
ON C(n)-EXTENDIBLE CARDINALS

KONSTANTINOS TSAPROUNIS

Abstract. The hierarchies of C(n)-cardinals were introduced by Bagaria in [1]
and were further studied and extended by the author in [18] and in [20]. The
case of C(n)-extendible cardinals, and of their C(n)+-extendibility variant, is of
particular interest since such cardinals have found applications in the areas of
category theory, of homotopy theory, and of model theory (see [2], [3], and [4],
respectively). However, the exact relation between these two notions had been
left unclarified. Moreover, the question of whether the Generalized Continuum
Hypothesis (GCH) can be forced while preserving C(n)-extendible cardinals (for
n > 1) also remained open. In this note, we first establish results in the direction
of exactly controlling the targets of C(n)-extendibility embeddings. As a corollary,
we show that every C(n)-extendible cardinal is in fact C(n)+-extendible; this, in
turn, clarifies the assumption needed in some applications obtained in [3]. At
the same time, we underline the applicability of our arguments in the context of
C(n)-ultrahuge cardinals as well, as these were introduced in [20]. Subsequently,
we show that C(n)-extendible cardinals carry their own Laver functions, making
them the first known example of C(n)-cardinals that have this desirable feature.
Finally, we obtain an alternative characterization of C(n)-extendibility, which we
use to answer the question regarding forcing the GCH affirmatively.

1. Introduction

The machinery of elementary embeddings is ubiquitous in the context of large car-
dinals, having been very intensively used and studied for several decades. How-
ever, and despite the fact that we have a rich theory regarding the critical point —
usually denoted by κ — of such embeddings,1 the general question of what kind
of properties are (or can be) satisfied by the image of the critical point — usually
denoted by j(κ) — remains quite elusive and widely open.2

In the direction of imposing some structure on the aforementioned image j(κ),
one possibility is to consider reflection properties that this ordinal may satisfy.
This path was initiated, in its generality, by Bagaria, who introduced the so-called
C(n)-cardinals in [1]. These are strengthenings of the usual large cardinals, adding
to each standard definition the extra requirement that the image j(κ) of the embed-
ding in question is an ordinal that is Σn-correct in the universe. Bagaria developed
the theory of the variousC(n)-hierarchies and, moreover, showed that such notions
are closely related to the general theme of reflection for the set-theoretic universe.
For instance, he established in [1] a level-by-level correspondence between the
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information regarding properties that the image of the critical point satisfies. Nevertheless, no general
account has emerged so far, certainly nothing comparable to the rich available theory that focuses on
the critical point itself.
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C(n)-extendible cardinals and Vopěnka’s Principle (VP), where the latter is a well-
known reflection principle, having high consistency strength. Subsequently, the
hierarchies of C(n)-cardinals were further studied and extended by the author in
[18] and in [20] (see also [15] for another related work). Among these hierarchies,
the notion of C(n)-extendibility is of particular interest since it has found sev-
eral applications in other mathematical contexts, such as category and homotopy
theory (see [2] and [3]), as well as model theory (see the recent [4]).

Nevertheless, many set-theoretic questions regarding the various C(n)-cardinals
have remained unanswered. For instance, and except for some special cases (see
[18] and [20]), it is not generally clear what kind of forcing constructions preserve
or destroy a given C(n)-cardinal, such as a C(n)-supercompact (for n > 1) or a
C(n)-extendible (for n > 1).

For example, the following question concludes [18]:

Question 1.1. Suppose that κ is C(n)-extendible, for some n > 1. Can we force
the GCH while preserving the C(n)-extendibility of κ?

Furthermore, Bagaria has also considered a variant of C(n)-extendibility, called
C(n)+-extendibility, that has served as an assumption in some of the applications
obtained in [3].3 However, the annoying issue of whether these two notions coincide
had remained open. Some progress towards its resolution was made by Bagaria
and Brooke-Taylor (see, e.g., Propositions 14 and 15 in [2]), but the following
question was stated in [2] as an open problem, for n > 1:

Question 1.2. Is it consistent to have a C(n)-extendible cardinal that is not C(n)+-
extendible?

In this present note, we start by giving the necessary preliminaries, together
with an overview of earlier related work, in Section 2. In Section 3, we first es-
tablish results in the direction of exactly controlling (properties of) the targets of
C(n)-extendibility embeddings; we view this as an advance towards building some
relevant theory regarding the images of appropriate large cardinal embeddings. In
particular, we completely resolve Question 1.2 (negatively) by showing that, in fact,
the two hierarchies coincide. At the same time, we adapt our arguments in the
context of C(n)-ultrahuge cardinals as well. Subsequently, we give a character-
ization of C(n)-extendible cardinals in terms of elementary embeddings between
the Hλ’s. This brings us to Section 4, where we show that C(n)-extendible car-
dinals carry their own Laver functions (while we also hint at a similar result for
C(n)-ultrahugeness). This is the first known instance of a C(n)-cardinal notion
having this desired feature. In Section 5, we use the aforementioned characteri-
zation of C(n)-extendibility in order to answer Question 1.1 affirmatively, arguing
that, after forcing with the standard class iteration that forces the global GCH in
the universe, every C(n)-extendible cardinal is preserved. Finally, in Section 6,
we briefly give some (easy) observations regarding the issue of separating levels of
C(n)-extendibility.

Acknowledgments. The author would like to thank Joan Bagaria, for many help-
ful conversations. Further gratitude goes to the anonymous referee, for several
comments and suggestions that resulted in a substantially improved presentation
of this work.

3Note, though, that there is a slight divergence in terminology: C(n)+-extendibility is called C(n)-
extendibility in [3]. Nevertheless, this latter term was later abandoned by Bagaria in his general study
of C(n)-cardinals, and the term C(n)+-extendibility has been in use ever since.
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2. Preliminaries

2.1. Notation. Our notation and terminology are mostly standard; we refer the
reader to [12] or [14] for an account of all undefined set-theoretic notions. We
write ON for the class of all ordinals. For any set x, we write rk(x) for the rank
of x. If κ is an (infinite) cardinal, we let Hκ stand for the collection of all sets
whose transitive closure has size less than κ. We denote by GCH the Generalized
Continuum Hypothesis; i.e., the assertion that, for every infinite cardinal κ, we have
that 2κ = κ+.

For every natural number n, we let C(n) denote the closed and unbounded
proper class of ordinals α that are Σn-correct in V , that is, ordinals α such that Vα
is a Σn-elementary substructure of V (denoted by Vα ≺n V ). Note that C(0) = ON.
For every n > 1, the statement ‘‘α ∈ C(n)" is expressible by a Πn-formula (but not
by any Σn-formula). This is proven by induction on n, with the base case arising
from a characterization of α ∈ C(1) as those uncountable cardinals α for which
Vα = Hα (see [1]).

For any set of ordinals A, we let sup(A) denote its supremum and we let Lim(A)
denote the collection of its limit points, that is, Lim(A) = {ξ : sup(A ∩ ξ) = ξ}.
Given a limit ordinal α with cf(α) > ω and some C ⊆ α, we say that C is a club in
α if sup(C) = α and α ∩ Lim(C) ⊆ C; moreover, we say that C is a β-club in α,
for some regular β < cf(α), if sup(C) = α and {ξ ∈ α ∩ Lim(C) : cf(ξ) = β} ⊆ C.
Likewise, if I ⊆ cf(α) is an ordinal interval, then C is called I-club in α if it is
β-club in α, for all regular β ∈ I.

Given any function f and any A ⊆ dom(f), we let f � A denote the restriction
of f to A; moreover, we let f“A denote the pointwise image of A under f , i.e.,
f“A = {f(x) : x ∈ A}. If κ 6 λ are (infinite) cardinals, we let Pκλ = {x ⊆ λ : |x| <
κ}. We use the three-dot notation in order to indicate partial functions, that is,
f

...X −→ Y means that dom(f) ⊆ X, with the inclusion possibly being proper.
If P is a forcing poset, we write V P for the universe of P-names. If κ, λ are

regular cardinals, we let Add(κ, λ) denote the poset consisting of partial functions
p

... λ× κ −→ 2 with |p| < κ; as usual, the ordering is given by reversed inclusion.
If j is a non-trivial elementary embedding, we write cp(j) for its critical point.

Following the standard practice, whenever we lift embeddings to forcing extensions
we use the same letter j for the lifted version of the embedding.

Finally, we will need the following standard facts regarding definability and
correctness of supercompact and of extendible cardinals. The statement ‘‘κ is
supercompact" is Π2-definable (see the discussion after Exercise 22.8 in [14]);
moreover, if κ is supercompact, then κ ∈ C(2) (i.e., every supercompact cardinal
is Σ2-correct — see Proposition 22.3 in [14]). The statement ‘‘κ is extendible" is
Π3-definable (see the hint of Exercise 23.9 in [14]); moreover, if κ is extendible,
then κ ∈ C(3) (i.e., every extendible cardinal is Σ3-correct — see Proposition 23.10
in [14]).

2.2. C(n)-extendible cardinals. The following definition is due to Bagaria.4 As
usual in the context of C(n)-cardinals, this is actually a schema of definitions, one
for each meta-theoretic natural number n > 1.

Definition 2.1 ([1]). We say that a cardinal κ is λ-C(n)-extendible, for some λ > κ,
if there exists some θ and an elementary embedding j : Vλ −→ Vθ with cp(j) = κ,
j(κ) > λ and j(κ) ∈ C(n). Moreover, we say that κ is C(n)-extendible, if it is
λ-C(n)-extendible for all λ > κ.

4For a comprehensive treatment of C(n)-extendible cardinals, see [1] and [18].
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We note that, by Proposition 3.3 in [1], a cardinal is extendible if and only if it
is C(1)-extendible. In terms of definability of this hierarchy, for every n > 1, the
statement ‘‘κ is λ-C(n)-extendible" is Σn+1-expressible; hence, for every n > 1, the
statement ‘‘κ is C(n)-extendible" is Πn+2-expressible (see Section 3 in [1]). In terms
of correctness, for every n > 1, if the cardinal κ is C(n)-extendible then κ ∈ C(n+2)

(cf. Proposition 3.4 in [1]). Moreover, the hierarchy of C(n)-extendible cardinals
is proper; for every n > 1, the least C(n)-extendible cardinal is below the least
C(n+1)-extendible cardinal, assuming both exist (cf. Proposition 3.5 in [1]).

As an indication of the strength of these notions, we mention that if there is a
C(2)-extendible cardinal, then there are unboundedly many supercompacts in the
universe. To see this, let κ beC(2)-extendible and note that κ ∈ C(4) (by Proposition
3.4 in [1]). Meanwhile, the statement ‘‘there are unboundedly many supercompact
cardinals" is easily seen to be Π4-expressible (given the Π2-definability of super-
compactness). By standard facts (see, for instance, Propositions 23.6 and 23.7 in
[14]), this statement holds in Vκ and, thus, holds in the universe as well, due to
the correctness of κ.

In a similar manner, using the analogous definability and correctness proper-
ties, we have that if there is a C(n+2)-extendible cardinal (for n > 1), then there are
unboundedly many C(n)-extendibles in the universe (cf. Proposition 3.6 in [1]).

The following variant of C(n)-extendibility is of particular interest:

Definition 2.2 ([1]). We say that a cardinal κ is λ-C(n)+-extendible, for some
λ > κ with λ ∈ C(n), if there is some θ ∈ C(n) and an elementary embedding
j : Vλ −→ Vθ with cp(j) = κ, j(κ) > λ and j(κ) ∈ C(n). Moreover, we say that κ is
C(n)+-extendible, if it is λ-C(n)+-extendible for all λ > κ with λ ∈ C(n).

Every C(n)+-extendible cardinal is C(n)-extendible; see the relevant discussion
in § 4 of [2]. As noted in [1], the two notions coincide when n = 1. In Section 3, we
shall generalize this to all n, showing that the two hierarchies completely coincide.

Note that C(n)-extendibility, following the traditional definition of usual ex-
tendibility, is witnessed locally by set embeddings between rank initial segments of
the universe. Building on Bagaria’s work, we further studied C(n)-extendible car-
dinals in [18]. In particular, we obtained a characterization of C(n)-extendibility in
terms of class elementary embeddings, as follows.

Definition 2.3 ([18]). A cardinal κ is called jointly λ-supercompact and θ-superstrong,
for some λ, θ > κ, if there is an elementary embedding j : V −→ M with M tran-
sitive, cp(j) = κ, j(κ) > λ, λM ⊆M and Vj(θ) ⊆M .

For the global notion, we say that κ is jointly supercompact and θ-superstrong,
for some fixed θ > κ, if it is jointly λ-supercompact and θ-superstrong, for every
λ > κ; moreover, we say that κ is jointly supercompact and superstrong if it is
jointly λ-supercompact and λ-superstrong, for every λ > κ.

The following fact has been mentioned before (see, e.g., the discussion after
Definition 2.24 in [18]); for completeness, let us now provide a proof of it.

Fact 2.4. If κ is the least supercompact, then κ is not jointly λ-supercompact and
κ-superstrong, for any λ.

Proof. Let κ be the least supercompact and, aiming for a contradiction, suppose
that, for some λ, there is an elementary embedding j : V −→M with M transitive,
cp(j) = κ, j(κ) > λ, λM ⊆ M and Vj(κ) ⊆ M . The fact that j is κ-superstrong
(i.e., the fact that Vj(κ) ⊆ M ) implies that j(κ) ∈ C(1) (see Proposition 2.2 in [1]).
Hence, the supercompactness of κ, which is a Π2-expressible statement, reflects
from V down to Vj(κ). Then, by elementarity, we get that there is α < κ such that
Vκ |= “α is supercompact”. It follows that α is an actual supercompact cardinal
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(i.e., one in V ), again due to the Π2-definability of supercompactness and the
correctness of κ. This contradicts the minimality of κ and concludes the proof. �

The C(n)-version of the previous definition is obtained in a straightforward man-
ner, by appending the additional requirement that j(κ) ∈ C(n), both for the local
and for the global notion. Then, for every n > 1:

Theorem 2.5 ([18]). A cardinal κ is C(n)-extendible if and only if it is jointly C(n)-
supercompact and κ-superstrong if and only if it is jointly C(n)-supercompact and
superstrong.

The previous theorem is stated as Corollary 2.31 in [18] (see also its subsequent
remarks, as well as Theorem 2.28 in [18] for a level-by-level correspondence).

As we will be mainly working with the above (alternative) characterization of
C(n)-extendibility, let us now say a few words regarding the complexity of de-
scribing embeddings that are jointly λ-C(n)-supercompact and λ-superstrong via
appropriate (long) extenders. For every fixed n > 1:

Lemma 2.6. The statement ‘‘κ is jointly λ-C(n)-supercompact and λ-superstrong"
is Σn+1-expressible using extenders.

Proof. First of all, we note that there are various known ways in which the existence
of a jointly λ-C(n)-supercompact and λ-superstrong embedding can be captured,
i.e., formalized, via the existence of appropriate extenders. For example, Corollary
2.32 (and its subsequent remarks) in [18] gives one such way, using ordinary
(but long) extenders. For another example, the detailed discussion appearing in
Section 5 of [1] explains how one can use extenders of the Martin-Steel form in
order to capture λ-C(n)-supercompactness — in fact, a formal characterization is
given there in terms of such extenders (see also the statement of Theorem 2.20 in
[18]).

Now, given any such extender E that is jointly λ-C(n)-supercompact and λ-
superstrong for κ (i.e., such that its associated embedding jE is), we may verify
this fact about E inside Vµ, for some large enough cardinal µ ∈ C(n) (e.g., we may
pick µ ∈ C(n) with cf(µ) sufficiently above all the relevant information). Such Vµ
correctly verifies the fact that E is an extender whose associated embedding jE is
jointly λ-C(n)-supercompact and λ-superstrong for κ. More concretely, let us fix
some formula χ(κ, λ,E) asserting that ‘‘the extender E is jointly λ-supercompact
and λ-superstrong for κ" (using, for instance, the formal characterization given
in Section 5 of [1]). Then, for any λ > κ, the statement ‘‘κ is jointly λ-C(n)-
supercompact and λ-superstrong" can be expressed, e.g., as follows:

(∃µ ∈ C(n))(∃E ∈ Vµ)(cf(µ) > irk(E) + iλ ∧ Vµ |= (χ(κ, λ,E) ∧ jE(κ) ∈ C(n))),

which is easily seen to be Σn+1-expressible (in the parameters κ and λ). We note
that the crucial contribution to the complexity of this statement comes from the
requirement ‘‘µ ∈ C(n)", which is Πn-expressible. �

The above lemma gives us, in particular, an alternative and very useful way
of expressing (levels of) C(n)-extendibility (mindful of the level-by-level correspon-
dence given by Theorem 2.28 in [18]) via the existence of appropriate extenders.

Let us also recall that for n = 1, that is, for ordinary extendibility, we have (yet)
another characterization in terms of elementary embeddings between the Hλ’s:

Theorem 2.7 ([17]). A cardinal κ is extendible if and only if for all λ = iλ > κ,
there exists some cardinal µ and an elementary embedding j : Hλ+ −→ Hµ+ with
cp(j) = κ and j(κ) > λ+ 1.
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In [17], this theorem is stated as Corollary 1.4 and it is subsequently used in order
to show that every extendible cardinal is preserved by the standard class iteration
that forces the global GCH in the universe (cf. Theorem 2.2 in [17]).

2.3. C(n)-ultrahuge cardinals. Ultrahuge cardinals and their C(n)-versions were
recently introduced by the author, as a natural strengthening of the usual super-
huge cardinals. Let us recall the relevant definition:

Definition 2.8 ([20]). A cardinal κ is called λ-ultrahuge, for some λ > κ, if there
exists an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ) > λ, j(κ)M ⊆ M and Vj(λ) ⊆ M . Moreover, we say that κ is ultrahuge,
if it is λ-ultrahuge for all λ > κ.

For any given n > 1, the C(n)-version of ultrahugeness is defined accordingly,
by appending — as expected — the additional requirement that j(κ) ∈ C(n).

Clearly, a cardinal is ultrahuge if and only if it is C(1)-ultrahuge. As discussed
in [20], if κ is C(n)-ultrahuge then it is C(n)-extendible and, thus, κ ∈ C(n+2) as
well. In addition, for every n > 1, the statement ‘‘κ is λ-C(n)-ultrahuge" is Σn+1-
expressible and, hence, the statement ‘‘κ is C(n)-ultrahuge" is Πn+2-expressible.
Moreover, we showed in [20] that the C(n)-ultrahuge cardinals form a proper hi-
erarchy that refines the usual large cardinal hierarchy between the well-known
notions of superhugeness and almost 2-hugeness; see Theorem 4.3 (and its sub-
sequent remarks) in [20].

Let us now turn to our current treatment of C(n)-extendible (and of C(n)-
ultrahuge) cardinals, for n > 1.

3. Controlling targets

We first establish results in the direction of exactly controlling (properties of) the
targets of C(n)-extendibility embeddings. We start with n = 2.

Proposition 3.1. Suppose that κ is C(2)-extendible. Then, for all λ > κ, there
is some θ > λ and an elementary embedding j : V −→ M with M transitive,
cp(j) = κ, j(κ) > θ, θM ⊆ M , Vj(θ) ⊆ M and such that both j(κ) and j(θ) are
supercompact cardinals. Moreover, θ may be taken to be an inaccessible cardinal
that belongs to C(2).

Proof. Let κ be a C(2)-extendible cardinal and fix some λ > κ + 1. Let θ > λ be
any C(2) cardinal that is the target of some λ-C(2)-extendibility embedding for κ.
That is, let h : V −→ N be an elementary embedding with N transitive, cp(h) = κ,
h(κ) > λ, λN ⊆ N , Vh(λ) ⊆ N and h(κ) = θ ∈ C(2). Of course, θ is inaccessible.

Let U be the usual normal measure on κ that is derived from h and note that
U ∈ Vκ+2 ⊆ Vλ. By elementarity, W = h(U) is a normal measure on θ in the
sense of N . But note that W ∈ Vθ+2 ⊆ Vh(λ) ⊆ N , so W is indeed a normal
measure on θ (i.e., in V ). Now, a standard reflection argument shows that the
set {α < κ : Vκ |= “α is supercompact”} belongs to U ; thus, by elementarity,
the set {α < θ : Vθ |= “α is supercompact”} belongs to W. Moreover, note that
θ ∈ C(2) both in V and in N ; the latter because, by elementarity, θ = h(κ) is
C(2)-extendible in N and, thus, it belongs to C(2) (indeed C(4)) by Proposition 3.4
in [1]. Consequently, and since being supercompact is Π2-expressible, for every
α < θ we have that α is supercompact in V if and only if it is supercompact in N
if and only if it is supercompact in Vθ.

For this choice of θ, let j : V −→ M be an elementary embedding witnessing
the (θ + 2)-C(2)-extendibility of κ, i.e., M is transitive, cp(j) = κ, j(κ) > θ + 2,
θM ⊆ M , Vj(θ)+2 ⊆ M and j(κ) ∈ C(2). Note that j(θ) is inaccessible. Moreover,
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note that θ ∈ C(2) in M as well: since being in C(2) is Π2-expressible, we have that
Vj(κ) |= θ ∈ C(2); thus, and since M |= j(κ) ∈ C(4) (by Proposition 3.4 in [1]), it
follows that M |= θ ∈ C(2).

SinceW is a normal measure on θ, we have that j(W) is a normal measure on
j(θ) in the sense of M . But notice that j(W) ∈ Vj(θ)+2 ⊆ M , from which we get
that j(W) is indeed a normal measure on j(θ) in V . In addition, by elementarity
and the above discussion, we have that:

D = {α < j(θ) : M |= “α is supercompact”} ∈ j(W).

At this point, we momentarily pause the proof in order to show the following lemma.
As this lemma is intended to be used in other similar proofs further below in this
note, we state it in the format that will also serve our future purposes.

Lemma 3.2. Suppose that h : V −→ N is a jointly λ-supercompact and λ-superstrong
embedding for κ, for some λ > κ+1. Let U be the usual normal measure on κ that is
derived from h, let θ = h(κ) and letW = h(U). Further, suppose that j : V −→M is
a jointly (θ + 2)-supercompact and (θ + 2)-superstrong embedding for κ. In this sit-
uation, if A ⊆ j(θ) is a (j(κ), j(θ))-club subset of j(θ), then we have that A ∈ j(W).

Proof of lemma. Suppose that we are in the situation of the lemma. Note that, by
the closure of the models N and M (as already explained in the proof above), we
have that W is a normal measure on the inaccessible θ, while j(W) is a normal
measure on the inaccessible j(θ) (i.e., as all these are computed in V ).

Let ϕ(α, β,X) be the statement ‘‘every (α, β)-club subset of β belongs to X". To
establish the lemma, note that it is enough to verify that ϕ(j(κ), j(θ), j(W)) holds
in M , since Vj(θ)+2 ⊆M .

By elementarity of j, we have that M |= ϕ(j(κ), j(θ), j(W)) if and only if
ϕ(κ, θ,W) holds in V . But the latter is true if and only if ϕ(κ, θ,W) holds in
N , because Vθ+2 ⊆ Vh(λ) ⊆ N . Therefore, by elementarity of h now, we have that
ϕ(κ, θ,W) = ϕ(κ, h(κ), h(U)) holds in N if and only if S ∈ U , where:

S = {α < κ : ϕ(α, κ,U)}.
Fix α < κ and let C ⊆ κ be an (α, κ)-club in κ. It is enough to check that C ∈ U
or, equivalently, that κ ∈ h(C). By elementarity, h(C) is an (α, h(κ))-club subset
of h(κ). But note that C ⊆ h(C), with C being unbounded in κ. Thus, h(C) is
unbounded in κ and therefore, since h(C) is (α, h(κ))-club in h(κ), we get that
κ ∈ h(C), as desired. �

Returning to the proof of the proposition, we now perform an elementary chain
construction in order to build various factor embeddings of j, in such a way that
each witnesses, in M , the θ-C(2)-extendibility of κ and, moreover, is such that
the image of θ is supercompact in the sense of M . For more examples of such
constructions and relevant details, the interested reader may consult [18].

We fix an initial limit ordinal β0 ∈ (j(λ), j(θ)) and we let:

X0 = {j(f)(j“θ, x) : f ∈ V, f : Pκθ × Vθ −→ V, x ∈ Vβ0} ≺M.

For any ξ + 1 < j(θ), given βξ and Xξ, we let βξ+1 = sup(Xξ ∩ j(θ)) + ω and

Xξ+1 = {j(f)(j“θ, x) : f ∈ V, f : Pκθ × Vθ −→ V, x ∈ Vβξ+1
} ≺M.

If ξ < j(θ) is limit and we have already defined βα and Xα for every α < ξ, we let
βξ = supα<ξ βα and Xξ =

⋃
α<ξXα ≺ M . This concludes the description of our

elementary chain.
For any γ < j(θ) with cf(γ) > θ, let us consider βγ = supα<γ βα and the

corresponding structure Xγ =
⋃
α<γ Xα, that is:

Xγ = {j(f)(j“θ, x) : f ∈ V, f : Pκθ × Vθ −→ V, x ∈ Vβγ} ≺M.
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The inaccessibility of j(θ) implies that βγ < j(θ), where note that cf(βγ) = cf(γ) >
θ. We then let πγ : Xγ

∼= Mγ be the Mostowski collapse and consider the composed
map jγ = πγ ◦ j : V −→ Mγ , producing a commutative diagram of elementary
embeddings as usual (with kγ = π−1γ ).

Now, for any such γ, the embedding jγ is (a factor of the initial j and) jointly
θ-supercompact and θ-superstrong for κ. To see this, we employ a straightforward
adaptation of (the proof of) Proposition 2.18 in [18]; namely, in a totally analogous
manner, we initially get the following representation of the model Mγ :

Mγ = {jγ(f)(jγ“θ, x) : f ∈ V, f : Pκθ × Vθ −→ V, x ∈ Vβγ}.

From this, we can now deduce that θMγ ⊆ Mγ , i.e., that jγ is θ-supercompact
for κ. This closure under θ-sequences, which is proven exactly as in the proof
of Proposition 2.18 in [18], essentially comes from the fact that the initial j was
θ-supercompact and that cf(βγ) = cf(γ) > θ, by choice of γ. Moreover, we have
that cp(jγ) = κ, jγ(κ) = j(κ) and

jγ(θ) = cp(kγ) = sup(Xγ ∩ j(θ)) = βγ .

Finally, from the above representation of Mγ and the fact that the initial j was
θ-superstrong, it easily follows that jγ is θ-superstrong for κ as well (i.e., Vjγ(θ) ⊆
Mγ ).

Further, again by the inaccessibility of j(θ), for every α < j(θ) we have that
jγ(α) < j(θ); hence, the relevant (either Martin-Steel, or ordinary but long) exten-
der E that is derived from jγ and that witnesses its joint θ-supercompactness and
θ-superstrongness actually belongs to Vj(θ) ⊆M . Indeed, M certainly thinks that
‘‘E is jointly θ-supercompact and θ-superstrong for κ" and, moreover, it correctly
computes the values jE(κ) = j(κ) and jE(θ) = jγ(θ) = βγ .

To summarize, for every γ < j(θ) with cf(γ) > θ, we can construct an embedding
jγ that is a factor of j, that is jointly θ-supercompact and θ-superstrong for κ, that
is witnessed by some (long) extender inside M and, moreover, whose target jγ(θ)
we can sufficiently control, as explained above.

Now consider the collection of all possible targets jγ(θ) arising as above (this
collection is included in j(θ)), for the various choices of γ < j(θ) with cf(γ) > θ.
It is easy to see that this collection is actually a [θ+, j(θ))-club in j(θ), i.e., it is
closed under sequences of length ξ, for every (regular) ξ ∈ [θ+, j(θ)).5 Therefore,
appealing to Lemma 3.2, we get that this collection in fact belongs to j(W) and,
hence, it has non-empty intersection with the set D displayed before that lemma.
That is, there must exist some γ < j(θ) with cf(γ) > θ for which the corresponding
target jγ(θ) is supercompact in the sense of M .

We now have all the necessary ingredients for concluding the proof. First of all,
recalling (the proof of) Lemma 2.6, note that the statement ‘‘there exists an extender
E that witnesses the joint θ-supercompactness and θ-superstrongness of κ and
such that both jE(κ) and jE(θ) are supercompact cardinals" is Σ3-expressible in
the parameters κ and θ. This is because supercompactness is Π2-expressible,
which means that, in the setting of Lemma 2.6, it is enough to require that µ ∈
C(2) (and with sufficiently large cofinality) in order to correctly verify, inside Vµ,
that jE(κ) and jE(θ) are supercompact cardinals. Moreover, by all the previous
discussion, this statement is true in M .

But since j(κ) is Σ3-correct in M (in fact, it is even Σ4-correct in M ), it follows
that the aforementioned Σ3-expressible statement reflects to Vj(κ). Then, since
j(κ) is Σ2-correct in V , we get that the same actually holds in V , i.e., there exists

5See the analogous Proposition 2.8 in [18] for more details.
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some (extender) embedding jE that is jointly θ-supercompact and θ-superstrong for
κ and such that the targets jE(κ) and jE(θ) are both supercompact cardinals. �

In particular, the previous proposition confirms the (known) fact that if there
exists a C(2)-extendible cardinal, then there are unboundedly many supercompact
cardinals in the universe.6 Moreover, it leads us to the following result:

Corollary 3.3. If κ is C(2)-extendible, then it is C(2)+-extendible.

Proof. Let κ be C(2)-extendible and fix some λ > κ with λ ∈ C(2). By Proposition
3.1, fix some inaccessible and Σ2-correct θ > λ and an elementary embedding
j : V −→M with M transitive, cp(j) = κ, j(κ) > θ, θM ⊆M , Vj(θ) ⊆M and such
that j(κ) and j(θ) are both supercompact cardinals.

Now consider the restricted embedding j � Vθ : Vθ −→ Vj(θ), which is clearly
θ-extendible for κ. Moreover, since Vθ |= λ ∈ C(2), it follows by elementarity that
Vj(θ) |= j(λ) ∈ C(2). But the latter must be true in V , since j(θ) is supercompact
and, thus, Σ2-correct in V . Consequently, the (even more) restricted embedding
j � Vλ : Vλ −→ Vj(λ) witnesses the λ-C(2)+-extendibility of κ. �

Thinking of Proposition 3.1 as our ‘‘base case", we now generalize. For n > 1:

Theorem 3.4. Suppose that κ is C(n+2)-extendible. Then, for all λ > κ, there
is some θ > λ and an elementary embedding j : V −→ M with M transitive,
cp(j) = κ, j(κ) > θ, θM ⊆ M , Vj(θ) ⊆ M and such that both j(κ) and j(θ) are

C(n)-extendible cardinals. Moreover, θ may be taken to be an inaccessible cardinal
that belongs to C(n+2).

Proof. We follow a similar strategy as in the proof of Proposition 3.1. Suppose that
κ is C(n+2)-extendible, for some n > 1, and fix λ > κ+ 1. Let θ > λ be any C(n+2)

cardinal that is the target of some λ-C(n+2)-extendibility embedding for κ. That
is, let h : V −→ N be an elementary embedding with N transitive, cp(h) = κ,
h(κ) > λ, λN ⊆ N , Vh(λ) ⊆ N and h(κ) = θ ∈ C(n+2). Of course, θ is inaccessible.

Let U be the usual normal measure on κ that is derived from h and note that
U ∈ Vκ+2 ⊆ Vλ. Let W = h(U) and observe that W ∈ Vθ+2 ⊆ Vh(λ). Similarly
to Proposition 3.1, we now get that W is a normal measure on θ (i.e., in V ) and
that the set {α < θ : Vθ |= “α is C(n)-extendible”} belongs to W. Moreover, note
that θ ∈ C(n+2) both in V and in N ; the latter because, by elementarity, θ = h(κ)
is C(n)-extendible in N and, thus, it belongs to C(n+2) by Proposition 3.4 in [1].
Consequently, and since being C(n)-extendible is Πn+2-expressible, for every α < θ
we have that α is C(n)-extendible in V if and only if it is C(n)-extendible in N if
and only if it is C(n)-extendible in Vθ.

Next, for this choice of θ, we let j : V −→ M be an elementary embedding
witnessing the (θ + 2)-C(n+2)-extendibility of κ, i.e., M is transitive, cp(j) = κ,
j(κ) > θ + 2, θM ⊆ M , Vj(θ)+2 ⊆ M and j(κ) ∈ C(n+2). Note that j(θ) is
inaccessible and that, once again, we are in the situation of Lemma 3.2. Moreover,
note that θ ∈ C(n+2) in M as well: since being in C(n+2) is Πn+2-expressible, we
have that Vj(κ) |= θ ∈ C(n+2); thus, and since M |= j(κ) ∈ C(n+4) (by Proposition
3.4 in [1]), it follows that M |= θ ∈ C(n+2).

6This was already explained in the preliminaries. On the other hand, note that we cannot get
unboundedly many extendibles: if κ is C(2)-extendible and λ > κ is the least extendible above κ, then
Vλ |= “κ is C(2)-extendible” (since this is a Π4-expressible statement that reflects from V down to the
Σ3-correct cardinal λ) and, also, Vλ |= “κ is the maximum extendible” (due to the Σ3-correctness of
λ and the fact that it is the least extendible above κ). In other words, it is consistent that there exists
a C(2)-extendible cardinal without any extendibles above it.
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As in Proposition 3.1, we have that j(W) is a normal measure on j(θ) (i.e., in
the sense of V ) and also:

D′ = {α < j(θ) : M |= “α is C(n)-extendible”} ∈ j(W).

Now, we once more perform an elementary chain construction in order to build
various factor embeddings of j, in such a way that each witnesses, in M , the
θ-C(n+2)-extendibility of κ and, moreover, is such that the image of θ is C(n)-
extendible in the sense of M . The definition of the elementary chain is exactly as
in the proof of Proposition 3.1, hence we will not repeat it here.

For any γ < j(θ) with cf(γ) > θ, let us again consider βγ = supα<γ βα and the
corresponding structure Xγ =

⋃
α<γ Xα, that is:

Xγ = {j(f)(j“θ, x) : f ∈ V, f : Pκθ × Vθ −→ V, x ∈ Vβγ} ≺M.

The inaccessibility of j(θ) again implies that βγ < j(θ), where cf(βγ) = cf(γ) > θ.
We let πγ : Xγ

∼= Mγ be the Mostowski collapse and consider the composed
map jγ = πγ ◦ j : V −→ Mγ , producing a commutative diagram of elementary
embeddings as usual (with kγ = π−1γ ). As in the proof of Proposition 3.1, we employ
the arguments from Proposition 2.18 in [18] in order to conclude, again, that, for
every such γ, the embedding jγ is jointly θ-supercompact and θ-superstrong for κ
(and a factor of j) where, in fact, cp(jγ) = κ, jγ(κ) = j(κ) and jγ(θ) = cp(kγ) =
sup(Xγ ∩ j(θ)) = βγ .

As before, by the inaccessibility of j(θ), the relevant extender E that is derived
from jγ and that witnesses its joint θ-supercompactness and θ-superstrongness
actually belongs to Vj(θ) ⊆ M . Indeed, M certainly thinks that ‘‘E is jointly θ-
supercompact and θ-superstrong for κ" and, moreover, it correctly computes the
values jE(κ) = j(κ) and jE(θ) = jγ(θ) = βγ .

We now consider again the collection of all possible targets jγ(θ) arising as
above (this collection is included in j(θ)), for the various choices of γ < j(θ) with
cf(γ) > θ. As before, this collection is a [θ+, j(θ))-club in j(θ) and so, by Lemma
3.2, it actually belongs to j(W). Hence, it has non-empty intersection with the
set D′ displayed above, i.e., there is some γ < j(θ) with cf(γ) > θ for which the
corresponding target jγ(θ) is C(n)-extendible in the sense of M .

Now, again recalling (the proof of) Lemma 2.6, the statement ‘‘there exists an ex-
tender E witnessing the joint θ-supercompactness and θ-superstrongness of κ and
such that both jE(κ) and jE(θ) are C(n)-extendible cardinals" is Σn+3-expressible
in the parameters κ and θ. By all the previous discussion, this statement is true in
M . But since j(κ) is Σn+3-correct in M (in fact, it is even Σn+4-correct in M ), this
statement reflects to Vj(κ). Then, since j(κ) is Σn+2-correct in V , we get that the
same actually holds in V , i.e., there is an (extender) embedding jE that is jointly
θ-supercompact and θ-superstrong for κ and such that the targets jE(κ) and jE(θ)
are both C(n)-extendible cardinals. �

In particular, for every n > 1, the previous theorem confirms the (known) fact
that if there exists a C(n+2)-extendible cardinal, then there are unboundedly many
C(n)-extendible cardinals in the universe (see Proposition 3.6 in [1]). Moreover, it
leads us to the following result that answers Question 1.2 negatively, in showing
that the notions of C(n)-extendibility and of C(n)+-extendibility coincide. Let us
remark that, independently from our results and in the context of a different study,
Gitman and Hamkins have very recently reached the same conclusion; see [10].

Corollary 3.5. For every n > 1, if κ is C(n)-extendible, then it is C(n)+-extendible.

Proof. The case n = 1 is discussed in [1], while the case n = 2 is Corollary 3.3. So
fix some n > 3, suppose that κ is C(n)-extendible and fix some λ > κ with λ ∈ C(n).
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By Theorem 3.4, fix some inaccessible and Σn-correct θ > λ and an elementary
embedding j : V −→ M with M transitive, cp(j) = κ, j(κ) > θ, θM ⊆ M ,
Vj(θ) ⊆ M and such that j(κ) and j(θ) are both C(n−2)-extendible cardinals. In
particular, by Proposition 3.4 in [1], both j(κ) and j(θ) belong to C(n).

Now consider the restricted embedding j � Vθ : Vθ −→ Vj(θ), which is clearly
θ-extendible for κ. Moreover, since Vθ |= λ ∈ C(n), it follows by elementarity
that Vj(θ) |= j(λ) ∈ C(n). But the latter must be true in V , since j(θ) ∈ C(n).
Consequently, the (even more) restricted embedding j � Vλ : Vλ −→ Vj(λ) witnesses
the λ-C(n)+-extendibility of κ. �

Let us remark that, in the light of Corollary 3.5, it now follows that the assump-
tion of C(n)+-extendibility that has been used in various results appearing in [3]
and elsewhere has now been rendered redundant.7 The situation is thus clari-
fied in the sense that we only need to consider C(n)-extendible cardinals, without
any additional requirements on their witnessing embeddings, a notion that so far
appears to be a rather robust and well-behaved one.

Before we briefly turn to the context of ultrahugeness, we also give a description
of C(n)-extendibility in terms of elementary embeddings between the Hλ’s. This
description will be crucially used in the Section 5, where we deal with the preser-
vation of C(n)-extendible cardinals by the GCH forcing iteration. The following is a
straightforward adaptation of our corresponding result in [17], for each n > 1:

Proposition 3.6. Let κ be a cardinal and let λ = iλ > κ. Then, κ is (λ + 1)-
C(n)-extendible if and only if there is a cardinal µ and an elementary embedding
j : Hλ+ −→ Hµ+ with cp(j) = κ, j(κ) > λ+ 1 and j(κ) ∈ C(n).

Proof. This is totally analogous to the proof of Proposition 1.3 in [17], by just
appending everywhere the additional clause ‘‘j(κ) ∈ C(n)". �

Using Theorem 3.4, we obtain the following characterization.

Proposition 3.7. For every n > 1, a cardinal κ is C(n+2)-extendible if and only if,
for all λ = iλ > κ, there is some µ and an elementary embedding j : Hλ+ −→ Hµ+

with cp(j) = κ, j(κ) > λ and such that j(κ) is a C(n)-extendible cardinal.

Proof. Suppose that κ is C(n+2)-extendible and fix some λ = iλ > κ. By Theorem
3.4, fix some θ > λ and an elementary embedding h : V −→M with M transitive,
cp(h) = κ, h(κ) > θ, θM ⊆ M , Vh(θ) ⊆ M and such that h(κ) is C(n)-extendible.
Then, exactly as in the proof of Proposition 1.3 in [17] and for µ = h(λ), we get an
elementary embedding j : Hλ+ −→ Hµ+ with cp(j) = κ and j(κ) = h(κ); thus,
j(κ) > λ and j(κ) is a C(n)-extendible cardinal.

Conversely, fix some λ = iλ > κ and let j : Hλ+ −→ Hj(λ)+ be an elementary
embedding with cp(j) = κ, j(κ) > λ and such that j(κ) is a C(n)-extendible
cardinal. Since j(κ) is C(n)-extendible, we have that j(κ) ∈ C(n+2). Therefore, by
Proposition 3.6 above, we have that κ is (λ+ 1)-C(n+2)-extendible. �

We remark that, given our earlier results, the case n = 0 in Proposition 3.7 is
totally analogous: one just replaces ‘‘j(κ) is a C(n)-extendible cardinal" by ‘‘j(κ) is
a supercompact cardinal" in the final clause of the proposition.

Towards concluding the current section, let us now briefly turn toC(n)-ultrahuge
cardinals. As it will become clear, we shall appopriately adapt Proposition 3.1 and
Theorem 3.4 in the context of C(n)-ultrahugeness embeddings. The arguments
and the results are totally parallel, hence we will skip several details. Once again,
we start with n = 2:

7Recalling that C(n)+-extendibility is called C(n)-extendibility in [3].
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Proposition 3.8. Suppose that κ isC(2)-ultrahuge. Then, for all λ > κ, there is some
θ > λ and an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ) > θ, j(κ)M ⊆M , Vj(θ) ⊆M and such that both j(κ) and j(θ) are supercompact
cardinals. Moreover, θ may be taken to be an inaccessible cardinal that belongs to
C(2).

Proof. Let κ be a C(2)-ultrahuge cardinal and fix some λ > κ + 1. Let θ > λ be
any C(2) cardinal that is the target of some λ-C(2)-ultrahugeness embedding for κ.
That is, let h : V −→ N be an elementary embedding with N transitive, cp(h) = κ,
h(κ) > λ, h(κ)N ⊆ N , Vh(λ) ⊆ N and h(κ) = θ ∈ C(2). Of course, θ is inaccessible.

Let U be the usual normal measure on κ that is derived from h and letW = h(U).
As before, W is indeed a normal measure on θ (i.e., in V ) and, also, the set
{α < κ : Vκ |= “α is supercompact”} belongs to U . Thus, by elementarity, the
set {α < θ : Vθ |= “α is supercompact”} belongs to W. Moreover, note again that
θ ∈ C(2) both in V and in N . Consequently, and since being supercompact is
Π2-expressible, for every α < θ we have that α is supercompact in V if and only if
it is supercompact in N if and only if it is supercompact in Vθ.

For this choice of θ, let j : V −→ M be an elementary embedding witnessing
the (θ + 2)-C(2)-ultrahugeness of κ, i.e., M is transitive, cp(j) = κ, j(κ) > θ + 2,
j(κ)M ⊆M , Vj(θ)+2 ⊆M and j(κ) ∈ C(2). Note that j(θ) is inaccessible and that,
once again, we are in the situation of Lemma 3.2 (in fact, here we indeed have even
more closure under sequences for the models N and M ). In addition, notice that
θ ∈ C(2) in M as well. As in Proposition 3.1, j(W) is indeed a normal measure on
j(θ) in V and also:

D = {α < j(θ) : M |= “α is supercompact”} ∈ j(W).

We again perform an elementary chain construction in order to build various
factor embeddings of j, in such a way that each witnesses, in M , the θ-C(2)-
ultrahugeness of κ and, moreover, is such that the image of θ is supercompact in
the sense of M . The definition of the chain is slightly different from the one in
Proposition 3.1; this is because we need to adapt to the current context, where we
are interested in closure under j(κ)-sequences for the target models. So, we fix an
initial limit ordinal β0 ∈ (j(λ), j(θ)) and we let:

X0 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβ0
} ≺M.

For any ξ + 1 < j(θ), given βξ and Xξ, we let βξ+1 = sup(Xξ ∩ j(θ)) + ω and

Xξ+1 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβξ+1
} ≺M.

If ξ < j(θ) is limit and we have already defined βα and Xα for every α < ξ, we let
βξ = supα<ξ βα and Xξ =

⋃
α<ξXα ≺ M . This concludes the description of our

elementary chain.8

For any γ < j(θ) with cf(γ) > j(κ), we consider βγ = supα<γ βα and the
corresponding structure Xγ =

⋃
α<γ Xα, that is:

Xγ = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβγ} ≺M.

The inaccessibility of j(θ) again implies that βγ < j(θ), where cf(βγ) = cf(γ) >
j(κ). We then let πγ : Xγ

∼= Mγ be the Mostowski collapse and consider the
composed map jγ = πγ ◦ j : V −→ Mγ , producing a commutative diagram of
elementary embeddings as usual (with kγ = π−1γ ). Now, due to our modified
definition of the elementary chain, it is easy to check that, for every such γ, the

8Note here the use of the modified ‘‘seed" j“j(κ) (which certainly belongs to M ).
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embedding jγ is θ-ultrahuge for κ (and a factor of j) where, in fact, cp(jγ) = κ,
jγ(κ) = j(κ) and

jγ(θ) = cp(kγ) = sup(Xγ ∩ j(θ)) = βγ .

In addition, again by the inaccessibility of j(θ), for every α < j(θ) we have that
jγ(α) < j(θ); hence, the relevant extender E which is derived from jγ and which
witnesses its θ-ultrahugeness actually belongs to Vj(θ) ⊆ M . Indeed, M certainly
thinks that ‘‘E is θ-ultrahuge for κ" and, moreover, it correctly computes the values
jE(κ) = j(κ) and jE(θ) = jγ(θ) = βγ .

Now consider the collection of all possible targets jγ(θ) arising as above (this
collection is included in j(θ)), for the various choices of γ < j(θ) with cf(γ) > j(κ).
In the current setting, this collection is in fact a (j(κ), j(θ))-club in j(θ), i.e., it is
closed under sequences of length ξ, for every (regular) ξ ∈ (j(κ), j(θ)). Therefore,
appealing to Lemma 3.2, we get that this collection actually belongs to j(W) and,
hence, it has non-empty intersection with the setD displayed above, in the current
proof. That is, there must exist some γ < j(θ) with cf(γ) > j(κ) for which the
corresponding target jγ(θ) is supercompact in the sense of M .

The rest of the argument now proceeds exactly as in Proposition 3.1, noting that
the statement ‘‘there exists an extender E witnessing the θ-ultrahugeness of κ and
such that both jE(κ) and jE(θ) are supercompact cardinals" is Σ3-expressible in
the parameters κ and θ. This statement is true in M , hence it reflects to Vj(κ). But
since j(κ) is Σ2-correct in V , the desired conclusion follows. �

Having dealt with our ‘‘base case", we now again generalize. For n > 1:

Theorem 3.9. Suppose that κ isC(n+2)-ultrahuge. Then, for all λ > κ, there is some
θ > λ and an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ) > θ, j(κ)M ⊆ M , Vj(θ) ⊆ M and such that both j(κ) and j(θ) are C(n)-
ultrahuge cardinals. Moreover, θ may be taken to be an inaccessible cardinal that
belongs to C(n+2).

Proof. Given our previous results in this section, this argument should now be
clear. We proceed exactly as in the proof of Theorem 3.4, incorporating the neces-
sary modifications (essentially, in the definition of the elementary chain) as we did
for Proposition 3.8. Of course, we now consider the set:

D′ = {α < j(θ) : M |= “α is C(n)-ultrahuge”} ∈ j(W),

from which we obtain a (factor) θ-ultrahuge embedding jγ such that jγ(θ) is a
C(n)-ultrahuge cardinal in the sense of M . Noting that the statement ‘‘there exists
an extender E that witnesses the θ-ultrahugeness of κ and such that both jE(κ)
and jE(θ) are C(n)-ultrahuge cardinals" is Σn+3-expressible and true in M , the
desired conclusion follows from the fact that j(κ) is Σn+2-correct in V . �

4. C(n)-extendibility Laver functions

Towards further enriching the accompanying machinery of C(n)-extendible cardi-
nals (for n > 1), we now show that such cardinals carry appropriate Laver func-
tions. This generalizes the case n = 1 of ordinary extendible cardinals, which are
known to have their own Laver functions by the work Corazza (cf. [8]) and of the
author (cf. [19]).

Let us first define the term ‘‘appropriate Laver function" in the context of C(n)-
extendibility. For n > 1:

Definition 4.1. Suppose that κ is C(n)-extendible. A function ` ...κ −→ Vκ is called
a C(n)-extendibility Laver function for κ if, for every cardinal λ > κ and any
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x ∈ Hλ+ , there is an (extender) elementary embedding j : V −→ M that is jointly
λ-C(n)-supercompact and λ-superstrong for κ, and such that j(`)(κ) = x.

We now show the following, taking a similar path as in the proof of Theorem 1.7
in [19]. For every n > 1:

Theorem 4.2. Every C(n)-extendible cardinal carries a C(n)-extendibility Laver
function.

Proof. Suppose that κ is a C(n)-extendible cardinal, for some n > 1, and fix some
well-ordering Cκ of Vκ. Towards a contradiction, assume that there is no C(n)-
extendibility Laver function for κ.

We recursively construct a (partial) function ` ...κ −→ Vκ, as follows. Given some
α < κ and ` � α, we define `(α) only if `“α ⊆ Vα and the following condition
holds: there is λ > α and x ∈ Hλ+ such that, for every extender embedding
j : V −→M that is jointly λ-C(n)-supercompact and λ-superstrong for α, we have
that j(` � α)(α) 6= x. Before continuing with the definition of `(α) in this case, we
need the following:

Claim 4.3. If there is such a λ for which the aforementioned condition holds (for
some x ∈ Hλ+ ), then there is such a λ with λ < κ.

Proof of claim. Let α < κ and ` � α be given. We check that the aforementioned
condition is Σn+2-expressible, using α and ` � α as parameters. For this, suppose
that there is λ > α and x ∈ Hλ+ such that the condition holds.

We employ a similar idea as in the proof of Lemma 2.6. Namely, given any
extender E that is jointly λ-C(n)-supercompact and λ-superstrong for α, we may
correctly verify the fact that jE(` � α)(α) 6= x inside Vµ, where µ is some (any)
sufficiently large cardinal that belongs to C(n). In fact, any such Vµ correctly
verifies both the fact that E is an extender whose associated embedding jE is
jointly λ-C(n)-supercompact and λ-superstrong for α, and that jE(` � α)(α) 6= x.

More precisely, as in the proof of Lemma 2.6, fix a formula χ(α, λ,E) asserting
that ‘‘the extender E is jointly λ-supercompact and λ-superstrong for α". Then,
the aforementioned condition on λ and x is equivalent to the following statement
ϕ(λ, x, α, ` � α):

(∀E)(∀µ ∈ C(n) with cf(µ) > irk(E) + iλ)ψ(µ,E, λ, x, α, ` � α),

where ψ is the statement:

Vµ |= ((χ(α, λ,E) ∧ jE(α) ∈ C(n)) −→ jE(` � α)(α) 6= x).

It is easily seen that ϕ(λ, x, α, ` � α) is a Πn+1-expressible statement where, again,
the main contribution to this complexity comes from the requirement ‘‘µ ∈ C(n)".
It follows that the stated condition, in full, is equivalent to a statement that is
Σn+2-expressible, using α and ` � α as parameters.

To finish the proof, we recall that κ ∈ C(n+2). Hence, if there is a λ > α such
that the stated condition holds (for some x ∈ Hλ+ ), then this fact must reflect
inside Vκ, from which the conclusion follows. �

Returning to the recursive construction, if we are in the above case, then we let
λα < κ be the least such cardinal λ > α, and we let `(α) be the Cκ-minimal
witness x ∈ Hλ+

α
. Otherwise, we leave ` undefined. This concludes the recursive

construction of the function `
... κ −→ Vκ. Note that, by the previous claim, the

range of ` is indeed included in Vκ, i.e., `“κ ⊆ Vκ.
According to our assumption, there must exist a least (cardinal) λ > κ and

some x ∈ Hλ+ such that for every jointly λ-C(n)-supercompact and λ-superstrong
extender embedding j for κ, we have that j(`)(κ) 6= x; i.e., every such j fails to
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‘‘anticipate" the set x. Let us fix a Πn+1-formula ϕ(λ, x) asserting this fact, using
κ and ` as parameters. Now fix some θ > λ with θ ∈ C(n+1), some inaccessible
θ > θ, and an elementary embedding j : V −→ M witnessing the joint θ-C(n)-
supercompactness and (θ+1)-superstrongness of κ; i.e.,M is transitive, cp(j) = κ,
j(κ) > θ, θM ⊆M , Vj(θ)+1 ⊆M and j(κ) ∈ C(n). Note that j(θ) is inaccessible and
that, trivially, the embedding j also witnesses the joint λ-C(n)-supercompactness
and λ-superstrongness of κ. Moreover, notice that, in M , the cardinal θ belongs
to C(n+1).9 It follows that, in the model M , the cardinal λ is the least µ for which
ϕ holds for some x ∈ Hµ+ ; that is, the model M thinks that λ = λκ in the above
notation. Therefore, by elementarity, there exists y ∈ Hλ+ such that j(`)(κ) = y.
By definition of j(`), we have that M |= ϕ(λ, y), a fact that will lead us to the
desired contradiction.

We now perform an elementary chain construction in order to obtain an appro-
priate factor embedding of j that is witnessed by some extender in M and that
actually anticipates the set y. We only mention here that the elementary substruc-
tures that we consider in the current context are of the form:

Xi = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vθ −→ V, x ∈ Vβi} ≺M.

We initialize the construction by choosing a limit ordinal β0 ∈ (j(κ), j(θ)); more-
over, we choose some γ < j(θ) with cf(γ) > λ, which serves as the length of our
constructed chain. Then, the desired factor embedding jγ results from composing
j with the Mostowski collapse πγ : Xγ

∼= Mγ , as usual.
It is now easy to see, along the lines of the proof of Theorem 1.7 in [19], that

jγ is a jointly λ-C(n)-supercompact and λ-superstrong embedding for κ that is
witnessed by some extender E ∈ M , such that M correctly computes the value
jE(`)(κ) = jγ(`)(κ). Finally, notice that κ, λ, Hλ+ and y are all fixed by the
Mostowski collapse and, thus, jE(`)(κ) = y, which is the desired contradiction. �

Let us remark that, with the appropriate modifications, and with an eye on the
proof of Theorem 5.2 in [20], it is not difficult to show that C(n)-ultrahuge cardinals
carry their own Laver functions as well.10 Instead of repeating the same arguments
all over again, we omit the details and leave them for the interested reader to verify.

5. C(n)-extendibles and the GCH

It is a well-known set-theoretic phenomenon that forcing globally the GCH pre-
serves many of the usual large cardinals. The first example of this phenomenon
was the case of measurable cardinals, proved by Jensen (cf. [13]). Afterwards,
other similar proofs followed: Menas proved it for supercompacts (cf. [16]), Hamkins
proved it for I1 embeddings (cf. [11]), and Friedman did it for n-superstrong cardi-
nals (cf. [9]). More recently, Brooke-Taylor and Friedman proved it for 1-extendible
cardinals (cf. [6]), Brooke-Taylor did it for Vopěnka’s Principle (cf. [5]), the author
proved it for (fully) extendible cardinals (cf. [17]), and Cheng and Gitman did it for
remarkable cardinals (cf. [7]).

For completeness, we recall the following standard definition:

Definition 5.1. The canonical forcing P for global GCH is the class-length reverse
Easton iteration of 〈Q̇α : α ∈ ON〉, where P0 is the trivial poset and, for each α,

9To see this, note that, by elementarity, the cardinal j(κ) is Σn+2-correct in M , and that Vj(κ) |=
θ ∈ C(n+1).

10Evidently, one has to define the concept of a ‘‘C(n)-ultrahugeness Laver function" first, but
this is a straightforward modification of Definition 4.1, appropriately adapted in the context of C(n)-
ultrahuge cardinals. In order to prove the existence of C(n)-ultrahugeness Laver functions, note that
the elementary chain construction should be modified along the lines of Proposition 3.8.
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if α is an infinite cardinal in V Pα , then Q̇α is the canonical Pα-name for the
poset Add(α+, 1)V

Pα ; otherwise, trivial forcing is done at that stage of the iteration.
Finally, P is the direct limit of the Pα’s, for α ∈ ON.

It is well-known that P (preserves ZFC and) forces the global GCH (see, for exam-
ple, the comments after Definition 1 in [6], or the proof of Theorem 2 in [9]). Given
our previous discussion and results in Section 3, we are now ready to finally prove
the following, for every n > 1:

Theorem 5.2. Every C(n)-extendible cardinal is preserved by the canonical forcing
for global GCH.

Proof. We perform a meta-theoretic induction over natural numbers n > 1. Recall
that the case n = 1 already holds; i.e., ordinary extendible cardinals are preserved
by the GCH forcing P, by Theorem 2.2 in [17].

We first argue for the case n = 2. So, let κ be a C(2)-extendible cardinal and fix
some inaccessible λ > κ. By Proposition 3.7 and the remark following it, there is
some µ and an elementary embedding j : Hλ+ −→ Hµ+ with cp(j) = κ, j(κ) > λ
and such that j(κ) is a supercompact cardinal. Note that µ = j(λ) is inaccessible
and let G be P-generic over V .

Then, exactly as in the proof of Theorem 2.2 in [17], it follows that the embedding
lifts to j : H

V [G]
λ+ −→ H

V [G]
j(λ)+ in V [G]. Moreover, since every supercompact cardinal

is preserved by P (cf. [16]), it follows that j(κ) ∈ C(2) in V [G] and so the lifted
embedding witnesses the (λ + 1)-C(2)-extendibility of κ in the extension. Since
there are unboundedly many inaccessibles λ > κ, we conclude that the cardinal κ
remains C(2)-extendible in V [G].

Now fix some n > 2 and suppose that, for each m < n, every C(m)-extendible
cardinal is preserved by P. Let κ be a C(n)-extendible cardinal and fix some inac-
cessible λ > κ. By Proposition 3.7, there is some µ and an elementary embedding
j : Hλ+ −→ Hµ+ with cp(j) = κ, j(κ) > λ and such that j(κ) is aC(n−2)-extendible
cardinal. Note again that µ = j(λ) is inaccessible and let G be P-generic over V .

Once more, the embedding lifts to j : H
V [G]
λ+ −→ H

V [G]
j(λ)+ in V [G]. In addition, by

the inductive hypothesis, j(κ) remains C(n−2)-extendible in V [G]. Therefore, we
have that j(κ) ∈ C(n) in V [G], and so the lifted embedding witnesses the (λ+ 1)-
C(n)-extendibility of κ in the extension. Finally, by choosing unboundedly many
inaccessibles λ > κ, we obtain that the cardinal κ remains C(n)-extendible in V [G],
as desired. �

6. On separating levels of C(n)-extendibility

The preservation of C(n)-extendible cardinals by the GCH forcing is one happy
moment in the general study of the interaction of C(n)-cardinals with the forcing
machinery; in this context, few other results are available so far (see, e.g., Section
4 in [18]). Indeed, the issue regarding what kind of forcing constructions preserve
or destroy the various C(n)-cardinals is widely open.11 For instance, the following
natural question annoyingly remains unresolved:

Question 6.1. Let κ be a C(n+1)-extendible cardinal, for some n > 1. Is there
a forcing notion that destroys the C(n+1)-extendibility of κ while preserving its
C(n)-extendibility?

11Of course, there are obvious examples of posets that destroy any large cardinal property of κ
whatsoever; e.g., collapsing the cardinal κ to become countable. The interesting questions arise in
the non-trivial case in which ‘‘destroy" typically means ‘‘destroy some level of" the given large cardinal
property (while preserving lower levels of it).
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We note that a similar question is open in the context of other C(n)-cardinals;
for instance, in the case of C(n)-supercompactness (see, e.g., Question 3.8 in
[18]). Although we have no clue regarding the answers to these questions, we
nevertheless give below some easy observations in the direction of separating levels
of C(n)-extendibility.

Fact 6.2. Suppose that κ is extendible. Then, there exists a (ZFC) model in which
κ is extendible but not C(2)-extendible.

Proof. Recall that if there is a C(2)-extendible cardinal, then there must exist un-
boundedly many supercompact cardinals in the universe (this is explained in the
preliminaries; alternatively, it follows from Proposition 3.1). So, let κ be an ex-
tendible cardinal. If κ happens to be C(2)-extendible as well (otherwise there is
nothing to show), then let λ > κ be the least supercompact cardinal above κ.
Then, Vλ is a (ZFC) model such that Vλ |= “κ is extendible”, because λ ∈ C(2) and
being extendible is a Π3-expressible statement.

However, it is clear that κ cannot be C(2)-extendible in Vλ, because otherwise
there would exist unboundedly many α < λ such that Vλ |= “α is supercompact”.
But, any such α would indeed be a supercompact cardinal in V , since λ ∈ C(2)

and being supercompact is a Π2-expressible statement. This would contradict the
minimality of λ. �

We think of the previous fact as our ‘‘base case", separating C(n+1)-extendibility
from C(n)-extendibility when n = 1. We may now fully generalize, for n > 1:

Fact 6.3. Suppose that κ is C(n)-extendible. Then, there exists a (ZFC) model in
which κ is C(n)-extendible but not C(n+1)-extendible.

Proof. Recall that if there is a C(n+1)-extendible cardinal (for n > 1), then there
must exist unboundedly many C(n−1)-extendible cardinals in the universe (this
follows from Proposition 3.6 in [1], or from Theorem 3.4). So, let κ be a C(n)-
extendible cardinal. If κ happens to be C(n+1)-extendible as well (otherwise there
is nothing to show), then let λ > κ be the least C(n−1)-extendible cardinal above
κ. Then, Vλ is a (ZFC) model such that Vλ |= “κ is C(n)-extendible”, because
λ ∈ C(n+1) and being C(n)-extendible is a Πn+2-expressible statement.

However, it is clear that κ cannot be C(n+1)-extendible in Vλ, because otherwise
there would be unboundedly many α < λ such that Vλ |= “α is C(n−1)-extendible”.
But, any such α would be a C(n−1)-extendible cardinal in V , since λ ∈ C(n+1)

and being C(n−1)-extendible is a Πn+1-expressible statement. This would again
contradict the minimality of λ. �

The above facts give us an easy way to separate the C(n+1)-extendibility from
the C(n)-extendibility of a given cardinal κ, for n > 1. Note that both of these
facts are consequences of the strong reflective nature of C(n)-extendible cardinals.
In particular, we have crucially used that the existence of a C(n+1)-extendible
cardinal implies the existence of unboundedly many appropriate large cardinals in
the universe, where, by ‘‘appropriate", we mean either supercompact (when n = 1)
or C(n−1)-extendible (when n > 1).

Let us conclude by mentioning that it remains unclear whether an analogous
‘‘easy separation" is possible in other cases, such as C(n)-supercompactness,
where no similar strong reflective properties are available so far. In those cases, one
may indeed need a (perhaps class-length) forcing construction in order to achieve
such a separation. At any rate, Question 6.1 still remains valid, with its answer
possibly shedding more light on those other cases as well.
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accessible categories are small. Journal of the European Mathematical Society, vol. 17 (2015), no.
3, pp. 549–589.

[4] W. Boney, Model-theoretic characterizations of large cardinals, preprint (2017),
https://arxiv.org/abs/1708.07561
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