^{\perp}} \int_{H^{d-k}(L, u) \cap A}\langle v, w\rangle^{k+m-1} d w \mu(d v) .
$$

$\pi_{L, \infty}^{*} \mu$ is the (trivial) extension of μ to S^{d-1}.
Finally, we put

$$
\pi_{m, j}^{(k)} f=\int_{\mathcal{L}_{k}} \pi_{L, m}^{*} \pi_{L, j} f d L
$$

and call this the mean lifted projection (with weights m, j) of the function f on S^{d-1}. Similarly: $\pi_{m, j}^{(k)} \mu$ for measures μ.

The operators $\pi_{m, j}^{(k)}$ have interesting properties:
$\pi_{m, j}^{(k)}$ is a continuous endomorphism on the Banach space $\mathcal{C}\left(S^{d-1}\right)$
$\pi_{m, j}^{(k)}$ is intertwining (commutes with rotations)
$\pi_{m, j}^{(k)}$ is self-adjoint
$\pi_{m, j}^{(k)}=\pi_{j, m}^{(k)}$

Examples

1) For the projection mean body $P_{k}(K)$:

$$
h\left(P_{k}(K), \cdot\right)=\pi_{1, \infty}^{(k)} h(K, \cdot) .
$$

2) For the sectional mean normal measure:

$$
\bar{S}_{k-1}(X \cap L, \cdot)=\pi_{L, 1} \bar{S}_{d-1}(X, \cdot)
$$

If we use the trivial lifting, the resulting average is

$$
b_{k}\left(S_{d-1}(X, \cdot)\right)=\pi_{\infty, 1}^{(k)} S_{d-1}(X, \cdot)
$$

Since $\pi_{\infty, 1}^{(k)}=\pi_{1, \infty}^{(k)}$, we obtain $b_{k}=p_{k}$.
3) The averaged directed section function $\bar{s}_{k}(K, \cdot)$ of a star body K (with radial function $\rho(K, \cdot)$), considered in GoodeyW. (2006) satisfies

$$
\bar{s}_{k}(K, \cdot)=\pi_{k-d, \infty}^{(d-k+1)} \frac{1}{k} \rho^{k}(K, \cdot) .
$$

General Results

Theorem.

$$
\pi_{m, j}^{(k)} \mu=c \int_{S^{d-1} \cap(\cdot)} \int_{S^{d-1}} K_{m, j}^{(k)}(\langle u, v\rangle) \mu(d u) d v
$$

with a constant c and

$$
\begin{aligned}
K_{m, j}^{(k)}(t)= & \left(1-t^{2}\right)^{(1-k) / 2} \\
& \times \int_{0}^{\pi-\arccos (t)} \sin ^{k+m-1}(s) \sin ^{k+j-1}(s+\arccos (t)) d s,
\end{aligned}
$$

for $-1 \leq t \leq 1$.
A similar result holds for $m=\infty$.

Since $\pi_{m, j}^{(k)}$ is intertwining, it is injective iff all multipliers w.r.t. spherical harmonics are non-zero.
Theorem. The n-th multiplier $a_{d, k, m, j, n}$ of $\pi_{m, j}^{(k)}$ satisfies

$$
a_{d, k, m, j, n}=\frac{\varpi_{k}}{\varpi_{d}} \sum_{t=0}^{\left[\frac{n}{2}\right]} c_{n, t}^{d, d-k+1} \beta_{d-k+1, k+j-1, n-2 t} \beta_{d-k+1, k+m-1, n-2 t}
$$

with

$$
\beta_{d, p, n}= \begin{cases}\frac{p!}{2^{n}(p-n)!\left(\frac{d-1}{2}\right)_{n}} \frac{\varpi_{d-1} \varpi_{d+p+n}}{\varpi_{d+2 n-1} \varpi_{p-n+1},} & \text { if } 0 \leq n \leq p \\ \frac{p!}{2^{p+1}\left(\frac{d-1}{2}\right)_{p+1}} \varpi_{d-1} P_{n-p-1}^{d+2 p+2}(0), & \text { if } p<n\end{cases}
$$

for $p>0$ and

$$
\beta_{d, 0, n}=\frac{\varpi_{d-1}}{d-1} P_{n-1}^{d+2}(0)
$$

Corollary. $\pi_{j, j}^{(k)}$ and $\pi_{j, j+1}^{(k)}$ are injective.
In particular, $\pi_{1,1}^{(k)}$ and $\pi_{1,2}^{(k)}$ are injective.
Kiderlen (2002) showed that also $\pi_{1,1-k}^{(k)}$ is injective.

Applications

(1) We recall that

$$
h\left(P_{k}(K), \cdot\right)=\pi_{1, \infty}^{(k)} h(K, \cdot)
$$

Theorem. For $m>-k, \pi_{1, m}^{(k)} h(K, \cdot)$ is the support function of a convex body $P_{k, m}(K)$.
K is determined by $P_{k, m}(K)$, if $m \in\{1,2,1-k\}$.

We call $P_{k, m}(K)$ the k-th m-weighted projection mean body of K.
(2) For the stationary random particle field X, we have seen that $\bar{S}_{k-1}(X \cap L, \cdot)$ can be observed.

If we spread these data for each $v \in S^{d-1} \cap L$ over the orthogonal half-sphere $H^{d-k}(L, v)$ with weight function $\langle v, \cdot\rangle^{k+m-1}$ and then average over all L, the resulting measure is

$$
\pi_{1, m}^{(k)} \bar{S}_{d-1}(X, \cdot)
$$

Due to the previous results, for $m \in\{1,2,1-k\}$, the measure $\bar{S}_{d-1}(X, \cdot)$ is uniquely determined.

Final remark:

There are some further results on injectivity, but also non-injectivity can occur.
E.g., $\pi_{k-d, \infty}^{(d-k+1)}$ is injective for

$$
2 \leq k<(2 d-3) / 5 \quad \text { and } \quad(d-2) / 2 \leq k \leq d-1
$$

but not injective for

$$
k=(2 d-3) / 5
$$

