
ELEMENTARY CHAINS AND C(n)-CARDINALS

KONSTANTINOS TSAPROUNIS

Abstract. The C(n)-cardinals were introduced recently by Bagaria and
are strong forms of the usual large cardinals. For a wide range of large car-
dinal notions, Bagaria has shown that the consistency of the correspond-
ing C(n)-versions follows from the existence of rank-into-rank elemen-
tary embeddings. In this article, we further study the C(n)-hierarchies of
tall, strong, superstrong, supercompact, and extendible cardinals, giving
some improved consistency bounds while, at the same time, address-
ing questions which had been left open. In addition, we consider two
cases which were not dealt with by Bagaria; namely, C(n)-Woodin and
C(n)-strongly compact cardinals, for which we provide characterizations
in terms of their ordinary counterparts. Finally, we give a brief account
on the interaction of C(n)-cardinals with the forcing machinery.

1. Introduction

The concept of reflection, which pervades the body of set theory, has a long
history with its origins tracing back to Gödel and, indeed, Cantor himself.
Perhaps its most renowned formal manifestation is the well-known Reflec-
tion Principle, which is due to Lévy and Montague from the early 1960’s.

For any fixed natural number n, we let C(n) denote the collection of ordi-
nals which are Σn-correct in the universe, that is, C(n) = {α : Vα ≺Σn V }.
In other words, α ∈ C(n) if and only if Vα ‘‘reflects" all true Σn-statements,
with parameters in Vα. Already by the work of Lévy and Montague it follows
that, for any natural number n, C(n) is a closed and unbounded proper
class. For example, C(0) = ON while C(1) is precisely the class of those
uncountable cardinals α for which Hα = Vα; notably, such a local charac-
terization is not available for the classes C(n), when n > 1.

Blending this aspect of reflection with the usual large cardinal notions,
Bagaria recently introduced the various hierarchies of C(n)-(large) cardinals
(cf. [1]), and underlined their significance by revealing intimate connections
between such principles and the concept of structural reflection for the set-
theoretic universe. For instance, Bagaria showed that the existence of C(n)-
extendible cardinals is equivalent to fragments of Vopěnka’s Principle, in
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a way which generalizes the ordinary notions of supercompactness and
extendibility.

To define the C(n)-cardinals, we work in the usual framework of elemen-
tary embeddings j for the ordinary large cardinal postulates (i.e., where the
critical point cp(j) = κ is the cardinal in question) and we require, in addi-
tion to the standard definition for the postulate at hand and for any given
n, that the image j(κ) belongs to the class C(n), as the latter is computed in
V . This modification gives rise to the corresponding C(n)-(large) cardinal.
For concreteness, let us give the definition of C(n)-extendibility.

Definition 1.1 ([1]). A cardinal κ is called λ-C(n)-extendible, for some
λ > κ, if there exists a θ > λ and an elementary embedding j : Vλ −→ Vθ
with cp(j) = κ, j(κ) > λ and j(κ) ∈ C(n); we say that κ is C(n)-extendible
if it is λ-C(n)-extendible for all λ > κ.

Bagaria studied the C(n)-versions of large cardinals such as measur-
able, strong, superstrong, supercompact, extendible, huge, superhuge (and
more). It is shown in [1] that the consistency of all the aforementioned
C(n)-cardinals follows from the existence of an I3 embedding (see § 24 in
[7]).

The structure of this article is as follows. In the rest of this section,
we give some necessary preliminaries and we also introduce the notions of
C(n)-tall, C(n)-Woodin, and C(n)-strongly compact cardinals.

In Section 2, we use the versatile tool of elementary chains in order
to derive consistency upper bounds for the C(n)-versions of tall, strong,
superstrong, supercompact and extendible cardinals. We also study the
connection between C(n)-extendibility and C(n)-supercompactness.

In Section 3, we consider the cases of C(n)-Woodin and of C(n)-strongly
compact cardinals, and we obtain equivalent formulations for them in terms
of their ordinary counterparts.

Finally, in Section 4, we briefly study the interaction of C(n)-cardinals
with the forcing machinery.

1.1. Preliminaries. Our notation and terminology are mostly standard1.
ZFC denotes the familiar first-order axiomatization of Zermelo-Fraenkel set
theory, together with the Axiom of Choice. Given any function f and any
S ⊆ dom(f), we write f � S for the restriction of the function to S and also,
we write f“S for the pointwise image, that is, the collection {f(x) : x ∈ S}.
For any X and Y , XY is the collection of all functions f with dom(f) = X
and range(f) ⊆ Y . The class of ordinal numbers will be denoted by ON;
given an infinite ordinal α, cof(α) stands for its cofinality.

For any A ⊆ ON, sup(A) denotes the supremum of A (in case A is a
set), while Lim(A) denotes the collection of its limit points, that is, {ξ :
sup(A ∩ ξ) = ξ}. Given a limit ordinal α with cof(α) > ω and some C ⊆ α,

1 See [7] for an account on all undefined set-theoretic notions.
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C is called club in α if sup(C) = α and α ∩ Lim(C) ⊆ C; moreover, C
is called β-club in α, for some regular β < cof(α), if sup(C) = α and
{ξ ∈ α ∩ Lim(C) : cof(ξ) = β} ⊆ C. Likewise, if I ⊆ cof(α) is an ordinal
interval, then C is called I-club in α if it is β-club, for all regular β ∈ I.
Finally, S ⊆ α is called stationary in α if S ∩ C 6= ∅ for every club C ⊆ α.

Partial orders will be denoted by blackboard capital letters such as P and
Q. We write p < q to mean than p is stronger than q. We use V P to stand
for the universe of P-names. Moreover, if G is P-generic over V and α ∈ ON,
we let V [G]α = (Vα)V [G] and Vα[G] = {τG : τ ∈ V P ∩ Vα}.

Given a non-trivial elementary embedding j : V −→ M , where M is a
transitive class model of ZFC, we denote by cp(j) its critical point, that is,
the least ordinal moved by j. Most of the large cardinal notions that we
study are standard; see [7] for more details. We now give a less popular
definition, which is still interesting in its own right.

Definition 1.2 ([6]). A cardinal κ is called λ-tall, for some λ > κ, if there
exists an elementary embedding j : V −→M , with M transitive, cp(j) = κ,
κM ⊆M and j(κ) > λ; we say that κ is tall if it is λ-tall for every λ > κ.

Tall cardinals were introduced by Hamkins. In [6], it is shown that tall-
ness embeddings can be described by extenders, and that the existence of
a tall cardinal is equiconsistent with the existence of a strong cardinal.

1.2. C(n)-cardinals. Recall that, for every n > 1, membership in C(n) is
expressible by a Πn (but not by any Σn) formula. In particular, C(n+1) ⊂
C(n), i.e., the inclusion is proper.

All the background definitions on C(n)-cardinals may be found in [1]. A
special case is that of C(n)+-extendibility, defined as follows.

Definition 1.3 ([1]). A cardinal κ is called λ-C(n)+-extendible, for some
λ > κ with λ ∈ C(n), if there exists a θ ∈ C(n) and an elementary embedding
j : Vλ −→ Vθ, with cp(j) = κ, j(κ) > λ and j(κ) ∈ C(n); we say that κ is
C(n)+-extendible if it is λ-C(n)+-extendible for all λ > κ with λ ∈ C(n).

For the C(n)-cardinals which will be of interest to us, it is shown in
[1] that, for every n > 1, the statements ‘‘κ is λ-C(n)-strong", ‘‘κ is C(n)-
superstrong", ‘‘κ is λ-C(n)-supercompact", ‘‘κ is λ-C(n)-extendible" and ‘‘κ
is λ-C(n)+-extendible" are all Σn+1-expressible. Consequently, the corre-
sponding global versions are Πn+2-expressible.2

Let us now introduce the C(n)-versions of tall, Woodin, and strongly
compact cardinals.

Definition 1.4. A cardinal κ is called λ-C(n)-tall, for some λ > κ, if there
exists an elementary embedding j : V −→M , with M transitive, cp(j) = κ,

2 It should be pointed out that, e.g., in the case of λ-C(n)-supercompactness, the ex-
pressibility can be attained using the machinery of Martin–Steel extenders. For more details
on such extenders see [8]; for their use in the context of (C(n)-) supercompactness, the
reader may consult § 5 in [1] or the Appendix of [10].
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j(κ) > λ, κM ⊆ M and j(κ) ∈ C(n); we say that κ is C(n)-tall if it is
λ-C(n)-tall for all λ > κ.

Either using ordinary extenders or, Martin–Steel ones, for every n > 1,
the statement ‘‘κ is λ-C(n)-tall" is Σn+1-expressible; thus, ‘‘κ is C(n)-tall" is
Πn+2-expressible.

Definition 1.5. A cardinal δ is called C(n)-Woodin if for every f ∈ δδ there
exists a κ < δ with f“κ ⊆ κ, and there exists an elementary embedding
j : V −→ M , with M transitive, cp(j) = κ, Vj(f)(κ) ⊆ M , j(δ) = δ and
j(κ) ∈ C(n).

Observe that the above definition is in accordance with the local character
of Woodin cardinals, i.e., we demand that j(δ) = δ so that the various
embeddings may be witnessed by extenders in Vδ. It is easy to see that, for
fixed n, the statement ‘‘δ is C(n)-Woodin" is absolute for any Vδ ′ with δ ′ > δ
and δ ′ ∈ C(n). Notice also that if the cardinal δ is C(n)-Woodin, then δ (is
of course Woodin and) belongs to Lim(C(n)). As we shall see in § 3.1, this
is no coincidence. Finally, we consider the following notion.

Definition 1.6. A cardinal κ is called λ-C(n)-compact, some λ > κ, if there
exists an elementary embedding j : V −→M , with M transitive, cp(j) = κ,
j(κ) ∈ C(n) and such that, for every X ⊆ M with |X| 6 λ, there is a
Y ∈M so that X ⊆ Y and M |= |Y | < j(κ); we say that κ is C(n)-strongly
compact if it is λ-C(n)-compact for all λ > κ.

2. Consistency bounds

We focus on the C(n)-versions of tall, superstrong, strong, supercompact
and extendible cardinals (in order of appearence). Our general method can
be roughly described as follows.

Suppose that we are given such a C(n)-cardinal κ and an elementary
embedding j : V −→ M witnessing this fact appropriately. Under the ad-
ditional assumption that the image j(κ) is a regular (or even inaccessible)
cardinal in V , we shall construct various elementary chains of substruc-
tures of the model M , giving rise to factor elementary embeddings which
have analogous strength to that of the initial j.

The aim of these constructions is to ensure that the ordinals below j(κ)
which arise as images of the large cardinal κ under embeddings of the sort
in question, is a sufficiently ‘‘rich" subset of j(κ); e.g., stationary, α-club for
some α < j(κ), etc. If j(κ) is indeed an inaccessible cardinal, we then check
that all the aforementioned factor embeddings can be witnessed inside the
model Vj(κ) via derived extenders and we, consequently, obtain correspond-
ing consistency upper bounds for each individual C(n)-hierarchy.

We begin by first considering the case of tallness, where we shall describe
our method in detail.
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2.1. Tallness. Suppose that κ is λ-tall for some λ > κ, as witnessed by the
elementary embedding j : V −→ M , i.e., M transitive, cp(j) = κ, j(κ) > λ
and κM ⊆ M . Suppose that, in addition, j(κ) is a regular cardinal. We
pick some limit ordinal β ∈ (λ, j(κ)) and consider the following elementary
substructure:

X = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
β } ≺M.

To check that X ≺M , one uses the fact that β is a limit ordinal and verifies
the Tarski–Vaught criterion. Notice that X is, in fact, the Skolem hull of
the range(j) together with VM

β inside M , with respect to the functions of
the form f : Vκ −→ V .

Starting with X0 = X and β0 = β, we recursively build, for any ξ < j(κ),
an increasing (under ⊆) sequence of elementary substructures Xξ ≺ M ,
together with a strictly increasing sequence of corresponding limit ordinals
βξ < j(κ), such that each Xξ is of the form

Xξ = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
βξ
}.

Our aim is to show that, at appropriate ordinals γ < j(κ), using the ‘‘cur-
rent" substructureXγ of this chain, we can define an elementary embedding
jγ which can be nicely represented and which, at the same time, witnesses
λ-tallness for the cardinal κ.

So let β0 = β and X0 as defined above. For any ξ + 1 < j(κ), given βξ
and Xξ, we define

βξ+1 = sup(Xξ ∩ j(κ)) + ω

and
Xξ+1 = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM

βξ+1
}.

If ξ < j(κ) is limit and we have already defined βα and Xα for every α < ξ,
we let βξ = sup

α<ξ
βα and

Xξ =
⋃
α<ξ

Xα = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
βξ
},

which concludes the recursive definition of the elementary chain.

Remark 2.1. The ordinal β0 serves the mere purpose of initializing the
construction and is not important for later arguments. In fact, any other
limit ordinal in (λ, j(κ)) would also be sufficient. Thus, and although –
formally– our construction depends on this initial choice, we supress any
further mention to β0. In the few cases where it is relevant, we will refer to
it as the ‘‘initial limit ordinal".

Moreover, for any elementary substructure which is of this particular
form, i.e., the Skolem hull of the range of the embedding together with
some set in M , we will frequently call the latter set (in this case, the various
VM
β ’s) as the set of seeds.3

3 See [5] for a general theory of seeds.
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It is clear that 〈βξ : ξ < γ〉 is a continuous and strictly increasing se-
quence of limit ordinals. Moreover, we have the following.

Claim 2.2. For every ξ < j(κ), βξ < j(κ).

Proof of claim. Since j(κ) is regular, it is enough to see that, for every ξ <
j(κ), |Xξ ∩ j(κ)| < j(κ). But the latter follows from a simple counting
argument, using the definition of the substructures Xξ. �

Since each βξ is limit, Xξ ≺ M and, evidently, for any ξ < ξ′ < j(κ),
we have that Xξ ⊆ Xξ′ . Therefore, an elementary chain of substructures is
formed:

X0 ≺ X1 ≺ . . . ≺ Xξ ≺ . . . ≺M.

For any γ < j(κ) with cof(γ) > κ, let us consider the current substruc-
ture Xγ =

⋃
ξ<γ Xξ, along with the corresponding ordinal βγ . Clearly,

βγ = sup
ξ<γ

βξ < j(κ), and cof(βγ) = cof(γ) > κ. We then let πγ : Xγ
∼= Mγ be

the Mostowski collapse and define the composed map jγ = πγ ◦ j : V −→
Mγ , with cp(jγ) = κ. This produces the following commutative diagram of
elementary embeddings:

V
j //

jγ

��

M

Mγ

kγ=π−1
γ

>>}}}}}}}}}}}}}}}}

We now show that the embedding jγ witnesses the λ-tallness of κ. The key
observation is that, in this situation, Xγ ∩ j(κ) is in fact an ordinal; the
reason is that we have ‘‘filled in all the ordinal holes below j(κ)" along our
recursive construction of the substructures Xξ. It then easily follows that

cp(kγ) = jγ(κ) = sup(Xγ ∩ j(κ)) = βγ .

In fact, in such constructions, Xγ ∩j(κ) is an ordinal if and only if cp(kγ) =
jγ(κ) in which case, we call the embedding jγ an initial factor of j. Being
slightly more general, suppose that j : V −→ M is an elementary embed-
ding with cp(j) = κ and M transitive; moreover, suppose that X ≺ M
with range(j) ⊆ X, X ∩ [κ, j(κ)) 6= ∅ and X ∩ j(κ) bounded in j(κ). Let
π : X ∼= M0 be the Mostowski collapse and consider, as above, the map
j0 = π ◦ j : V −→M0 with cp(j0) = κ, which forms a commutative diagram
(with k = π−1). Observe that the imposed requirements on the elemen-
tary substructure X ensure that j0 is well-defined, M0 6= V (i.e., j0 6= id),
cp(j0) = κ and j0(κ) < j(κ). We now introduce the following notion.

Definition 2.3. Such a j0 is called an initial factor of j, if cp(k) = j0(κ).

The following facts are easily verified.
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Fact 2.4. In the situation described above, j0 is an initial factor of j if and
only if X ∩ j(κ) is an ordinal. In such a case, j0(κ) = sup(X ∩ j(κ)).

Fact 2.5. If j0 is an initial factor of j (via the collapse π : X ∼= M0 with
k = π−1), then VM0

j0(κ) = VM
j0(κ) ⊆ range(k) and therefore,

{j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
j0(κ)} ⊆ range(k).

Returning to our argument, we have that jγ(κ) = βγ > λ and so, in
order to conclude that this embedding witnesses λ-tallness, we only need
to check that κMγ ⊆ Mγ . This essentially comes from the fact that the set
of seeds that generate Mγ is closed under κ-sequences, a fact which, in
turn, follows from κM ⊆M and cof(γ) > κ. Notice that

Mγ = πγ“Xγ = {jγ(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
βγ }.

Now suppose that {jγ(fα)(xα) : α < κ} ⊆ Mγ , where for each α < κ,
xα ∈ VM

βγ
and fα ∈ V . Since cof(γ) > κ, we clearly have that 〈xα : α < κ〉 ∈

VM
βγ
⊆Mγ . It is also obvious that

〈jγ(fα) : α < κ〉 = jγ (〈fα : α < κ〉) � κ ∈Mγ

and, hence, we can compute in Mγ the sequence 〈jγ(fα)(xα) : α < κ〉 by
evaluating pointwise the functions jγ(fα)’s at the corresponding xα’s, i.e.,
〈jγ(fα)(xα) : α < κ〉 ∈Mγ . We have thus proved the following.

Proposition 2.6. Suppose that j : V −→M is a λ-tall embedding for κ, with
j(κ) regular. Then, for any given (initial limit ordinal) β0 ∈ (λ, j(κ)) and for
any γ < j(κ) with cof (γ) > κ, the embedding jγ : V −→ Mγ arising from
the elementary chain construction as above is an initial factor of j witnessing
the λ-tallness of κ.

In order to establish the closure under κ-sequences the only relevant
information was the fact that κM ⊆ M and that cof(γ) = cof(βγ) > κ.
Thus, we may be slightly more general and state the following.

Corollary 2.7. Suppose that j : V −→ M is a λ-tall embedding for κ, with
j(κ) regular. Suppose that j0 : V −→M0

∼= X is an initial factor of j via the
Mostowski collapse of

X = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
θ } ≺M,

where θ ∈ (λ, j(κ)) is such that cof (θ) > κ. Then, j0 is λ-tall for κ.

Our next aim is to consider the class of all images h(κ) below j(κ), where
h is any (initial factor) tallness embedding for κ.

Proposition 2.8. Suppose that j : V −→ M witnesses the λ-tallness of κ,
with j(κ) regular. Then, the collection

D = {h(κ) < j(κ) : h is α-tall for κ, for some α < j(κ)}
contains a [κ+, j(κ))-club.
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Proof. Let us consider the collectionD ′ of all images j0(κ) below j(κ), where
j0 is any initial factor embedding arising from a Mostowski collapse of some
elementary substructure X ≺M of the form

X = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
θ },

for some θ ∈ (λ, j(κ)) with cof(θ) > κ. We show that D ′, which is con-
tained in D, is in fact a [κ+, j(κ))-club in j(κ). Clearly, D ′ contains all the
images jγ(κ) arising from initial factor embeddings coming from our ele-
mentary chain construction, for various initial limit ordinals β0 ∈ (λ, j(κ))
and various lengths γ < j(κ) with cof(γ) > κ.

So suppose that δ ∈ [κ+, j(κ)) is regular and that 〈ji(κ) : i < δ〉 is a
strictly increasing sequence below j(κ) where, for all i < δ, there is some
θi ∈ (λ, j(κ)) with cof(θi) > κ, such that ji : V −→Mi is an initial factor of
j arising via the collapse πi of the substructure

Xi = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
θi
} ≺M.

Recall that Xi ∩ j(κ) is an ordinal and ji(κ) = sup(Xi ∩ j(κ)). Let us point
out that, the fact that ji comes from the collapse of Xi, only implies that
ji(κ) > θi. On the other hand, it follows from fact 2.5 that

{j(f)(x) : f ∈ V, x ∈ VM
ji(κ)} = {j(f)(x) : f ∈ V, x ∈ VM

θi
}

and thus, we may as well assume that ji(κ) = θi, for every i < δ. Hence,
for any i < ` < δ, we have that Xi ⊆ X` which, in turn, gives that Xi ≺ X`

and so, an elementary chain is formed. We may now let θδ = sup
i<δ

θi and

Xδ =
⋃
i<δ

Xi = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM
θδ
} ≺M.

Obviously, θδ < j(κ) and cof(θδ) = δ > κ. Let πδ : Xδ
∼= Mδ be the

Mostowski collapse and let jδ = πδ ◦ j : V −→ Mδ with cp(jδ) = κ be the
composed map, as usual. Then, Xδ ∩ j(κ) is an ordinal and hence

jδ(κ) = sup(Xδ ∩ j(κ)) = sup
i<δ

θi = sup
i<δ

ji(κ),

which shows the desired closure. Clearly, jδ(κ) < j(κ) and therefore, by
Corollary 2.7, jδ is λ-tall for κ.

Finally, it is also obvious from our construction that the various images
j0(κ) of initial factor λ-tall embeddings are unbounded in j(κ) (by choosing
a sufficiently large initial limit ordinal β0). �

Towards obtaining our first consistency result, the next step is to con-
sider the definability of the aforementioned collection D of images, inside
Vj(κ). We shall additionally assume that j(κ) is inaccessible, and we shall
show that the various tallness embeddings can be witnessed inside Vj(κ) via
extenders. Formally, we prove the following.
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Theorem 2.9. Suppose that, for some λ > κ, the elementary embedding
j : V −→ M witnesses the λ-tallness of κ, with j(κ) inaccessible. Then, for
every n ∈ ω, Vj(κ) |= ‘‘κ is C(n)-tall".

Proof. Given some α-tall initial factor embedding j0 : V −→M0, where

M0
∼= X = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM

θ } ≺M,

for some α ∈ (λ, j(κ)) and some ordinal θ < j(κ) with cof(θ) > κ, as we
have already remarked, we may assume that j0(κ) = θ. Naturally, we may
extract from it the (κ, j0(κ))-extender E and construct the corresponding
extender embedding jE : V −→ ME with cp(jE) = κ and jE(κ) = j0(κ).
We will then have that

ME = {jE(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ VM0

j0(κ)}

and also, VM0

j0(κ) = VME

jE(κ). Furthermore M0 |= cof(j0(κ)) > κ, a fact which
is computed correctly since κM0 ⊆ M0. This means that the set of seeds
VM0

j0(κ) (which generate ME ) is closed under κ-sequences and so, by argu-
ments which we have already described, it follows that κME ⊆ME , i.e., jE
witnesses α-tallness as well.

Actually, in our case, M0 = ME which follows from general facts regard-
ing the commutative diagram of embeddings, for derived extenders. Notice
also that, in the current setting, all derived extenders belong to Vj(κ).

Then, in the ZFC model Vj(κ), for any such extender E coming from a
factor j0, Vj(κ) |= ‘‘jE is α-tall for κ". This follows from the inaccessibility of
j(κ) which enables Vj(κ) to faithfully verify that jE(κ) = j0(κ) and κME ⊆
ME . Therefore, the collection

Ctall = {hE(κ) < j(κ) : hE is α-tall extender embedding, α < j(κ)},
which is a class in j(κ) definable in Vj(κ), contains a [κ+, j(κ))-club (in
particular, Ctall is stationary in j(κ)). Also, again by inaccessibility, for
each n ∈ ω, we have a club C

(n)
j(κ) ⊆ j(κ), consisting of all ordinals below

j(κ) which are Σn-correct in the sense of Vj(κ). Hence, C(n)
j(κ) ∩Ctall 6= ∅, for

every n ∈ ω, and the theorem is proved. �

Remark 2.10. We could have assumed that j(κ) is inaccessible, right at
the beginning of the section, without any change in the construction of the
chains. Nevertheless, we presented our construction under the minimal
assumptions and this is accomplished by just requiring the regularity of
j(κ).

Remark 2.11. It is important to note that theorem 2.9 is really a theorem,
and not a theorem schema, something that is indicated by the clause ‘‘for
every n ∈ ω". This is not problematic since we have a truth predicate for
set structures like Vj(κ). In subsequent sections, we shall frequently state
similar (consistency) results for other large cardinal notions. Throughout,
we understand that clauses of the form ‘‘for every n ∈ ω", followed by



10 KONSTANTINOS TSAPROUNIS

some satisfaction in a set model, indicate a theorem instead of a schema.
For example, the conclusion of theorem 2.9 can be written (slightly more)
formally as: ∀n ∈ ω(Vj(κ) |= ‘‘κ is C(n)-tall").

This remark applies to all similar results throughout this article. In other
places of the text where we shall be looking at satisfaction in class models
(e.g., C(n)-cardinals in V ), we will explicitly indicate any result which is
a countable schema of statements, one for each (meta-theoretic) natural
number n ∈ N.

Notice that theorem 2.9 gives an (indirect) upper bound on the consis-
tency strength of the theory ZFC+“κ is C(n)-tall", for every natural number
n, where the latter is indeed a countable schema of formulas. In turn, it
gives rise to the following natural question.

Question 2.12. What is the consistency strength of the existence of a tall-
ness embedding j for κ such that, additionally, j(κ) is inaccessible?

As we shall see, 1-extendibility is an adequate upper bound answering
the previous question; indeed, it will be a sufficient assumption for results
concerning the cases of superstrongness and that of strongness as well (cf.
§ 2.2 and 2.3). On the other hand, let us mention that for supercompactness
(and extendibility), we shall be using the assumption almost hugeness (cf.
§ 2.4), although the exact bounds for all these cases are not known.

Having dealt with tall cardinals, the essential features of our method have
become apparent and we now proceed with the rest of the large cardinals.
Since many of the constructions will be in a similar spirit, we will skip
several details and refer to previously established facts when needed.

2.2. Superstrongness. Suppose that κ is a superstrong cardinal and let
j : V −→ M be a witnessing embedding, i.e., M is transitive, cp(j) = κ
and Vj(κ) ⊆ M . In addition, suppose that j(κ) is regular. Bear in mind
that in such a case, this is actually equivalent to requiring that j(κ) is
inaccessible, since superstrongness already implies that j(κ) ∈ C(1). We
can thus forget about this distinction and assume that j(κ) is inaccessible
right away, proving the following.

Proposition 2.13. Suppose that j : V −→M is superstrong for κ, with j(κ)
inaccessible. Then, for each (initial limit ordinal) β0 ∈ (κ, j(κ)) and any limit
γ < j(κ), the embedding jγ : V −→ Mγ arising from the elementary chain
construction as before, is an initial factor of j and superstrong for κ.

Proof. Having fixed an initial limit ordinal β0 ∈ (κ, j(κ)), we recursively
construct an elementary chain of substructures Xξ of M as before, starting
with seeds in Vβ0 . At the same time, we produce a sequence of ordinals bξ
below j(κ).
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At any limit γ < j(κ),4 we let πγ : Xγ
∼= Mγ be the Mostowski collapse,

and we let jγ = πγ ◦j : V −→Mγ with cp(jγ) = κ, producing a commutative
diagram of embeddings (where kγ = π−1

γ ). Once again, Xγ ∩ j(κ) is an
ordinal and hence jγ is an initial factor of j such that

cp(kγ) = jγ(κ) = sup(Xγ ∩ j(κ)) = sup
ξ<γ

βξ = βγ .

In particular, Vjγ(κ) ⊆Mγ as desired. �

Clearly, for any initial β0, the above procedure gives a strictly increasing
and continuous sequence of ordinals 〈βξ : ξ < j(κ)〉 below j(κ), all of which
are images of κ under initial factor superstrongness embeddings. It is easy
to see that this collection of images is a (full) club in j(κ).

Corollary 2.14. Suppose that j : V −→ M is superstrong for κ, with j(κ)
inaccessible. Then, the collection {h(κ) < j(κ) : h is an initial factor of j ∧
h is superstrong for κ} is a club in j(κ).

Exactly as in the case of tallness, for each superstrong initial factor em-
bedding j0 : V −→ M0, the derived (κ, j0(κ))-extender E belongs to Vj(κ)

and then, the corresponding extender embedding jE : V −→ ME is super-
strong for κ. Moreover, one again checks that, in fact,M0 = ME . Finally, by
inaccessibility, Vj(κ) |= ‘‘jE is superstrong for κ" for any such extender and
so, in particular, Vj(κ) |= ‘‘κ is superstrong". This means that the collection
Cs-strong defined as

{hE(κ) < j(κ) : hE is a superstrong extender embedding for κ},

is a definable class of Vj(κ) and contains a club. Then, by considering the

clubs C(n)
j(κ) ⊆ j(κ) consisting of all ordinals below j(κ) which are Σn-correct

in the sense of Vj(κ), we get the following.

Theorem 2.15. If j : V −→ M is superstrong for κ with j(κ) inaccessible,
then, for every n ∈ ω, Vj(κ) |= ‘‘κ is C(n)-superstrong".

This theorem gives an (indirect) upper bound on the consistency of the
theory ZFC+“κ is C(n)-superstrong", for every natural number n, where the
latter is again a countable schema.

On the other hand, for any fixed natural number n, by proposition 2.4
in [1], the existence of a κ ∈ C(n) which is 2κ-supercompact implies the
existence of many C(n)-superstrong cardinals below κ. Since κ being 2κ-
supercompact implies the existence of many 1-extendible cardinals below it,
the following corollary is an improvement of the aforementioned consistency
bound of Bagaria.

4 Note that in this case, as opposed to the case of tallness, the ordinal length γ < j(κ)
at which we take the collapse of the current substructure can be any limit ordinal below
j(κ) (i.e., even ω), since we are not interested in closure under sequences for the factor
embedding.
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Corollary 2.16. If κ is 1-extendible then there exists a normal ultrafilter U
on κ such that

{α < κ : ∀n ∈ ω(Vκ |= ‘‘α is C(n)-superstrong")} ∈ U .
In particular, if ZFC + ‘‘∃κ(κ is 1-extendible)" is consistent, then so is the
theory ZFC + ‘‘κ is C(n)-superstrong", for every natural number n.

Proof. Suppose that j : Vκ+1 −→ Vj(κ)+1 witnesses the 1-extendibility of κ.
Let E be the derived (κ, j(κ))-extender from j and consider the extender
embedding jE : V −→ ME . By standard arguments, jE is superstrong for
κ, jE(κ) = j(κ), and moreover,

Vj(κ)+1 |= ‘‘jE is superstrong for κ ∧ jE(κ) = j(κ) is inaccessible”

(where note that E ∈ Vj(κ)+1). Also, Cs-strong, the definable stationary
subclass of j(κ) which was mentioned after corollary 2.14, belongs to
Vj(κ)+1. Additionally, for every n ∈ ω, we may consider the club class

C
(n)
j(κ) ⊆ j(κ) consisting of the ordinals that are Σn-correct in Vj(κ); since
P(j(κ)) ⊆ Vj(κ)+1, the latter verifies the fact that Cs-strong is stationary in
j(κ). Thus, for every n ∈ ω,

Vj(κ)+1 |= ∃ (κ, θ)-extender E ∈ Vj(κ) for some θ < j(κ), such that
Vj(κ) |= ‘‘jE is superstrong for κ and jE(κ) ∈ C(n)"

that is, for every n ∈ ω,

Vj(κ) |= ‘‘κ is C(n)-superstrong".

Now, if we derive the usual normal ultrafilter U on κ from the initial embed-
ding j, it then follows that, for every n ∈ ω, the set

Sn = {α < κ : Vκ |= ‘‘α is C(n)-superstrong"} ∈ U .
By the completeness of U , we may now intersect all the Sn’s, and the con-
clusion follows. �

Observe that, in the previous proof, since κ is itself inaccessible, Vκ is a
model of the theory ZFC+“α is C(n)-superstrong", for every natural number
n, in which there is actually a proper class of α’s that satisfy the schema.

Let us also make a remark on the connection between the cases of su-
perstrongness and tallness. Notice that if j : V −→M is superstrong for κ,
we may as well assume that j = jE , i.e., that it is an extender superstrong
embedding with

M = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ Vj(κ)}.

So, if j(κ) is also regular (and thus, inaccessible), then the same embed-
ding witnesses < j(κ)-tallness for κ. Thus, everything we did for tallness
can be entirely done under the context of a superstrong embedding with
regular (inaccessible) target. We can therefore state the following, which
immediately follows from theorem 2.9.
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Corollary 2.17. Suppose that j : V −→ M is superstrong for κ, with j(κ)

inaccessible. Then, for every n ∈ ω, Vj(κ) |= ‘‘κ is C(n)-tall".

Consequently, 1-extendibility is an adequate (consistency) upper bound
both for the C(n)-superstrongness and for the C(n)-tallness case.

2.3. Strongness. Suppose that κ is λ-strong, for some limit λ > κ, as
witnessed by the embedding j : V −→ M , i.e., M transitive, cp(j) = κ,
j(κ) > λ and Vλ ⊆M . In addition, suppose that j(κ) is regular.

We apply the same ideas in order to build an elementary chain of sub-
structures of M and then produce a λ-strong factor embedding from it.
Two remarks are in order here. First, since –as in the case of superstrongs–
we are not interested in closure under sequences for the factor embedding,
the length at which we take collapses can be any limit ordinal γ < j(κ).
Additionally, since the crucial requirement for λ-strongness is ‘‘Vλ ⊆ M ",
we will start our chain by just ‘‘throwing in" all the seeds from Vλ, i.e., we
let β0 = λ and define our first elementary substructure as

X0 = {j(f)(x) : f ∈ V, f : Vκ −→ V, x ∈ Vβ0} ≺M.

From that point on, there two ways to proceed. On the one hand, we might
as well proceed with the rest of the chain as usual, using seeds x from VM

βξ
for ξ > 0 (where the βξ ’s are defined as in the case of superstrongness). That
would result in the desired λ-strong initial factor embedding after γ steps,
for any limit ordinal γ < j(κ). In this case, there is really not much more
to say, as the construction and the subsequent results are totally parallel
to the ones of § 2.2 (in particular, we will get a full club contained in the
collection of images h(κ) < j(κ), where h is a λ-strong factor embedding for
κ).

Alternatively, one can consider only ordinal seeds, i.e., for appropriate
limit ordinals5 βξ ∈ (λ, j(κ)), we take substructures of the form

Xξ = {j(f)(α) : f ∈ V, f : κ −→ V, α < βξ} ≺M

(note the modification in the domain of the functions). We omit more details
on this approach as the results obtained are the same.

Finally, if assume that j(κ) is also inaccessible, we then get that for
every n ∈ ω, Vj(κ) |= “κ is λ-C(n)-strong”. Furthermore, as in the case of
tallness and superstrongness, 1-extendibility is an adequate upper bound
for the schema asserting full C(n)-strongness, for every natural number n.
Such a conclusion is hardly surprising in the light of proposition 1.2 in [1],
which asserts that every λ-strong cardinal is actually λ-C(n)-strong; this is
shown in [1] by the method of iterated ultrapowers which, by the way, will
be relevant for us in Section 3.

5 Such ordinals have to be closed under some (fixed) ordinal pairing function, so that the
structures considered are actually elementary substructures of M .
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2.4. Supercompactness. Suppose that κ is λ-supercompact, for some λ >
κ with λ<κ = λ, as witnessed by the embedding j : V −→ M , i.e., M
transitive, cp(j) = κ, j(κ) > λ and λM ⊆ M . In addition, suppose that
j(κ) is regular.

In this case, as opposed to the previous ones, we build our elementary
chain using a slightly different collection of seeds. Namely, we also include
j“λ which (belongs to M and) is used in order to obtain the closure under
λ-sequences for the initial factor embedding that we are aiming for.

We start by picking an initial limit ordinal β0 ∈ (λ, j(κ)) and by letting

X0 = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ VM
β0 } ≺M,

where note that the domain of the functions has been modified accordingly.
For ξ + 1 < j(κ), given βξ and Xξ, we let βξ+1 = sup(Xξ ∩ j(κ)) + ω and

Xξ+1 = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ VM
βξ+1
}.

If ξ < j(κ) is limit and we have already defined βα and Xα for every α < ξ,
we let βξ = sup

α<ξ
βα and

Xξ =
⋃
α<ξ

Xα = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ VM
βξ
},

which concludes the recursive definition of the elementary chain. We now
proceed with the formal result.

Proposition 2.18. Suppose that j : V −→ M is λ-supercompact for κ, for
some λ > κ with λ<κ = λ, and with j(κ) regular. Then, for each (initial limit
ordinal) β0 ∈ (λ, j(κ)) and each γ < j(κ) with cof (γ) > λ, the elementary
embedding jγ : V −→Mγ arising from the chain construction as above, is an
initial factor of j witnessing λ-supercompactness of κ.

Proof. Since M is closed under λ<κ-sequences, any function f : Pκλ ×
Vκ −→ κ belongs to M . Therefore, by the inaccessibility of j(κ) in M ,
we have that |2λ<κ | < j(κ). Now using the regularity of j(κ), a counting
argument shows that for each ξ < j(κ), βξ < j(κ).

We fix γ < j(κ) with cof(γ) > λ, and we consider the substructure Xγ

of which we take the collapse πγ : Xγ
∼= Mγ . We then define the map

jγ = πγ ◦ j : V −→Mγ , with cp(jγ) = κ, producing a commutative diagram
as usual (with kγ = π−1

γ ).
One again checks that Xγ ∩ j(κ) is an ordinal, which implies that jγ is

indeed an initial factor of j and that

cp(kγ) = jγ(κ) = sup(Xγ ∩ j(κ)) = sup
ξ<γ

βξ = βγ > λ,

with cof(βγ) = cof(γ) > λ. Thus, in order to see that jγ is λ-supercompact,
we only need to check that λMγ ⊆ Mγ . For this, note first that since
j“λ ∪ {j“λ} ⊆ X0 ⊆ Xγ , we have that

Mγ = {jγ(f)(jγ“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ VM
βγ }.
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Clearly, jγ“λ ∈ Mγ as well and therefore, if we consider the function jγ �
λ : λ −→ jγ“λ (as an order-type map), we get that jγ � λ ∈Mγ . We now use
this function to get the closure under λ-sequences.

Let {jγ(fi)(jγ“λ, xi) : i < λ} ⊆Mγ , where for i < λ, xi ∈ VM
βγ

and fi ∈ V .
Since cof(βγ) = cof(γ) > λ and λM ⊆M , we have that 〈xi : i < λ〉 ∈ VM

βγ
⊆

Mγ . It will be enough to show that 〈jγ(fi) : i < λ〉 ∈Mγ , since in that case,
we can compute in Mγ the sequence 〈jγ(fi)(jγ“λ, xi) : i < λ〉 by evaluating
pointwise the functions jγ(fi)’s at the corresponding xi’s together with jγ“λ.

Now, jγ(〈fi : i < λ〉) is a function G : jγ(λ) −→ Mγ that belongs to Mγ .
Using G and jγ � λ, define in Mγ the function F : λ −→ Mγ by letting, for
every α < λ, F (α) = G(jγ(α)). But then, for every α < λ,

F (α) = jγ(〈fi : i < λ〉)(jγ(α)) = jγ(〈fi : i < λ〉(α)) = jγ(fα),

i.e., F = 〈jγ(fi) : i < λ〉 ∈Mγ and we are done. �

By our familiar methods, one obtains the following corollary.

Corollary 2.19. If j : V −→ M witnesses the λ-supercompactness of κ, for
some λ > κ with λ<κ = λ and with j(κ) regular, then the collection

D = {h(κ) < j(κ) : h is λ-supercompact for κ}

contains a [|λ|+, j(κ))-club.

Unlike the cases of tallness and superstrongness where the various initial
factor embeddings were witnessed inside Vj(κ) by short (derived) extenders,
in the case of supercompactness such extenders are not sufficient for our
purposes. Instead, we shall use extenders of the Martin–Steel form. The
following characterization is described in [1] (see also the Appendix of [10]).

Theorem 2.20 ([1]). A cardinal κ is λ-supercompact if and only if there exists
a (κ, Y )-extenderE, with Y transitive, such that {κ}∪[Y ]<ω∪λY ∪jE“Y ⊆ Y
and jE(κ) > λ, where jE is the extender elementary embedding.

In fact, given such a (κ, Y )-extender E, the corresponding embedding jE
is λ-supercompact. Conversely, given any λ-supercompact embedding j,
we may extract an appropriate transitive set Y so that the derived (κ, Y )-
extender meets the displayed requirements. In such a case, jE(κ) = j(κ).

Our next aim is to witness full C(n)-supercompactness of κ inside Vj(κ).
Contemplating on the way we produced the chain, it is clear that the essen-
tial feature which guarrantees closure under λ-sequences is the fact that
j“λ ∈ M (which follows from the closure of M ). It turns out that, to get
full C(n)-supercompactness in Vj(κ), it is enough if the initial embedding is
such that j“α ∈M for every α < j(κ).

Theorem 2.21. Suppose that j : V −→ M witnesses the almost hugeness
of κ. Then, for every n ∈ ω, Vj(κ) |= ‘‘κ is C(n)-supercompact".
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Proof. Suppose that κ is almost huge, as witnessed by the elementary em-
bedding j : V −→ M , i.e., M transitive, cp(j) = κ and <j(κ)M ⊆ M . In
particular, Vj(κ) ⊆ M and j(κ) is inaccessible. As we are aiming at full
C(n)-supercompactness below j(κ), we may as well consider only regular
λ < j(κ).6 Then, for any such fixed λ, since λM ⊆M and j“λ ∈M , we may
pick some initial limit ordinal β(λ)

0 ∈ (λ, j(κ)) and perform our construction
exactly as in the λ-supercompactness case, i.e., construct, for any ξ < j(κ),
the corresponding ordinal β(λ)

ξ < j(κ) and the substructure

X
(λ)
ξ = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ V

β
(λ)
ξ

} ≺M,

producing the elementary chain X
(λ)
0 ≺ . . . ≺ X

(λ)
ξ ≺ . . . ≺ M . As before,

at any limit γ < j(κ) with cof(γ) > λ+, we may pause and take the transitive
collapse of the current substructure, in order to produce a λ-supercompact
initial factor embedding j(λ)

γ with j
(λ)
γ (κ) = β

(λ)
γ , where β(λ)

γ is the current
ordinal of the produced sequence 〈β(λ)

ξ : ξ < j(κ)〉. Thus, for any regular
λ ∈ (κ, j(κ)), we have a corresponding class of ordinals in j(κ), namely,
Cλ = {β(λ)

γ : cof(γ) = λ+} which consists of the images of κ under the initial
factor λ-supercompactness embeddings that are taken exactly at limits of
cofinality λ+. Clearly, Cλ is λ+-club and, thus, stationary in j(κ).

Now, we may let Cs.c. =
⋃
{Cλ : λ ∈ (κ, j(κ)), λ regular} and then Cs.c.

is a stationary subset of j(κ) which is a disjoint union of stationary subsets.
Of course, since j(κ) is inaccessible, we may also consider the clubs C(n)

j(κ) ⊆
Vj(κ) of ordinals that are Σn-correct in the sense of Vj(κ).

Then, for every n ∈ ω and every regular λ ∈ (κ, j(κ)), there is an initial
factor λ-supercompact embedding j0, with j0(κ) ∈ C(n)

j(κ). We now use the
characterization of theorem 2.20 in order to show that all these embeddings
are witnessed by extenders inside Vj(κ).

Fix some n ∈ ω and suppose that, for some regular λ ∈ (κ, j(κ)), j0 :

V −→M0 is an initial factor λ-C(n)-supercompact embedding arising from
our construction, i.e., arising via a collapse of an elementary substructure
X ≺ M of the form above, associated with a corresponding limit ordinal
θ = sup(X ∩ j(κ)). As before, a counting argument shows that, for all
α < j(κ), we have that j0(α) < j(κ).

We now describe how to produce the appropriate transitive Y ⊆M0. The
idea is simple: we start with j0“λ (which belongs to M0) and we recursively
close under all the relevant properties, repeating λ+-many times (and taking
unions at limit stages). Formally, we let Y0 = trcl({j0“λ}) and, given any Yα
for some α < λ+, we let Yα+1 = trcl(Yα∪ [Yα]<ω ∪ λYα∪ j0“Yα); if α is limit,
then Yα =

⋃
ξ<α Yξ. Finally, we let Y = Yλ+ ; it is straightforward to check

6 And since κ is clearly supercompact in the model Vj(κ), it follows by a well-known result
of Solovay that, for any regular λ ∈ (κ, j(κ)), we have λ<κ = λ.
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that Y ⊆M0, Y is transitive and {κ} ∪ [Y ]<ω ∪ λY ∪ j0“Y ⊆ Y . Moreover,
since j0“j(κ) ⊆ j(κ), it follows that Y ∈ Vj(κ). Now let E be the (κ, Y )-
extender derived from the embedding j0. Recall that any derived extender
of this sort comes with a corresponding ordinal ζ > κ which is the least one
so that Y ⊆ j0(Vζ) (and then, the various ultrafilters of the extender are on
the sets aVζ , for a ∈ [Y ]<ω). In our case, we have that ζ < j(κ) again due
to j0“j(κ) ⊆ j(κ). We may thus conclude that E ∈ Vj(κ).

We now consider the extender embedding jE : V −→ ME ; applying
theorem 2.20, it is easy to see that jE is λ-supercompact for κ with jE(κ) =
j0(κ). Finally, the inaccessibility of j(κ) implies that we can verify inside
Vj(κ) the λ-C(n)-supercompactness of κ via the relevant extender; that is, we
get that Vj(κ) |= “κ is λ-C(n)-supercompact", and the theorem follows. �

Remark 2.22. Note that, in the proof of theorem 2.21, any initial factor λ-
supercompact embedding j0 which arises from our elementary chain is, in
addition, superstrong. Thus, when we recursively construct the transitive
Y which serves as the support of the witnessing extender, we may as well
include the whole Vj0(κ) at the very first level Y0, together with j0“λ. This
ensures that the extender embedding jE will be superstrong as well.

The last theorem gives an upper bound on the consistency strength
of the theory T = ZFC+“κ is C(n)-supercompact", for every natural number
n, where the latter is again a countable schema. Namely, if the theory
ZFC+‘‘∃κ(κ is almost huge)" is consistent, then so is T. Moreover, we now
show that this bound is sharp in the following sense.

Corollary 2.23. If the theory ZFC + ‘‘∃κ(κ is almost huge)" is consistent,
then so is the theory T + ‘‘∀λ(λ is not almost huge)".

Proof. Let κ be the least almost huge cardinal, witnessed by the embedding
j : V −→M . By theorem 2.21, Vj(κ) |= T. Towards a contradiction, suppose
that λ is the least almost huge cardinal in the sense of Vj(κ). Recall that the
least almost huge cardinal is strictly smaller than the least supercompact,
provided that they both exist. Thus, since κ is supercompact in Vj(κ), we
get that λ < κ. But this is a contradiction since ‘‘λ is almost huge" is a
Σ2-statement and j(κ) is inaccessible, i.e., λ would have to be an almost
huge cardinal below κ. �

It is a standard fact that if α is< κ-supercompact and κ is supercompact,
then α is fully supercompact. A natural question is whether this generalizes
to the case of C(n)-supercompactness, for n > 0. We now address this
question and show that if, as mentioned in remark 2.22, the witnessing
extenders are also superstrong, then it does.

In this direction, we introduce the following notion, which will be of par-
ticular interest and importance in the context of (C(n)-) extendibility.



18 KONSTANTINOS TSAPROUNIS

Definition 2.24. A cardinal κ is called jointly λ-supercompact and θ-
superstrong, for some λ, θ > κ, if there is an elementary embedding j :
V −→M with M transitive, cp(j) = κ, j(κ) > λ, λM ⊆M and Vj(θ) ⊆M .

Note that the clause ‘‘κ-superstrong" just means usual superstrongness
(i.e., Vj(κ) ⊆M ). For the global version(s) of this notion, the absence of one
of the two parameters indicates universal quantification on the parameter
missing; for instance, κ is jointly supercompact and θ-superstrong, for some
fixed θ > κ, if and only if it is jointly λ-supercompact and θ-superstrong, for
every λ > κ. On the other hand, the absence of both parameters is intended
to mean that the same λ is quantified for both of them, i.e., κ is jointly
supercompact and superstrong if and only if it is jointly λ-supercompact
and λ-superstrong, for every λ > κ.7

We stress the fact that the above notion transcends supercompactness
in the sense that if κ is the least supercompact, then it is not jointly λ-
supercompact and κ-superstrong, for any λ. In fact, as we shall see in § 2.5,
global joint (C(n)-) supercompactness and κ-superstrongness is equivalent
to (C(n)-) extendibility. Having said that, and given an analogous result of
Bagaria for C(n)-extendibles (cf. proposition 3.4 in [1]), the following lemma
(schema) is hardly surprising.

Lemma 2.25. If κ is jointly C(n)-supercompact and κ-superstrong, then κ ∈
C(n+2).

Proof. The proof is an induction in the meta-theory. Alternatively, the
lemma follows from proposition 3.4 in [1], and proposition 2.30 below. �

Recalling the Πn+2-expressibility of C(n)-supercompactness, the previous
lemma immediately implies the following.

Corollary 2.26. If κ is jointly C(n)-supercompact and κ-superstrong, and
α < κ is < κ-C(n)-supercompact, then α is C(n)-supercompact.

Before concluding this section, let us briefly return to the model Vj(κ)

obtained in the proof of theorem 2.21. Clearly, the α’s below κ which are
C(n)-supercompact for every n, are unbounded in κ. For any such α < κ
and for any γ < κ, the very same extenders belonging to Vκ witness the
‘‘γ-C(n)-supercompactness" of α either in Vκ or in Vj(κ). In particular, Vj(κ)

thinks that κ is a limit of Σn-correct ordinals and thus, for every n ∈ ω, we
have that Vj(κ) |= κ ∈ Lim(C(n)). In fact, we now give a small list of the
properties that κ enjoys inside that particular model Vj(κ). Regarding part
(iii) below, recall definition 1.3.

Proposition 2.27. Suppose that κ is almost huge, as witnessed by the em-
bedding j : V −→M . Let U be the usual normal measure on κ derived from
j. Then, for any n ∈ ω, the following hold in the (ZFC) model Vj(κ):

7 Similar remarks apply to the corresponding C(n)-version of this notion, which is
straightforward to state; we leave these to the reader.



ELEMENTARY CHAINS AND C(n)-CARDINALS 19

(i) κ ∈ Lim(C(n)).

(ii) κ is C(n)-supercompact and

{α < κ : α is C(n)-supercompact} ∈ U .
(iii) κ is C(n)+-extendible and

{α < κ : α is C(n)+-extendible} ∈ U .

Proof. Parts (i) and (ii) follow from the preceding discussion. For (iii), fix
some n and some λ ∈ (κ, j(κ)) so that Vj(κ) |= λ ∈ C(n); now, by the
closure of M and the inaccessibility of j(κ), j � Vλ ∈M and then, M thinks
that j � Vλ : Vλ −→ Vj(λ) is elementary, has critical point κ, (j � Vλ)(κ) > λ,
j(λ) < j(j(κ)) and moreover, that j(Vj(κ)) |= j(λ) ∈ C(n).

Let us temporarily fix a formula ϕ(λ, µ, κ) asserting that ‘‘there exists a
λ-extendibility embedding h for κ with µ = h(λ)". From the point of view of
M , we have just argued that for every λ ∈ (κ, j(κ)) with Vj(κ) |= λ ∈ C(n),
there exists a µ < j(j(κ)) such that ϕ(λ, µ, κ) holds and, moreover, such
that j(Vj(κ)) |= µ ∈ C(n). But now, by the usual reflection of the normal
measure, we have that the set of ordinals α < κ such that, for all λ ∈ (α, κ),
it is true that

Vκ |= λ ∈ C(n) −→ ∃µ < j(κ)(ϕ(λ, µ, α) ∧ Vj(κ) |= µ ∈ C(n)),

belongs to U . Let us call this set A. Fix any α ∈ A and fix any λ ∈ (α, κ)

with Vκ |= λ ∈ C(n). Furthermore, fix a µ < j(κ) witnessing that α ∈ A,
i.e., such that ϕ(λ, µ, α) holds and, moreover, such that Vj(κ) |= µ ∈ C(n).

Since µ < j(κ), by the inaccessibility of the latter we have that the
witnessing λ-extendibility embedding for α belongs to Vj(κ), that is,

Vj(κ) |= ∃µ(ϕ(λ, µ, α) ∧ µ ∈ C(n)).

Therefore, by elementarity, for any such α ∈ A and any fixed λ ∈ (α, κ)

with Vκ |= λ ∈ C(n), we have that there exists a µ < κ such that

Vκ |= ϕ(λ, µ, α) ∧ µ ∈ C(n),

i.e., such extendibility embeddings for α may be witnessed inside Vκ. Note
how we have successively bounded the µ’s, first below j(κ) and now below
κ, ensuring that they are also in the relative C(n) of these structures. This
discussion shows that the set

B = {α < κ : Vκ |= ∀λ > α(λ ∈ C(n) −→ ∃µ(ϕ(λ, µ, α) ∧ µ ∈ C(n)))}
includes A and hence, it also belongs to U . Consequently, by ‘‘reversing"
the reflection argument of the measure, we obtain that

Vj(κ) |= ∀λ > κ(λ ∈ C(n) −→ ∃µ(ϕ(λ, µ, κ) ∧ µ ∈ C(n))).

But then, if we pick any λ ∈ (κ, j(κ)) with Vj(κ) |= λ ∈ C(n) and consider
any witnessing extendibility embedding h : Vλ −→ Vµ for κ in Vj(κ), we get
that, in the sense of the latter structure, all three: κ, λ and µ are in C(n).
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Hence, h(κ) ∈ C(n) as well. This shows that κ is C(n)+-extendible in Vj(κ).
In turn, once more by a reflection argument,

{α < κ : Vκ |= “α is C(n)+-extendible”} ∈ U

and then, it follows that, in Vj(κ), {α < κ : α is C(n)+-extendible} ∈ U . �

Therefore, the assumption of almost hugeness is sufficient for the con-
sistency of all the C(n)-cardinals considered so far, in a strong sense: for
any n ∈ ω, the model Vj(κ) thinks that the cardinal κ is C(n)-supercompact,
C(n)-superstrong and, clearly, C(n)-strong andC(n)-tall as well. In addition,
we just showed that it is also C(n)+-extendible. Evidently, if we consider
the least almost huge cardinal, the corresponding versions of corollary 2.23
are obtained for all these cases.

2.5. More extendibility. Given the established consistency results, we
now look more closely at C(n)-extendibility and its connection with C(n)-
supercompactness. We begin with the following theorem (schema).

Theorem 2.28. Suppose that κ is λ+ 1-C(n)-extendible, for some n > 0 and
some λ = iλ > κ with cof (λ) > κ. Then, κ is jointly λ-C(n)-supercompact
and λ-superstrong.

Proof. Fix some n > 0 and some λ = iλ > κ with cof(λ) > κ. Now let
j : Vλ+1 −→ Vj(λ)+1 be an elementary embedding that witnesses the λ+ 1-
C(n)-extendibility of κ, i.e., cp(j) = κ, j(κ) > λ+ 1 and j(κ) ∈ C(n). Let us
consider E, the ordinary (κ, j(λ))-extender derived from j; that is, E is of
the form 〈Ea : a ∈ [j(λ)]<ω〉 where, each Ea is a κ-complete ultrafilter on
[λ]|a| defined as usual: for X ⊆ [λ]|a|, X ∈ Ea if and only if a ∈ j(X).8

Now let jE : V −→ ME be the extender embedding with cp(jE) = κ.
Although we do not have a ‘‘full" third factor embedding kE commuting
with j and jE , we may nonetheless get a restricted version of it, denoted by
k ∗E : VME

jE(λ) −→ Vj(λ), by letting k ∗E([a, f ]) = j(f)(a), for all [a, f ] ∈ VME

jE(λ),

where a ∈ [j(λ)]<ω and f : [λ]|a| −→ Vλ.9 Moreover, it is easily checked
that k ∗E is a well-defined {∈}-embedding and so, in particular, injective. We

8 Note that despite the fact that the embedding j is between sets, this definition makes
sense since, for anym ∈ ω, P([λ]m) ⊆ Vλ+1. Moreover, E ∈ Vj(λ)+1 and the latter structure
can faithfully verify that E is indeed a (κ, j(λ))-extender.

9 Observe that any such f , representing an element in VME
jE(λ), belongs to Vλ+1.
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then obtain the commutative diagram

Vλ
j�Vλ //

jE�Vλ

��

Vj(λ)

VME

jE(λ)

k ∗E

=={{{{{{{{{{{{{{{{{

where j � Vλ = k ∗E ◦ (jE � Vλ). By standard arguments, k ∗E is in fact
surjective and, thus, it is the identity map. Consequently, VME

jE(λ) = Vj(λ),
i.e., Vj(λ) ⊆ ME and so jE is λ-superstrong and, for every ordinal α 6 λ,
jE(α) = j(α). In particular, jE(κ) = j(κ) and also, since cof(j(λ)) > λ
(computed in V ), we have that jE“λ = j“λ ∈ Vj(λ) and so jE“λ ∈ME .

Thus, it will be enough to show that λME ⊆ME in order to conclude that
the embedding jE witnesses the λ-C(n)-supercompactness of κ as well. But
this is shown exactly as in the proof of proposition 2.18. �

We immediately get the following corollary (schema). The ‘‘in particular"
part answers affirmatively the corresponding question posed in [1].

Corollary 2.29. If the cardinal κ is C(n)-extendible, then it is jointly C(n)-
supercompact and superstrong. In particular, C(n)-extendibility implies C(n)-
supercompactness.

Although we do not know if the least C(n)-supercompact is actually below
the least C(n)-extendible (for n > 1), we now show that, under the extra
assumption of κ-superstrongness, the two (global) notions are equivalent.

Proposition 2.30. If κ is jointly C(n)-supercompact and κ-superstrong, then
it is C(n)-extendible.

Proof. Fix some (meta-theoretic) n > 1 and suppose that κ is jointly C(n)-
supercompact and κ-superstrong. Moreover, fix some λ > κ with λ ∈
C(n+2). Recall that λ = |Vλ|. Now let j : V −→ M be an elementary
embedding which witnesses the fact that κ is jointly λ-C(n)-supercompact
and κ-superstrong, i.e., M transitive, cp(j) = κ, j(κ) > λ, λM ⊆ M ,
j(κ) ∈ C(n) and Vj(κ) ⊆M .

Recall that, by lemma 2.25, κ ∈ C(n+2). Thus, by elementarity, we have
that M |= j(κ) ∈ C(n+2) and M |= j(λ) ∈ C(n+2). Now note that, by the
closure of the target model, the restricted embedding j � Vλ : Vλ −→ VM

j(λ)

belongs to M and this witnesses the fact that

M |= “κ is < λ-C(n)-extendible".

Moreover, since j(κ) ∈ C(n), we have that Vj(κ) |= λ ∈ C(n+1) and so, since
Vj(κ) ⊆ M and M |= j(κ) ∈ C(n+2), we consequently get that M |= λ ∈
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C(n+1). It now follows that the ‘‘< λ-C(n)-extendibility" of κ in M , can be
verified inside Vλ, that is,

M |= Vλ |= “κ is C(n)-extendible".

Therefore, since Vλ ⊆ M , Vλ |= “κ is C(n)-extendible" and finally, since
λ ∈ C(n+2), we get that κ is indeed C(n)-extendible.

The case n = 0, connecting ordinary extendibility to joint supercompact-
ness and κ-superstrongness, is similar. One here starts with a λ ∈ C(3),
since the property of being extendible is Π3-expressible; then, one checks
that M |= λ ∈ C(2) and argues as above. �

We now immediately obtain the following characterization, for every natural
number n.

Corollary 2.31. A cardinal κ is C(n)-extendible if and only if it is jointly
C(n)-supercompact and κ-superstrong.

In particular, κ is jointly C(n)-supercompact and superstrong if and only if
it is jointly C(n)-supercompact and κ-superstrong. In other words, for the
global version, usual superstrongness of the supercompact embeddings is
equivalent to the apparently stronger λ-superstrongness, for λ > κ.

Before concluding this section, we momentarily return to the supercom-
pactness case. As the reader should have already noticed, the proof of
theorem 2.28 gives a way of describing supercompact embeddings using
ordinary (but long) extenders. Let us make this more precise here.

Corollary 2.32. Suppose that j : V −→ M is λ-supercompact for κ, for
some λ > κ. Let θ = iθ > λ with cof (θ) > κ and let E be the (κ, j(θ))-
extender derived from j. Then, the extender embedding jE : V −→ ME is
λ-supercompact for κ with jE(κ) = j(κ).

Proof. Fix λ > κ and j : V −→ M , a λ-supercompact embedding for κ. Let
θ = iθ > λ with cof(θ) > κ and let E be the (κ, j(θ))-extender derived from
j. Then, recalling the proof of theorem 2.28 one easily checks that a similar
idea goes through; namely, we consider the (in this case, full) third factor
embedding kE , arguing that kE � V

ME

jE(θ) = id and VME

jE(θ) = VM
j(θ) . Moreover,

for all α 6 θ, jE(α) = j(α) and also, since cof(j(θ)) > λ (computed in V ), we
get that jE“λ = j“λ ∈ VM

j(θ) and jE“λ ∈ME as well. To conclude, we show
closure under λ-sequences forME using the arguments of § 2.4, noting that
the assumption cof(θ) > κ implies that cof(j(θ)) > λ, which is exactly what
is needed for these arguments to work in the current setting. �

Observe once more that if j happens to have some degree of superstrong-
ness, then this is carried over to the extender embedding; e.g., in the above
proof as it stands, if j was also θ-superstrong, then the same would be
true for jE . Moreover, since the arising extender embedding is such that
jE(κ) = j(κ), the previous proof works for C(n)-supercompactness as well,
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i.e., if j : V −→ M witnessed the λ-C(n)-supercompactness of κ, then jE
would also be λ-C(n)-supercompact for κ.

3. Woodinness and strong compactness

We treat the C(n)-versions of Woodin and strongly compact cardinals to-
gether, for two reasons: firstly, they were not considered in [1] where the rest
of the C(n)-cardinals were introduced; but most importantly, because they
both admit similar constructions using iterated ultrapowers, completely
characterizing them in terms of their ordinary counterparts.

3.1. C(n)-Woodins. Recalling definition 1.5, we start by showing that C(n)-
Woodins form a large cardinal hierarchy of increasing strength.

Lemma 3.1. For n > 1, if δ is C(n+1)-Woodin then there are unboundedly
many C(n)-Woodins below δ. Hence, if δ is the least C(n)-Woodin then it is
not C(n+1)-Woodin.

Proof. Fix some n > 1 and suppose that δ is C(n+1)-Woodin. Fix some
α < δ and some f ∈ δδ with f“δ ∩ α = ∅, and let κ < δ and j : V −→ M
witness C(n+1)-Woodinness with respect to f , i.e., f“κ ⊆ κ, cp(j) = κ,
Vj(f)(κ) ⊆ M , j(δ) = δ and j(κ) ∈ C(n+1). Clearly, α < κ < j(κ) < δ and,
moreover, the following is a true Σn+1-statement in the parameter α:

∃ δ ′(δ ′ ∈ C(n) ∧ Vδ ′ |= “∃ some C(n)-Woodin above α”),

since it holds for any δ ′ ∈ C(n) above δ. Therefore, it must hold in Vj(κ).
But then, and since j(κ) ∈ C(n+1), any δ ′ < j(κ) which is a witness to
this statement has to be Σn-correct and, consequently, there exists some
C(n)-Woodin cardinal above α (and below δ). �

The reader has probably noticed that the case n = 0 is conspicuously
missing from this lemma. The following proposition explains why.

Proposition 3.2. If δ is Woodin then it is C(1)-Woodin.

Proof. Suppose that δ is Woodin and fix some function f ∈ δδ. We further fix
κ < δ with f“κ ⊆ κ and a (κ, β)-extender E ∈ Vδ (for some β < δ), such that
j = jE : V −→ ME has cp(j) = κ, β 6 j(κ) < δ, j(δ) = δ and Vj(f)(κ) ⊆
ME . Working in ME , since j(κ) is measurable, let U ∈ ME be a normal,
j(κ)-complete measure on j(κ) and let jU : ME −→ M be the ultrapower
embedding. Then, 2j(κ) < jU (j(κ)) <

(
2j(κ)

)+
< δ, where the last inequality

comes from j(κ) < δ = j(δ) and the fact that δ is inaccessible.
Now let α ∈ (jU (j(κ)), δ) be a true C(1)-cardinal above

(
2j(κ)

)ME (that is,
α ∈ C(1) in V ). Still working in ME , we now iterate the map jU α-many
times and let jα : ME −→ Mα

∼= Ult(ME ,Uα) be the resulting embedding.
By standard facts, we get that cp(jα) = j(κ), VME

j(κ) ⊆ Mα, jα(j(κ)) = α,
jα(δ) = δ and the iterates are well-founded, soMα is (taken to be) transitive.
We then let i = jα ◦ j : V −→ Mα be the composed elementary embedding



24 KONSTANTINOS TSAPROUNIS

with cp(i) = κ, i(κ) = jα(j(κ)) = α ∈ C(1) and i(δ) = δ. Let us see that
i indeed witnesses Woodinness for δ with respect to the given f . For this,
observe that i(f)(κ) = jα(j(f))(κ) = jα(j(f))(jα(κ)) = jα(j(f)(κ)). But
since j(f)(κ) < j(κ), we get that i(f)(κ) = j(f)(κ); therefore, Vi(f)(κ) ⊆Mα,
since VME

j(κ) ⊆Mβ, for all β 6 α along the iteration. �

By a straightforward modification of the previous proof, we immediately get
the following (schema).

Corollary 3.3. If δ is Woodin and δ ∈ Lim(C(n)), then δ is C(n)-Woodin.

This corollary provides us with a characterization of C(n)-Woodin cardinals.
In fact, we shall give several formulations of C(n)-Woodinness; before that,
though, one more definition is in order. As usual, n is a fixed natural
number.

Definition 3.4. Let κ be a cardinal, let λ > κ, and let A be any set. We
say that κ is λ-C(n)-strong for A if there exists an elementary embedding
j : V −→ M with M transitive, such that cp(j) = κ, λ < j(κ), Vλ ⊆ M ,
A ∩ Vλ = j(A) ∩ Vλ and j(κ) ∈ C(n).

The next theorem is based on Woodin’s original result (see § 26 in [7]).

Theorem 3.5. The following are equivalent:

(i) δ is a C(n)-Woodin cardinal.
(ii) δ is Woodin and δ ∈ Lim(C(n)).
(iii) For every A ⊆ Vδ, the set

S
(n)
A = {α < δ : α is γ-C(n)-strong for A, for every γ < δ}

is stationary in δ.
(iv) For every f ∈ δδ, there is a κ < δ with f“κ ⊆ κ and an extender

E ∈ Vδ, so that cp(jE) = κ, jE(f)(κ) = f(κ), Vf(κ) ⊆ ME and

jE(κ) ∈ C(n).

Proof. The equivalence of (i) and (ii) follows from corollary 3.3. Let us first
deal with the implication (i)=⇒(iii).

Suppose that δ is aC(n)-Woodin cardinal (for some fixed n) and letA ⊆ Vδ
be given. By Woodin’s theorem, we know that the set

SA = {α < δ : α is γ-strong for A, for every γ < δ}

is stationary in δ; we show that SA ⊆ S
(n)
A . So fix some α ∈ SA and some

γ < δ, and let j : V −→ M witness the γ-strongness for A of α, i.e.,
cp(j) = α, γ < j(α), Vγ ⊆M and A∩Vγ = j(A)∩Vγ . We may assume that
j(α) < δ = j(δ) because if not, we may derive some (α, |Vβ|+)-extender E
(for some sufficiently large β ∈ (γ, δ)) and work with jE in place of j.

We now use again an iterated ultrapower argument. Since δ ∈ Lim(C(n)),
let λ >

(
2j(α)

)M
with λ ∈ C(n) and –working in M– consider the ultrapower

map jλ : M −→ Mλ with cp(jλ) = j(α), jλ(j(α)) = λ, jλ(δ) = δ and with
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the iterates being well-founded, so Mλ is (taken to be) transitive. We then
let i = jλ ◦ j : V −→ Mλ be the composed elementary embedding with
cp(i) = α, γ < i(α) = λ ∈ C(n) and i(δ) = δ. Moreover, we have that
Vγ ⊆ Mλ because Vγ ⊆ VM

j(α) ⊆ Mλ. In order to check that this embedding
witnesses γ-C(n)-strongness for A, it remains to see that A∩Vγ = i(A)∩Vγ .
For this, we have the following equalities:

i(A) ∩ Vγ = jλ(j(A)) ∩ Vγ = jλ(j(A) ∩ Vγ) = jλ(A ∩ Vγ) = A ∩ Vγ ,

where jλ(Vγ) = Vγ because Vγ ∈ VM
j(α) and similarly for the last equality.

This concludes the proof of (i)=⇒(iii). Note that in this argument, given any
A ⊆ Vδ, any γ < δ and any α ∈ SA, the embedding i which witnesses the
γ-C(n)-strongness for A of α, can be taken to be an extender embedding
and with i(α) < δ = i(δ). Given that, the final implication (iii)=⇒(iv) is an
immediate consequence of the corresponding one in Woodin’s theorem. �

3.2. C(n)-strongly compacts. Recall that a cardinal κ is γ-compact, for
some γ > κ, if and only if there is an elementary embedding j : V −→ M
with M transitive, cp(j) = κ and such that, for any X ⊆ M with |X| 6 γ,
there is a Y ∈ M such that X ⊆ Y and M |= |Y | < j(κ) (see § 22 in [7]).
We now show that γ-compact cardinals are actually γ-C(n)-compact.

Theorem 3.6. Suppose that, for some γ > κ, κ is γ-compact. Then, κ is
γ-C(n)-compact.

Proof. We fix some (meta-theoretic) n and some γ > κ and we then let
j : V −→ M be an embedding witnessing the γ-compactness of κ. Clearly,
j(κ) > γ and j(κ) is measurable in M , so let U ∈ M be an M -normal
measure on j(κ). Fix some ordinal α ∈ C(n) such that cof(α) > γ and
α >

(
2j(κ)

)M
. We iterate the ultrapower construction inside M , starting

with U and repeating for α-many steps. Let jα : M −→Mα be the resulting
embedding with cp(jα) = j(κ), where Mα is (taken to be) transitive. Again,
by known facts, we have that jα(j(κ)) = α and we let h : V −→ Mα be the
composed elementary embedding, i.e., h = jα ◦ j, with cp(h) = κ and with
h(κ) = α ∈ C(n). We now check that h is γ-compact for κ.

Suppose that X ⊆ Mα, and assume that |X| = γ (in particular, γ is
a cardinal). By the representation of iterated utrapowers we may assume
that each z ∈ X is of the form jα(f)(κξ1 , . . . , κξm), where f : [j(κ)]m −→M
belongs to M and, for each 1 6 i 6 m, κξm belongs to the critical sequence
〈κξ : ξ < α〉 (where κ0 = j(κ)). Thus, X = {jα(fi)(~κi) : i < γ} where each
~κi is a finite tuple from the critical sequence. Now, since cof(α) > γ, there
exists some ordinal δ < α such that, for every i < γ, max(~κi) < κδ. Notice
that [κδ]

<ω ∈Mα and Mα |= |[κδ]<ω| < α.
Moreover, since {fi : i < γ} ⊆ M and j is γ-compact, there is some

Y0 ∈ M such that {fi : i < γ} ⊆ Y0 and M |= |Y0| < j(κ). It then follows
that {jα(fi) : i < γ} ⊆ jα(Y0) ∈ Mα and Mα |= |jα(Y0)| < α. Therefore,
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in Mα, we may use the set jα(Y0) and the set [κδ]
<ω in order to define the

desired Y that covers X. We let

Y = {g(~s) : ∃m ∈ ω(“g ∈ jα(Y0) is a function on [α]m ” ∧ ~s ∈ [κδ]
m)}.

We then have that Y ∈Mα, X ⊆ Y and Mα |= |Y | < α. �

From the previous theorem, we immediately get the following (schema).

Corollary 3.7. κ is strongly compact⇐⇒ κ is C(n)-strongly compact.

The obtained characterizations of C(n)-Woodin and C(n)-strongly com-
pact cardinals do not seem to leave much space for investigating further
these notions in their own right. On the other hand, for the rest of the
notions that we have considered, the relation between the various large
cardinals and their C(n)-versions has not been fully clarified. For instance:

Question 3.8. Given a C(n)-supercompact cardinal, can we force to ‘‘kill"
its C(n)-supercompactness while preserving its supercompactness?

Even for n = 1, it is unclear if this can be done. In addition, we may also
wonder if the usual indestructibility results apply to our new setting.

Question 3.9. Can the C(n)-supercompactness be made indestructible un-
der various classes of forcing notions?10

4. C(n)-cardinals and forcing

In this section, we briefly explore the interaction of C(n)-cardinals with the
forcing machinery. It will be convenient to work with flat pairing functions.11

We first give a folklore result regarding names constructed by such func-
tions.

Lemma 4.1 (Folklore). Let P be a poset with rank(P) = γ > ω, and suppose
that P-names are constructed using a flat pairing function. Then, for any
G ⊆ P-generic over V and for any α > γ · ω, we have that V [G]α = Vα[G].

Proof. Let f be a fixed flat pairing function; we build the universe V P recur-
sively, as follows. We initially let V P

0 = ∅. Given V P
α for some α ∈ ON, we

let V P
α+1 = V P

α ∪ P(V P
α × P), where we use f in order to compute (the pairs

in) the set V P
α × P. For limit λ, we let V P

λ =
⋃
α<λ

V P
α . Finally, the universe of

P-names is
V P =

⋃
α∈ON

V P
α .

10 This is hopeless in the case of (C(n)-) superstrong or extendible cardinals; recent
results show that such cardinals (among others) are never Laver indestructible; see [2].

11 Such a function f plays the rôle of the Kuratowski pairing, with the additional property
that for infinite α, if x, y ∈ Vα then the pair computed by f belongs to Vα; that is, unlike
the Kuratowski pair, f does not increase the rank, except for the finite case.



ELEMENTARY CHAINS AND C(n)-CARDINALS 27

An easy induction shows that, for every ordinal α, V P
α ⊆ Vγ+α. Now fix any

G ⊆ P-generic over V . Another inductive argument shows that, for every
α ∈ ON, V P

α [G] = V [G]α. Then, combining the two conclusions, for every
ordinal α, V [G]α ⊆ Vγ+α[G] and the lemma follows. �

Let α ∈ C(n), for some n > 1; suppose that P ∈ Vα is a poset, fix some
Σn-formula ϕ and let p ∈ P. Then, the statement ‘‘p 
 ϕ" is Σn-expressible
using P as a parameter, in Vα.12

Lemma 4.2. Let P be a forcing notion and κ a cardinal.

(i) Suppose that |P| < κ and κ ∈ C(n), for some n > 1. Then, we have
that P 
 κ̌ ∈ C(n).

(ii) Suppose that P does not change Vκ. Then, P 
 κ̌ ∈ C(1) if and only if
κ ∈ C(1).

(iii) Suppose that P does not change Vκ and κ ∈ C(2). Then, for every
λ < κ, if P 
 λ̌ ∈ C(2) then λ ∈ C(2).

Proof. For (i), we may assume that rank(P) = γ < κ and that a flat pairing
function has been used to construct the P-names. Let G be P-generic over
V ; by lemma 4.1, we have that Vκ[G] = V [G]κ.

Fix some n > 1, some Πn−1-formula φ(y, v1, . . . , vk) and some P-names
ẋ1, . . . , ẋk, such that V [G] |= ∃ yφ(y, (ẋ1)G, . . . , (ẋk)G), where (ẋi)G ∈ V [G]κ
for each 1 6 i 6 k. Then, there is p ∈ G such that “p 
 ∃ yφ(y, ẋ1, . . . , ẋk)”
holds. Since Vκ[G] = V [G]κ, all the ẋi’s may be assumed to belong to Vκ.
Therefore, as κ ∈ C(n), we get that Vκ |= “p 
 ∃ yφ(y, ẋ1, . . . , ẋk)” and then,
since P ∈ Vκ,

Vκ[G] |= ∃ yφ(y, (ẋ1)G, . . . , (ẋk)G).

The same argument going backwards, shows that if Vκ[G] = V [G]κ satisfies
a Σn-formula then the same is true for V [G].

For (ii), we recall that membership in C(1) is Π1-expressible and hence,
the forward implication is true anyway. For the converse, assume that
κ ∈ C(1), i.e., κ is an uncountable (strong limit) cardinal such that Vκ = Hκ.
But if Vκ = V [G]κ, it easily follows that (Vκ)V [G] = (Hκ)V [G]. Moreover, κ
remains uncountable in V [G] and thus, V [G] |= κ ∈ C(1).

For (iii), suppose that κ ∈ C(2) and that P does not change Vκ. Fix
G ⊆ P-generic over V and fix some λ < κ so that V [G] |= λ ∈ C(2). By
part (ii), λ ∈ C(1) and V [G] |= κ ∈ C(1). Now let ψ be a Σ2-formula, whose
parameter, if any, belongs to Vλ, and suppose that ψ holds in V . Then,
V [G]κ = Vκ |= ψ and so, since κ is C(1) in the extension, V [G] |= ψ. Going
downwards, we now get V [G]λ |= ψ by the correctness of λ in V [G] and,
then, Vλ |= ψ by assumption on P. �

12 This fact requires that our model satisfies (Kripke–Platek and) Σn-collection along with
Σn-separation. But this is true of the model Vα whenever α ∈ C(n), for n > 1.
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For n > 1, the lack of a (local) ‘‘combinatorial" characterization of mem-
bership in the class C(n) is a serious obstacle in showing the converse of
(i), or of generalizing (ii) of lemma 4.2. Note that (iii) is only a partial result
in this direction. The converse of (iii) does not necessarily hold since the
following situation is consistent.

Relative to assumptions at the level of hyper-measurability, it is consis-
tent that GCH holds at successor cardinals but fails at limits.13 Suppose
we are in such a model V and consider any κ ∈ C(2). Now force the GCH

at κ by the canonical poset to add one subset to κ+. This does not change
Vκ. Then, κ and, in fact, all cardinals below it which were Σ2-correct in V ,
are no longer Σ2-correct in the extension, although all C(1)’s below κ are
preserved.

Let us finally turn to the preservation of (some of) the C(n)-large cardinals
considered so far, under appropriate forcings.

Lemma 4.3. Suppose that κ is C(n)-tall (superstrong, supercompact, ex-
tendible), for some n > 1, and let P be a poset with |P| < κ. Then, κ remains
C(n)-tall (resp. superstrong, supercompact, extendible) in V P.

Proof. Assume that P ∈ Vκ and consider the case of supercompactness.
Fix an n > 1 and a (cardinal) λ > κ and let j : V −→ M witness the
λ-C(n)-supercompactness of κ in V . We let G be P-generic over V and,
by standard arguments, the embedding lifts to j : V [G] −→ M [G] with
V [G] |= λM [G] ⊆ M [G]. Moreover, by lemma 4.2(i), V [G] |= j(κ) ∈ C(n)

and hence κ remains λ-C(n)-supercompact in the extension. For tallness,
the argument is essentially the same. For superstrongness, considering
again a flat pairing function, we have that V [G]j(κ) = Vj(κ)[G] and hence,
V [G]j(κ) ⊆M [G] by virtue of Vj(κ) ⊆M ⊆M [G].

Finally, by corollary 2.31, extendibility is a straightforward combination
of the cases of supercompactness and superstrongness. �

We now consider preservation of C(n)-tall and C(n)-supercompact cardi-
nals under sufficiently distributive forcing notions.

Lemma 4.4. Suppose that κ isC(n)-tall and let P be a6κ-distributive forcing.
Then, κ remains C(n)-tall in V P.

Proof. Fix any λ > max {κ, |P|} and let j : V −→ M = {j(f)(x) : f ∈ V, f :

Vκ −→ V, x ∈ VM
j(κ)} be a λ-C(n)-tallnness embedding for κ. By standard

facts, j lifts through any6κ-distributive forcing (see, e.g., § 15 in [4]). Thus,
and using lemma 4.2, κ remains λ-C(n)-tall in the extension. �

Lemma 4.5. Suppose that κ is C(n)-supercompact and supppose that P is
a 6 λ<κ-distributive forcing, for some (cardinal) λ > κ. Then, κ remains
λ-C(n)-supercompact in V P.

13 More precisely, given a P3(λ)-hyper-measurable cardinal λ, there is a model of ZFC in
which 2α = α++ for every limit cardinal α, whereas GCH holds everywhere else; see [3].
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Proof. Fix some n and some θ > max {λ, |P|} and let j : V −→ M witness
the θ-C(n)-supercompactness of κ. Now consider the substructure

X0 = {j(f)(j“λ, x) : f ∈ V, f : Pκλ× Vκ −→ V, x ∈ VM
j(κ)} ≺M,

which gives rise to a (not necessarily initial) factor λ-supercompact embed-
ding j0 : V −→ M0, via the Mostowski collapse π0 : X0

∼= M0 as usual.
Since j0(κ) = j(κ), j0 is moreover λ-C(n)-supercompact for κ.

Let G be P-generic over V . Again, using the representation of M0 and
the distributivity of P, standard arguments show that j0 lifts through the
forcing, witnessing the θ-C(n)-supercompactness of κ in V [G]. �

We conclude with a (somewhat informal) question.

Question 4.6. Suppose that κ is C(n)-extendible. Under what types of
forcing notions is the (local or global) C(n)-extendibility of κ preserved? For
instance, can we force the GCH while preserving such cardinals?14
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