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Intersection bodies

Lutwak:
D, L - origin-symmetric star bodies in R

n.
D is the intersection body of L if for every ξ ∈ Sn−1,

ρD(ξ) = voln−1(L ∩ ξ⊥).

The closure in the radial metric of the class of intersection
bodies of star bodies gives the class of intersection bodies.
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k-intersection bodies

Koldobsky:
D, L - origin-symmetric star bodies in R

n.
D is the k-intersection body of L if for every
(n − k)-dimensional subspace H ⊂ R

n

Volk(D ∩ H⊥) = Voln−k(L ∩ H).

The closure in the radial metric gives the class of
k-intersection bodies, which will be denoted by Ik.
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k-intersection bodies

Another generalization: Zhang.

See also [Koldobsky], [E.Milman] for the relationship
between these two generalizations and their connection to
the lower dimensional Busemann-Petty problem.
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Theorem [Koldobsky]

Let D be an origin-symmetric star body in R
n, 1 ≤ k < n.

The following are equivalent:

(i) D is a k-intersection body;
(ii) ‖x‖−k

D is a positive definite distribution;
(iii) (Rn, ‖ · ‖D) embeds in L−k.
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Embeddings in Lp

A well-known fact: for any 0 < p < q ≤ 2, the space Lq

embeds isometrically in Lp.

Koldobsky extended this result to negative p:
Every n-dimensional subspace of Lq, 0 < q ≤ 2, embeds in
Lp for every −n < p < 0.
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Embeddings in Lp

However, it is an open problem, whether X = (Rn, ‖ · ‖D)
being embedded in L−p for some 0 < p < n − 3 implies that
X embeds in L−q for all p < q < n.

In particular, is it true that every k-intersection body is also
an m-intersection body for 1 < k < m < n − 3?

In some cases this statement is true. Since the product of
positive definite distributions is also positive definite, one
immediately obtains that if X embeds in L−p, 0 < p < n, and
p divides q, p < q < n, then X also embeds in L−q (see e.g.
[E.Milman]).
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Embeddings in Lp

Koldobsky: There is an n-dimensional Banach subspace
(n ≥ 3) of L1/2 that does not embed in L1, (also a subspace
of L1/4 but not L1/2).

Borwein and the Center for Computational Mathematics at
Simon Fraser University: showed (by computer methods)
that there is a Banach space that embeds in La/64 but not in
L(a+1)/64 for a = 1, 2,..., 63.

Kalton, Koldobsky: there is a Banach space embedding in
Lp, 0 < p < 1, but not in Lq, p < q ≤ 1.

Schlieper: there is a normed space that embeds in L−4 but
not in L−2 (note that the converse always holds). Also in
L−1/3 but not in L−1/6.
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Theorem 1.
For every 1 ≤ k < m < n − 3 there is an origin-symmetric
convex body K ∈ R

n such that K 6∈ Ik, but K ∈ Im.
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Weil constructed a convex body in R
n (n ≥ 3) that is not a

zonoid but all its projections onto hyperplanes are zonoids.

Neyman showed that there are n-dimensional normed
spaces that do not embed in Lp, but all their
(n − 1)-dimensional subspaces embed in Lp for p > 0.

Yaskina constructed a convex body in R
n (n ≥ 5), which is

not an intersection body, but all of its central hyperplane
sections are intersection bodies.

Note that all central sections of an intersection body are
intersection bodies (Fallert, Goodey and Weil).
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Let Im
k be the class of convex bodies all of whose

m-dimensional central sections are k-intersection bodies.

Theorem 2.

Let k + 3 ≤ m < n. There is an origin-symmetric convex
body K ⊂ R

n such that K ∈ Im
k , but K 6∈ Im+1

k .

Remark. Note that Im+1
k ⊂ Im

k , (see e.g. [E.Milman]).
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Proof of Theorem 2

For a small ε > 0 define a body K by

‖x‖−k
K = |x|−k

2 − 2εm−k‖x‖−k
E , x ∈ R

n \ {0},

where |x|2 is the Euclidean norm and E is the ellipsoid:

‖x‖E =

(

x2
1 + · · · + x2

m +
x2

m+1 + · · · + x2
n

ε2

)1/2

.

One can check that the body K is well defined and convex.
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Proof of Theorem 2

Lemma 1.
For every m-dimensional subspace H of R

n, the body
K ∩ H is a k-intersection body.

Proof.
We have

‖x‖−k
K∩H = |x|−k

B2∩H − 2εm−k‖x‖−k
E∩H .

Since E is an ellipsoid with semiaxes ε and 1, E ∩ H is also
an ellipsoid with semiaxes a1, ..., am such that ε ≤ ai ≤ 1,
∀i = 1, ..., m.
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Proof of Theorem 2

There is a coordinate system in H such that

‖y‖−k
K∩H =

(

y2
1 + · · · + y2

m

)−k/2
− 2εm−k

(

y2
1

a2
1

+ · · · +
y2
m

a2
m

)−k/2

.

Taking the Fourier transform of ‖y‖−k
K∩H in the plane H we

get
(‖y‖−k

K∩H)∧(ξ)

= Cm,k

(

|ξ|−m+k
2 − 2εm−k

m
∏

i=1

ai ·
(

a2
1ξ

2
1 + · · · + a2

mξ2
m

)(−m+k)/2

)
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Proof of Theorem 2

Let aj be the smallest semiaxis. Then for some λ ≥ 1 we
have aj = λε. Therefore

m
∏

i=1

ai ≤ λε.

On the other hand if ξ ∈ Sm−1 ⊂ H, then

(

a2
1ξ

2
1 + · · · + a2

mξ2
m

)(−m+k)/2
≤ a−m+k

j = (λε)−m+k.
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Proof of Theorem 2

Therefore,

2εm−k
m
∏

i=1

ai ·
(

a2
1ξ

2
1 + · · · + a2

mξ2
m

)(−m+k)/2
≤ 2εm−kλε(λε)−m+k

≤ 2ε

So, if ε ≤ 2−1, then (‖y‖−k
K∩H)∧(ξ) ≥ 0 for all ξ ∈ Sn−1 ∩ H

and all H.

Therefore, K ∈ Im
k (i.e. all m-dimensional sections of K are

k-intersection bodies).
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Proof of Theorem 2

Lemma.
There exists an (m + 1)-dimensional section of K which is
not a k-intersection body.

Proof.
Let H = {x ∈ R

n : xm+2 = · · · = xn = 0}. Then

‖x‖−k
K∩H =

=
(

x2
1 + · · · + x2

m+1

)−k/2
−2εm−k

(

x2
1 + · · · + x2

m +
x2

m+1

ε2

)−k/2
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Proof of Theorem 2

The Fourier transform in the variables x1, ..., xm+1 equals

(

‖x‖−k
K∩H

)∧

(ξ) = Cm+1,k

(

(

ξ2
1 + · · · + ξ2

m+1

)(−m+k−1)/2
−

− 2εm−kε
(

ξ2
1 + · · · + ξ2

m + ε2ξ2
m+1

)(−m+k−1)/2
)

If ξ = (0, ..., 0, 1) ∈ Sm ⊂ H, then
(

‖x‖−k
K∩H

)∧

(ξ) = Cm+1,k

(

1 − 2εm−kεε−m+k−1
)

= −Cm+1,k < 0

Q.E.D.
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Proof of Theorem 1

Theorem 1.
For every 1 ≤ k < m < n − 3 there is a symmetric convex
body K ∈ R

n that does not belong to Ik, but belongs to Im.
Proof.
For a small ε > 0 define a body K by

‖x‖−1
K = |x|−1

2 − εn−k−3/2‖x‖−1
E , x ∈ R

n \ {0},

where E is the ellipsoid with the norm

‖x‖−1
E =

(

x2
1 + · · · + x2

n−1 +
x2

n

ε2

)−1/2

.

One can show that K is convex.
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Proof of Theorem 1

Consider the −mth power of the norm.

‖x‖−m
K = |x|−m

2 − εn−k−3/2m|x|−m+1
2 ‖x‖−1

E + · · ·

Applying the Fourier transform we get

(‖x‖−m
K )∧(ξ) = Cn,m − εn−k−3/2m(|x|−m+1

2 ‖x‖−1
E )∧(ξ) + · · ·
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Proof of Theorem 1

Lemma.
Let p, q > 0 be integers, p + q ≤ n − 1.

1. If n − p − q − 1 is even, then for all ξ ∈ Sn−1

(|x|−q
2 ‖x‖−p

E )∧(ξ) ≤ Cε−n+p+q+1.

If n − p − q − 1 is odd, then for every α > 0 there exists
Cα such that for all ξ ∈ Sn−1,

(|x|−q
2 ‖x‖−p

E )∧(ξ) ≤ Cαε−n+p+q+1/(1+α).

2. Moreover, in both cases

(|x|−q
2 ‖x‖−p

E )∧(en) ∼ Cε−n+p+q+1
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Proof of Theorem 1

We have

(‖x‖−m
K )∧(ξ) = Cn,m − εn−k−3/2m(|x|−m+1

2 ‖x‖−1
E )∧(ξ) + · · ·

By Lemma the order of the second term is at most

εn−k−3/2ε−n+m+1/(1+α) = εm−k−1/2−α/(1+α) → 0, as ε → 0

The terms in · · · are even better:

εi(n−k−3/2)ε−n+m+1/(1+α), i ≥ 2.

Therefore if ε is small, then (‖x‖−m
K )∧(ξ) ≥ 0, so K ∈ Im.
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Proof of Theorem 1

Now consider

‖x‖−k
K = |x|−k

2 − εn−k−3/2k|x|−k+1
2 ‖x‖−1

E + · · ·

Computing the Fourier transform in the direction of ξ = en,
we have

(‖x‖−k
K )∧(en) = Cn,k − εn−k−3/2k(|x|−k+1

2 ‖x‖−1
E )∧(en) + · · ·

The terms in · · · are small since they have order at most

εi(n−k−3/2)ε−n+k+1, i ≥ 2.
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Proof of Theorem 1

We will pay attention only to the second term. By Lemma

εn−k−3/2(|x|−k+1
2 ‖x‖−1

E )∧(en) ∼ Cεn−k−3/2ε−n+k+1 = Cε−1/2

If we choose ε > 0 small enough so that the latter is greater
than Cn,k, then (‖x‖−k

K )∧(en) < 0.

So K 6∈ Ik.
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