Projections and Liftings on the Sphere

Wolfgang Weil (U Karlsruhe)

joint work with M. Kiderlen (U Aarhus) and P. Goodey (U Oklahoma)

3rd Annual Conference - PHD Samos, June 2007

Motivation 1: Projection Mean Bodies

 $K \subset \mathbb{R}^d$ a convex body, $h(K, \cdot)$ support function of K, \mathcal{L}_k the Grassmannian of k-dimensional subspaces, $k \in \{1, ..., d-1\}$, K|L orthogonal projection of K onto $L \in \mathcal{L}_k$.

The k-th projection mean body $P_k(K)$ of K is the Minkowski average of the projections K|L (averaged with the invariant probability measure dL on \mathcal{L}_k):

$$h(P_k(K), \cdot) = \int_{\mathcal{L}_k} h(K|L, \cdot) dL.$$

For k = d - 1 this body was first considered by **Schneider (1977)**, who showed:

 $P_{d-1}(K)$ homothetic to $K \iff K$ is a ball.

The injectivity of the operator $p_k : K \mapsto P_k(K)$, $k \ge 2$, was investigated by several authors (Spriestersbach, Goodey, Jiang, Kiderlen).

Current state:

 p_k is injective for k = 3 and $k \ge d/2$,

 p_2 is injective $\iff d \neq 14$,

the cases 3 < k < d/2 are open.

Analytic interpretation of

$$h(K,\cdot)\mapsto \int_{\mathcal{L}_k}h(K|L,\cdot)dL$$
:

The function $f = h(K, \cdot)$ on S^{d-1} is

a) restricted (projected) to $S^{d-1} \cap L$,

b) then the restriction is lifted (by linear extension) back to S^{d-1} and

c) the result is averaged over all L.

Thus p_k appears as a (special case of a) mean lifted projection on S^{d-1} (applied to $h(K, \cdot)$).

Motivation 2: Directional Distribution

X spatially homogeneous random field of convex particles in \mathbb{R}^d (a stationary point process on \mathcal{K}^d), $\Xi_{d-1}(K, \cdot)$ support measure on $\mathbb{R}^d \times S^{d-1}$ (concentrated on the normal bundle of K), $\overline{S}_{d-1}(X, \cdot)$ the specific surface area measure of X is the deriv-

$$\mathbb{E}\sum_{K\in X} \Xi_{d-1}(K,\cdot)$$

w.r.t. λ_d .

ative of

After normalization, $\overline{S}_{d-1}(X, \cdot)$ describes the distribution of the outer normal in a typical boundary point of X.

Suppose, the section process $X \cap L$ is observed, for randomly chosen $L \in \mathcal{L}_k$.

Can $\overline{S}_{k-1}(X \cap L, \cdot)$ be used to determine (estimate) $\overline{S}_{d-1}(X, \cdot)$?

If $\overline{S}_{k-1}(X \cap L, \cdot)$ is seen as a kind of projection of $\mu := \overline{S}_{d-1}(X, \cdot)$ onto $S^{d-1} \cap L$, we can use the trivial extension of this measure to S^{d-1} , average over all L and obtain a transformed image $b_k(\mu)$.

Is the resulting operator b_k injective?

Is it worth to lift the measures $\overline{S}_{k-1}(X \cap L, \cdot)$ in a different way to S^{d-1} before averaging (in order to improve the injectivity properties)?

Spherical Projections and Liftings

For $f \in C(S^{d-1})$, $j \in (-k, \infty]$ and $L \in \mathcal{L}_k$, we define the *j*-weighted spherical projection $\pi_{L,j}f$ of f:

$$(\pi_{L,j}f)(u) = \int_{H^{d-k}(L,u)} f(v) \langle u, v \rangle^{k+j-1} dv, \quad u \in S^{d-1} \cap L,$$

where integration is over the half-sphere

$$H^{d-k}(L,u) = \{ x \in S^{d-1} \setminus L^{\perp} : \frac{x|L}{\|x|L\|} = u \}.$$

 $\pi_{L,\infty}f$ is the restriction of f to $S^{d-1} \cap L$.

Similarly, for a measure μ on $S^{d-1} \cap L$ and $m \in (-k, \infty]$, the *m*-weighted spherical lifting $\pi^*_{L,m}\mu$ of μ is defined as

$$(\pi_{L,m}^*\mu)(A) = \int_{S^{d-1} \setminus L^{\perp}} \int_{H^{d-k}(L,u) \cap A} \langle v, w \rangle^{k+m-1} dw \, \mu(dv).$$

 $\pi_{L,\infty}^*\mu$ is the (trivial) extension of μ to S^{d-1} .

Finally, we put

$$\pi_{m,j}^{(k)}f = \int_{\mathcal{L}_k} \pi_{L,m}^* \pi_{L,j} f \, dL,$$

and call this the mean lifted projection (with weights m, j) of the function f on S^{d-1} . Similarly: $\pi_{m,j}^{(k)}\mu$ for measures μ .

The operators $\pi_{m,j}^{(k)}$ have interesting properties:

 $\pi_{m,j}^{(k)}$ is a continuous endomorphism on the Banach space $\mathcal{C}(S^{d-1})$

 $\pi_{m,j}^{(k)}$ is intertwining (commutes with rotations)

 $\pi_{m,j}^{(k)}$ is self-adjoint

$$\pi_{m,j}^{(k)} = \pi_{j,m}^{(k)}$$

Examples

1) For the projection mean body $P_k(K)$: $h(P_k(K), \cdot) = \pi_{1,\infty}^{(k)} h(K, \cdot).$

2) For the sectional mean normal measure:

$$\overline{S}_{k-1}(X \cap L, \cdot) = \pi_{L,1}\overline{S}_{d-1}(X, \cdot).$$

If we use the trivial lifting, the resulting average is

$$b_k(S_{d-1}(X, \cdot)) = \pi_{\infty, 1}^{(k)} S_{d-1}(X, \cdot).$$

Since $\pi_{\infty, 1}^{(k)} = \pi_{1, \infty}^{(k)}$, we obtain $b_k = p_k$.

3) The averaged directed section function $\overline{s}_k(K, \cdot)$ of a star body K (with radial function $\rho(K, \cdot)$), considered in **Goodey**-**W. (2006)** satisfies

$$\overline{s}_k(K,\cdot) = \pi_{k-d,\infty}^{(d-k+1)} \frac{1}{k} \rho^k(K,\cdot).$$

General Results

Theorem.

$$\pi_{m,j}^{(k)}\mu = c \int_{S^{d-1}\cap(\cdot)} \int_{S^{d-1}} K_{m,j}^{(k)}(\langle u, v \rangle) \, \mu(du) \, dv,$$

with a constant \boldsymbol{c} and

$$K_{m,j}^{(k)}(t) = (1 - t^2)^{(1-k)/2} \\ \times \int_0^{\pi - \arccos(t)} \sin^{k+m-1}(s) \sin^{k+j-1}(s + \arccos(t)) \, ds,$$

for $-1 \leq t \leq 1$.

A similar result holds for $m = \infty$.

Since $\pi_{m,j}^{(k)}$ is intertwining, it is injective iff all multipliers w.r.t. spherical harmonics are non-zero.

Theorem. The *n*-th multiplier $a_{d,k,m,j,n}$ of $\pi_{m,j}^{(k)}$ satisfies

$$a_{d,k,m,j,n} = \frac{\varpi_k}{\varpi_d} \sum_{t=0}^{\left[\frac{n}{2}\right]} c_{n,t}^{d,d-k+1} \beta_{d-k+1,k+j-1,n-2t} \beta_{d-k+1,k+m-1,n-2t}$$

with

$$\beta_{d,p,n} = \begin{cases} \frac{p!}{2^n (p-n)! \left(\frac{d-1}{2}\right)_n} \frac{\varpi_{d-1} \varpi_{d+p+n}}{\varpi_{d+2n-1} \varpi_{p-n+1}}, & \text{if } 0 \le n \le p, \\ \frac{p!}{2^{p+1} \left(\frac{d-1}{2}\right)_{p+1}} \varpi_{d-1} P_{n-p-1}^{d+2p+2}(0), & \text{if } p < n \end{cases}$$

for p > 0 and

$$\beta_{d,0,n} = \frac{\varpi_{d-1}}{d-1} P_{n-1}^{d+2}(0).$$

11

Corollary. $\pi_{j,j}^{(k)}$ and $\pi_{j,j+1}^{(k)}$ are injective.

In particular, $\pi_{1,1}^{(k)}$ and $\pi_{1,2}^{(k)}$ are injective.

Kiderlen (2002) showed that also $\pi_{1,1-k}^{(k)}$ is injective.

Applications

(1) We recall that

$$h(P_k(K), \cdot) = \pi_{1,\infty}^{(k)} h(K, \cdot).$$

Theorem. For m > -k, $\pi_{1,m}^{(k)}h(K, \cdot)$ is the support function of a convex body $P_{k,m}(K)$.

K is determined by $P_{k,m}(K)$, if $m \in \{1, 2, 1 - k\}$.

We call $P_{k,m}(K)$ the k-th *m*-weighted projection mean body of K.

(2) For the stationary random particle field X, we have seen that $\overline{S}_{k-1}(X \cap L, \cdot)$ can be observed.

If we spread these data for each $v \in S^{d-1} \cap L$ over the orthogonal half-sphere $H^{d-k}(L,v)$ with weight function $\langle v, \cdot \rangle^{k+m-1}$ and then average over all L, the resulting measure is

$$\pi_{1,m}^{(k)}\overline{S}_{d-1}(X,\cdot).$$

Due to the previous results, for $m \in \{1, 2, 1 - k\}$, the measure $\overline{S}_{d-1}(X, \cdot)$ is uniquely determined.

Final remark:

There are some further results on injectivity, but also non-injectivity can occur.

E.g.,
$$\pi_{k-d,\infty}^{(d-k+1)}$$
 is injective for
 $2 \le k < (2d-3)/5$ and $(d-2)/2 \le k \le d-1$,
but not injective for

$$k = (2d - 3)/5.$$