
ON EXTENDIBLE CARDINALS AND THE GCH

KONSTANTINOS TSAPROUNIS

Abstract. We give a characterization of extendibility in terms of
embeddings between the structures Hλ. By that means, we show
that the GCH can be forced (by a class forcing) while preserving
extendible cardinals. As a corollary, we argue that such cardinals
cannot in general be made indestructible by (set) forcing, under a
wide variety of forcing notions.

1. Introduction

In 1978, Richard Laver established a landmark result: he showed
that the supercompactness of a cardinal κ can be made indestructible
under <κ-directed closed forcing (cf. [15]). For this, he introduced a
new kind of partial function on the cardinal κ; such a function is now
called a Laver function. Subsequently, a vast area of applications has
emerged, both extending the concept of a Laver function and, at the
same time, producing a variety of indestructibility results.

Indeed, Laver functions are an extremely versatile and fruitful tool
in the context of large cardinals and they have enjoyed several gen-
eralizations. For example, Corazza has shown the existence of Laver
sequences for extendible, super–almost huge, superhuge cardinals,
and more (cf. [4]), while Hamkins has introduced the lottery prepa-
ration (cf. [10]) and has also considered a variety of Laver principles
(cf. [11]).

Focusing on the case of extendibility, a natural question, then,
is whether extendible cardinals can be made indestructible under
appropriate classes of forcing notions. In this note, we argue that
such indestructibility results are impossible in general. We actually
show that this ‘‘deficit" of extendible cardinals applies to any Σ3-
correct cardinal and to a wide range of forcing notions, with the case
of <κ-directed closed posets serving as our motivational example.
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We expose this deficit by appealing to the fact that, using Σ3-
statements, we are able to express uniformity in set–theoretic prop-
erties which are easily changed by a wide range of forcing notions.
Our main example naturally comes from considerations regarding
the GCH pattern, although one could very well consider other known
set–theoretic principles. As an indication of what to expect, we might
already observe the following.

Proposition 1.1. Suppose that eventual GCH holds and that κ is Σ3-
correct in the universe. Then, for any λ > κ, the forcing Add(λ, λ++)
destroys the Σ2-correctness of κ.

Proof. Note that the sentence ‘‘there exists some α such that, for all
β > α, 2β = β+" is Σ3 and clearly true in V , by the eventual GCH

assumption. Hence it must reflect in Vκ, so fix some α < κ such that
GCH holds above α in the structure Vκ. But now it is clear that, for
any λ > κ, after forcing with the canonical poset P = Add(λ, λ++), we
make GCH fail at λ while preserving all of Vκ (and so, in particular,
the GCH pattern below κ as well). Hence, in V P, κ cannot be Σ2-
correct, since the Σ2-statement ‘‘there exists λ > α such that GCH

fails at λ" does not reflect correctly below κ. �

We shall show in Section 2 that, in the case of extendible cardinals,
one can actually force the global GCH while preserving such cardi-
nals. The preservation of large cardinals after forcing the GCH is by
now part of the set–theoretic folklore: Jensen initially showed that
measurables are preserved (cf. [13]), while Menas did it for super-
compacts (cf. [16]). Hamkins then followed, dealing with I1 embed-
dings (cf. [9]), and Friedman accounted for n-superstrong cardinals
(cf. [7]). More recently, similar preservation results were obtained by
Brooke–Taylor and Friedman for 1–extendible cardinals (cf. [3]), and
by Brooke–Taylor for Vopěnka’s Principle (cf. [2]).

Here, we extend the above results to include the case of extendibil-
ity. To that end, we first obtain a characterization of extendible cardi-
nals in terms of embeddings between theHλ’s, and we then show that
the canonical (class–length) iteration forcing the global GCH indeed
preserves extendible cardinals. Let us begin.

1.1. Preliminaries. Our notation and terminology is mostly stan-
dard1. ZFC stands for the usual first–order axiomatization of Zermelo–
Fraenkel set theory, together with the Axiom of Choice; we write

1See [12] for an account of all undefined set–theoretic notions.
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ZFC− to indicate the absence of the Powerset Axiom2. For any set X,
trcl(X) is its transitive closure and |X| is its cardinality.

The class of ordinal numbers will be denoted by ON. Lower case
Greek letters stand for ordinals, with the letters κ, λ and µ typically
used in the case of infinite cardinals. iα stands for the αth beth
number. If λ is an infinite cardinal, we let Hλ be the collection of all
sets whose transitive closure has size less than λ. Ordinal intervals
are readily comprehensible; for instance, given α < β, (α, β) is the
set of ordinals which lie strictly between α and β.

Given any function f and any S ⊆ dom(f), we write f � S for
the restriction of the function to S and also, we write f“S for the
pointwise image, that is, the collection {f(x) : x ∈ S}. Moreover, we
write ran(f) for the range of f .

Partial orders (a.k.a. posets) which are employed in forcing con-
structions will be denoted by blackboard bold capital letters such
as P and Q. We write p < q to mean than p is stronger than q or,
equivalently, p properly extends q. We denote the greatest element
of a poset by 1. Given a poset P, the P-names are indicated by
‘‘dots" and ‘‘checks" as usual; we sometimes supress these in order
to ease readability, with the intended meaning being clear from the
context. The universe of P-names will be denoted by V P. If ẋ is a
P-name and G is a P-generic filter (over the relevant model), then ẋG
denotes the interpretation of the name by the filter. Our terminology
on chain conditions and closed posets is mostly standard. We are
explicit regarding the extent of closure of a given P by writing, for ex-
ample, ‘‘6κ-directed closed" to mean that we may find lower bounds
of directed subsets whose cardinality is at most κ.

For any elementary embedding j, we denote by cp(j) its critical
point. As far as lifting embeddings through forcing posets is con-
cerned, we have the following important criterion due to Jack Silver.

Lemma 1.2. Suppose that j : V −→ M is an elementary embedding
with M transitive. Let P ∈ V be a poset, let G be P-generic over V
and let H be j(P)-generic over M . Then, j lifts (uniquely) through P
to j∗ : V [G] −→ M [H] ( that is, j∗ is an elementary embedding with
j∗ � V = j and j∗(G) = H ) if and only if j“G ⊆ H. �

We follow the common convention and use the same letter j for the
lifted version of the embedding. In practice, we often ensure that
‘‘j“G ⊆ H" is satisfied by exhibiting a particular condition q ∈ H

2See [8] for some nuances related to the theory ZFC−.
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which is a lower bound for j“G; that is, such that for every p ∈ G, we
have that q 6 j(p). Such a condition q is called a master condition.

Given a regular cardinal κ and some λ, Add(κ, λ) is the poset con-
sisting of partial functions p : λ× κ −→ 2 where |p| < κ; the ordering
is given by reversed inclusion. This poset is <κ-directed closed and
(2<κ)+-c.c. A special case is the poset Add(κ, 1) which adds one Co-
hen subset to κ via partial functions p : κ −→ 2 of size less than κ. If
κ = λ+, then Add(κ, 1) forces the GCH at λ, that is, 2λ = λ+ holds in
any generic extension.

A poset P is called weakly homogeneous if for every p, q ∈ P there is
an automorphism σp,q : P −→ P such that σ(p) and q are compatible.
It is basic that, for any cardinals κ and λ, the poset Add(κ, λ) is
weakly homogeneous.

We will be interested in class–length forcing iterations, although at
any particular stage of our arguments we will be employing standard
set forcing techniques. We refer the reader to [1] or to [3] for more de-
tails on the particular well–known iteration of the GCH posets which
we shall invoke in Section 2.

1.2. Characterizing extendibility. Recall that a cardinal κ is called
λ-extendible, for some λ > κ, if there exists a θ and an elementary
embedding j : Vλ −→ Vθ such that cp(j) = κ and j(κ) > λ. We
now use ordinary coding techniques and look at extendibility from
the perspective of the Hλ’s.

Proposition 1.3. Let κ be a cardinal and let λ = iλ > κ. Then, κ is
λ+ 1-extendible if and only if there is a cardinal µ and an elementary
embedding j : Hλ+ −→ Hµ+ with cp(j) = κ and j(κ) > λ+ 1.

Proof. Suppose that κ is λ+ 1-extendible, for some fixed iλ = λ > κ,
and let h : Vλ+1 −→ Vh(λ)+1 be a witnessing elementary embedding,
with cp(h) = κ and h(κ) > λ + 1. Let µ = h(λ), which is clearly a
cardinal. We shall use h in order to define an elementary embedding
j : Hλ+ −→ Hµ+, such that cp(j) = κ and j � (λ+ 1) = h � (λ+ 1).

For this, we describe any given set in Hλ+ by an appropriate code
which lies in Vλ+1; this is a standard coding argument which we
include for completeness. Let x ∈ Hλ+ and fix some (any) bĳection
fx : |trcl({x})| −→ trcl({x}). Consider the binary relation Ex on
dom(fx) which is defined so that, for any α, β ∈ dom(fx),

〈α, β〉 ∈ Ex ⇐⇒ fx(α) ∈ fx(β).

Notice that, since dom(fx) is some cardinal 6 λ, we have that Ex ∈
Vλ+1 and moreover, if 〈Tx,∈〉 is the Mostowski collapse of 〈dom(fx), Ex〉,
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it then follows that Tx ∼= trcl({x}) and, thus, Tx = trcl({x}). Clearly,
one may easily recover the set x from Tx.

This procedure gives a way of coding sets x ∈ Hλ+ by corresponding
sets Ex ∈ Vλ+1. Thus we may define, inside Vλ+1, the class Cλ ⊆
Vλ+1 such that X ∈ Cλ if and only if X ⊆ λ × λ is a well–founded,
extensional (binary) relation such that, if X 6= ∅, then X has a
unique maximal element.

Now, for any X ∈ Cλ, let fld(X) denote the field of X, that is, the
union of the domain and the range of X and, moreover, let max(X)
denote the unique ordinal in fld(X) which is maximal with respect to
the relation X. Next, for any X and Y in Cλ, define the relation ‘‘=∗"
by declaring that X =∗ Y if and only if the structures 〈fld(X), X〉
and 〈fld(Y ), Y 〉 are isomorphic. For any X ∈ Cλ and any a ∈ fld(X),
we let Xa =

⋃
n∈ω

An where A0 = {〈x, a〉 ∈ X : x ∈ fld(X)} and An+1 =

{〈x, z〉 ∈ X : z ∈ dom(An)}. Now define the relation ‘‘∈∗" on Cλ by
stipulating that X ∈∗ Y if and only if there exists some a ∈ fld(Y )
such that 〈a,max(Y )〉 ∈ Y and X =∗ Ya. Clearly, the relations
‘‘=∗" and ‘‘∈∗" are definable in Vλ+1. For any X ∈ Cλ, we denote its
Mostowski collapsing function by πX , which gives rise to the collapse
ran(πX). One easily checks that, for any X and Y in Cλ,

X =∗ Y ⇐⇒ ran(πX) = ran(πY )

and
X ∈∗ Y ⇐⇒ πX(max(X)) ∈ πY (max(Y )),

where, if X = ∅, we let max(X) = πX(max(X)) = ∅.
All of the above makes us capable of translating any first–order

formula ϕ whose parameters range over Hλ+, into an equivalent for-
mula ϕ∗ whose parameters range over Vλ+1: we replace any x ∈ Hλ+

by a corresponding code Ex ∈ Cλ for it; we replace the standard set–
theoretic relations ‘‘=" and ‘‘∈" by the definable relations ‘‘=∗" and
‘‘∈∗" respectively; finally, quantification is taken to range over Cλ.
That is, for any first–order formula ϕ(v1, . . . , vn) and any xi ∈ Hλ+,
for 1 6 i 6 n, we have that

Hλ+ |= ϕ(x1, . . . , xn)⇐⇒ Vλ+1 |= ϕ∗(Ex1 , . . . , Exn),

for some (any) codes Exi, for 1 6 i 6 n. It is also clear that all
the above can be done equally well for µ in place of λ. Abusing the
notation slightly, we again call ϕ∗ this translation, keeping in mind
that the quantification now ranges over the class Cµ as defined in
Vµ+1. At this point, by the elementarity of h, for any X, Y ∈ Cλ, we
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have that

Vλ+1 |= X =∗ Y ⇐⇒ Vµ+1 |= h(X) =∗ h(Y )

and

Vλ+1 |= X ∈∗ Y ⇐⇒ Vµ+1 |= h(X) ∈∗ h(Y ).

Then, inductively, for any formula ϕ(v1, . . . , vn) and given any Xi ∈
Cλ, for 1 6 i 6 n, we have that Vλ+1 |= ϕ∗(X1, . . . , Xn) if and only if
Vµ+1 |= ϕ∗(h(X1), . . . , h(Xn)). We are now in position to define the
map j : Hλ+ −→ Hµ+ by letting, for every x ∈ Hλ+,

j(x) = πh(Ex)(max(h(Ex))),

for some (any) bĳection fx : |trcl({x})| −→ trcl({x}), giving rise to
the code Ex. We evidently have that j � (λ + 1) = h � (λ + 1). Let
us finally check that j is an elementary embedding. For this, fix any
formula ϕ(v1, . . . , vn), any xi ∈ Hλ+ and any corresponding codes
Exi ∈ Vλ+1, for 1 6 i 6 n. We have the following equivalences:

Hλ+ |= ϕ(x1, . . . , xn) ⇐⇒ Vλ+1 |= ϕ∗(Ex1 , . . . , Exn)
⇐⇒ Vµ+1 |= ϕ∗(h(Ex1), . . . , h(Exn))
⇐⇒ Hµ+ |= ϕ(j(x1), . . . , j(xn)),

which conclude the proof of the forward direction of the proposition.
Conversely, suppose that for some λ = iλ > κ and some cardinal

µ, we have an elementary embedding j : Hλ+ −→ Hµ+ with cp(j) = κ
and j(κ) > λ+1. Clearly, j(λ) = µ. Furthermore, as λ is a beth fixed
point, Vλ+1 is a definable class in Hλ+, namely,

Vλ+1 = {x ∈ Hλ+ : x ⊆ Hλ}.

This means that we may relativize any first–order formula to Vλ+1,
within Hλ+. Of course, the analogous facts are true for Vµ+1 and Hµ+

correspondingly. Using these observations, one easily verifies that
the restriction j � Vλ+1 : Vλ+1 −→ Vµ+1 is an elementary embedding
witnessing the λ+ 1-extendibility of κ. �

As an immediate corollary, we get the following characterization of
extendibility in terms of the Hλ’s.

Corollary 1.4. A cardinal κ is extendible if and only if for all λ =
iλ > κ, there exists some cardinal µ and an elementary embedding
j : Hλ+ −→ Hµ+ with cp(j) = κ and j(κ) > λ+ 1. �
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2. Forcing the GCH

We now use the characterization just obtained in order to show that
the global GCH can be forced while preserving extendible cardinals.
The following is a well–known definition.

Definition 2.1. The canonical forcing P for the global GCH is the
class–length reverse Easton iteration of 〈Q̇α : α ∈ ON〉, where P0 =

{1} and, for each α, if α is an infinite cardinal in V Pα, then Q̇α is
the canonical Pα-name for the poset Add(α+, 1)V

Pα . Finally, P is the
direct limit of the Pα’s, for α ∈ ON.

The iteration P preserves ZFC, preserves inaccessible cardinals and
forces the GCH everywhere. Moreover, at any inaccessible cardinal
α, the iteration factors nicely as Pα ∗ Ptail, where |Pα| = α and Ptail is
(forced to be) 6 α-directed closed. It is also known that the (weak)
homogeneity of the individual Add(α+, 1)V

Pα forcings, holds as well
for the whole, class–length iteration and any initial segment of it (see
[5] for details). We are now ready to prove the following.

Theorem 2.2. Every extendible cardinal is preserved by the canonical
forcing P for the global GCH.

Proof. In the context of the earlier results which were mentioned right
after Proposition 1.1, the present proof is just an application of stan-
dard techniques. In particular, we use very similar arguments to the
ones appearing in [3] regarding the case of 1-extendibility. As it will
become clear below, the key point in the current setting is the appeal
to [5] for the homogeneity property. At the outset, we also recall that
extendibility implies the existence of a proper class of inaccessible
cardinals.

Fix an extendible cardinal κ and fix an inaccessible λ > κ. By
the results of the previous section, let j : Hλ+ −→ Hj(λ)+ be an
embedding witnessing the λ+1-extendibility of κ in V ; that is, cp(j) =
κ, j(κ) > λ+ 1 and j(λ) inaccessible.

Let G be P-generic over V ; it is our aim to lift this ground model
embedding j to an embedding of the form j : H

V [G]

λ+ −→ H
V [G]

j(λ)+, wit-
nessing the λ + 1-extendibility of κ in V [G], which will be enough in
order to conclude the theorem. For this, we factor the whole forcing
iteration as

Pκ ∗ Ṗ[κ,λ) ∗ Ṗ[λ,∞),

where, for example, Ṗ[κ,λ) is the (Pκ-name for the) partial iteration
of forcings which occur at stages between κ and λ; similar interval
notation in the subscripts is used for the corresponding projections
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of G, which are generics for the relevant partial iterations of P. We
will lift the ground model embedding in two steps, according to the
above factorization.

As our first step, we lift through the initial forcing Pκ, where we
observe that Pκ ∈ Hκ+ and thus, Gκ is certainly Pκ-generic over Hλ+.
Accordingly, the partial filter Gj(κ) is Pj(κ)-generic over Hj(λ)+, where
Pj(κ) = j(Pκ) ∈ Hj(λ)+. Since the forcing Pκ is a direct limit and
cp(j) = κ, we have that j“Gκ = Gκ ⊆ Gj(κ) and hence we may indeed
perform the first lift of the embedding as

j : Hλ+ [Gκ] −→ Hj(λ)+ [Gj(κ)].

For the second step, it is our aim to lift further through the forcing
P[κ,λ) = (Ṗ[κ,λ))Gκ. This makes sense since |Ṗ[κ,λ)| = λ and thus,
P[κ,λ) ∈ Hλ+ [Gκ]. Now, it is clear that G[κ,λ) is P[κ,λ)-generic over
Hλ+ [Gκ]. Similarly, since P[j(κ),j(λ)) = j(P[κ,λ)), G[j(κ),j(λ)) is P[j(κ),j(λ))-
generic over Hj(λ)+ [Gj(κ)]. Thus, the only problem is to verify the
lifting criterion j“G[κ,λ) ⊆ G[j(κ),j(λ)). For this, we first find a relevant
master condition.

Recall that P[κ,λ) has size λ in Hλ+ [Gκ] (and so in Hj(λ)+ [Gj(κ)] as
well) an also, we clearly have that j“λ ∈ Hj(λ)+ [Gj(κ)]. Note also
that G[κ,λ) appears explicitly in the partial filter Gj(κ). Therefore, we
may combine j“λ with some enumeration of P[κ,λ) in order to get that
j � P[κ,λ) ∈ Hj(λ)+ [Gj(κ)]; thus, j“G[κ,λ) ∈ Hj(λ)+ [Gj(κ)] as well (and has
size λ there). Now, since j“G[κ,λ) is a directed subset of P[j(κ),j(λ)) and
the latter is 6 j(κ)-directed closed in Hj(λ)+ [Gj(κ)], there is indeed
a lower bound for j“G[κ,λ), that is, there exists some r ∈ P[j(κ),j(λ))

such that r 6 j“G[κ,λ); this is the desired master condition. Note that
there is no reason to expect that r ∈ G[j(κ),j(λ)). We now modify the
filter G[j(κ),j(λ)) in order to produce an appropriate filter G∗ which is
P[j(κ),j(λ))-generic over Hj(λ)+ [Gj(κ)] and such that r ∈ G∗.

Working for the moment in the model Hj(λ)+ [Gj(κ)], since P[j(κ),j(λ))

is weakly homogeneous, the set of conditions t for which there is
some automorphism e : P[j(κ),j(λ)) −→ P[j(κ),j(λ)) such that e(t) 6 r
is dense. Since G[j(κ),j(λ)) is generic, we may find such a condition
t ∈ G[j(κ),j(λ)). Note that this condition t cannot be found work-
ing in Hj(λ)+ [Gj(κ)], because we are appealing to the further generic
filter G[j(κ),j(λ)); even so, it indeed exists and it certainly belongs
to Hj(λ)+ [Gj(κ)], together with the corresponding automorphism e.
Then, by standard forcing facts (cf. Chapter VII, Theorem 7.11 in
[14]) it follows that, if we let G∗ be the filter generated by the point-
wise image e“G[j(κ),j(λ)), thenG∗ is P[j(κ),j(λ))-generic overHj(λ)+ [Gj(κ)]
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with r ∈ G∗ and moreover,

Hj(λ)+ [Gj(λ)] = Hj(λ)+ [Gj(κ)][G
∗].

We may thus conclude the second lift of the embedding, obtaining

j : Hλ+ [Gκ][G[κ,λ)] −→ Hj(λ)+ [Gj(κ)][G
∗],

or, equivalently,

j : Hλ+ [Gλ] −→ Hj(λ)+ [Gj(λ)].

As the final part of the argument, we show that the currently lifted
embedding is sufficient in order to witness the λ + 1-extendibility of
κ in V [G]. For this, we argue that, in fact,

H
V [G]

λ+ = H
V [Gλ]

λ+ = Hλ+ [Gλ].

First, notice that the iteration Ṗ[λ,∞) is forced to be 6 λ-directed
closed and so it does not affect Hλ+; that is, HV [G]

λ+ = H
V [Gλ]

λ+ . Let us
now check that HV [Gλ]

λ+ = Hλ+ [Gλ] as well. We remark that the latter
structure, being a generic extension of the ZFC− model Hλ+ by the
generic filter Gλ, is also a ZFC− model. As the right–to–left inclusion
is clear, we fix any element X ∈ H

V [Gλ]

λ+ and we want to find an
appropriate Pλ-name witnessing thatX ∈ Hλ+ [Gλ]. But then, exactly
as in the proof of Proposition 1.3, X can be obtained in V [Gλ] by the
Mostowski collapse of some appropriate code subset of λ× λ (where
recall that the whole process did not use the Powerset Axiom). Since
all subsets of λ × λ in V [Gλ] have nice names which lie in Hλ+, we
get that all such codes belong to Hλ+ [Gλ]. Therefore, X ∈ Hλ+ [Gλ].
In a totally analogous manner, HV [G]

j(λ)+ = Hj(λ)+ [Gj(λ)] as well; hence,

the lifted embedding is indeed of the form j : H
V [G]

λ+ −→ H
V [G]

j(λ)+ and
the proof is complete. �

We now return to the issue of indestructibility and argue that ex-
tendible cardinals do not in general enjoy such niceties. In this set-
ting, we temporarily fix a broad ambient class of posets. Let us de-
clare that a property R of posets is cofinally sympathetic to non–GCH,
if for all β there exists some (cardinal) α > β such that the canonical
poset Add(α, α++) (which kills the GCH at α) satisfies R.

Typical examples are intended to be the various closure properties,
such as being κ-directed closed, for some regular cardinal κ; all these
are certainly cofinally sympathetic to non–GCH. On the other hand,
chain conditions are not of this sort, as we cannot expect them to
hold cofinally in the ordinals. Similarly to Proposition 1.1, we have
the following.
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Proposition 2.3. Let R be any property of posets which is cofinally
sympathetic to non–GCH, let κ be extendible and suppose that the GCH

holds. Then, no (set) forcing which preserves the Σ3-correctness of κ
can make its Σ2-correctness indestructible under posets satisfying R.

Proof. Fix some property R which is cofinally sympathetic to non–
GCH and assume, towards a contradiction, that there is a (set) forcing
notion P which preserves the Σ3-correctness of κ and makes its Σ2-
correctness indestructible under R.

We perform the purported forcing P and we get a model V in which
κ is –allegedly– an indestructible Σ2-correct cardinal. Since P is a
set, the eventual GCH pattern of the universe is not altered; thus, as
P preserves the Σ3-correctness κ, there exists some β < κ so that,
for every α ∈ (β, κ), we have that 2α = α+.

Let γ > κ be such that Q = Add(γ, γ++) satisfies propertyR. Then,
forcing with Q preserves the whole of Vκ, and hence the GCH pattern
below κ, while at the same time it kills the GCH at γ. This means
that the Σ2-statement ‘‘there exists some α > β such that GCH fails
at α" is not reflected correctly in (Vκ)

V Q. This is a contradiction. �

As a corollary it follows that, not only can we not make (in general)
an extendible cardinal κ indestructible, but also, forcing the global
GCH makes it extremely ‘‘destructible": any poset killing GCH above
κ kills many of its large cardinal properties (e.g. κ can no longer be
supercompact or strong, as it is not even Σ2-correct). In addition,
the same argument shows that any poset killing GCH above κ kills
the Σ2-correctness on a tail of Σ2-correct cardinals below κ as well.

Note that, although we focus on extendibility, we could have stated
Proposition 2.3 by requiring that κ is Σ3-correct in the universe and
that eventual GCH holds; in such a case, similar observations would
apply.

The following question remains unanswered.

Question 2.4. Can the extendibility of κ be made indestructible to
suitable set forcings by some preparatory class forcing?

By what we have shown, in the event of a positive answer such a
class forcing would necessarily have to make the GCH fail cofinally in
the ordinals. As a related comment, we mention that, recently and in
the context of HOD-supercompactness, Shoshana Friedman found a
way to circumvent the class forcing for the GCH (cf. [6]), although her
technique does not seem to apply to our situation. We nevertheless
thank the referee for bringing [6] to our attention.
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Towards concluding, we give two other ways of killing the ex-
tendibility of a cardinal κ, while preserving its inaccessibility. In
the present setting, the following examples hopefully do some (par-
tial) justice to chain conditions, which were neglected by properties
that are cofinally sympathetic to non–GCH.

On the one hand, we assume that the global GCH holds and we
then perform an Easton forcing to kill the GCH at every regular car-
dinal below κ; such a forcing preserves cofinalities and, since κ is
Mahlo, it is also κ-c.c. (see Chapter VIII, § 4 in [14]). In the resulting
model, the GCH fails at every regular below κ while it continues to
hold everywhere above it. Consequently, κ cannot remain Σ2-correct
since the statement ‘‘the GCH holds at some regular α" is not reflected
correctly.

On the other hand, we may kill the extendibility of κ this time
preserving its supercompactness and, thus, its Σ2-correctness (con-
trary to the previous examples). We again assume that the global
GCH holds in V and we in fact make κ an indestructible supercom-
pact cardinal by the usual Laver preparation P (alternatively, one
may use the lottery preparation; see [10]). Then, in V P, κ cannot be
Σ3-correct anymore since the GCH fails cofinally below κ, whereas it
continues to hold everywhere above it.
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