
ULTRAHUGE CARDINALS

KONSTANTINOS TSAPROUNIS

Abstract. In this note, we start with the notion of a superhuge cardinal and
strengthen it by requiring that the elementary embeddings witnessing this property
are, in addition, sufficiently superstrong above their target j(κ). This modification
leads to a new large cardinal which we call ultrahuge. Subsequently, we study
the placement of ultrahugeness in the usual large cardinal hierarchy, while at
the same time show that some standard techniques apply nicely in the context of
ultrahuge cardinals as well.

1. Introduction

Superhuge cardinals (and their relatives) were introduced by Barbanel, Di Prisco,
and Tan in 1984 (cf. [4]) and are placed near the highest layers of the large cardinal
hierarchy, just below the so-called rank-into-rank cardinals which are the strongest
axioms of infinity not known to be inconsistent with ZFC set theory.

During the years, large cardinals at the level of (super)hugeness have found
several applications in various contexts. Recently, Viale has used superhuge car-
dinals in order to deduce the consistency of the forcing axiom MM+++ which he
introduced, and which implies a strong form of generic absoluteness (see [21]).
Moreover, Viale has underlined the connection between his work and the axioms
of unbounded resurrection which were introduced by the author in [19].

In our earlier study of the unbounded resurrection axioms, the central large
cardinal notion which was employed was that of extendibility. Indeed, we looked
at extendible cardinals from a new perspective, characterizing them in terms of
class elementary embeddings which are, at the same time, supercompact and
sufficiently superstrong above their target j(κ). In fact, such a characterization is
also available for the corresponding C(n)-version of extendibility as well (see [18]).

Motivated both by our study of extendibility and by Viale’s recent work, we now
wish to apply a similar idea to the notion of superhugeness: that is, blend it with the
‘‘sufficient" superstrongness requirement, as we did for supercompact cardinals.
It turns out that this blend gives rise to a new large cardinal notion, which we
call ultrahugeness, and which lies strictly between superhugeness and almost 2-
hugeness. Thus, the main aim of the current note is to call further attention to the
general intuitive idea of appending the additional superstrongness assumption to
known large cardinals, a feature which seems to give noticeable flexibility with the
respect to the set-theoretic techniques which can then go through smoothly.
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The structure of this note is as follows. The necessary preliminaries, as well
as a brief overview of our earlier work, are given in Section 2. In Section 3, we
introduce the notion of an ultrahuge cardinal, which is the central one of this note,
and we then look at its placement in the usual large cardinal hierarchy.

In Section 4, we turn to the study of the C(n)-version of ultrahugeness giving, at
the same time, consistency upper bounds for C(n)-superhugeness which improve
on the previously known ones from [2]. We then move on to Section 5 where we
show that ultrahuge cardinals carry their one, adequate, Laver functions. Finally,
in Section 6, we establish some partial preservation of ultrahuge cardinals under
the canonical class iteration which forces the GCH globally in the universe. We
close the current note with some concluding remarks and questions in Section 7.

2. Preliminaries

2.1. Notation. Our notation and terminology are standard; we refer the reader
to [12] or [15] for an account of all undefined set-theoretic notions, as well as
for a comprehensive presentation of the theory of large cardinals. Adopting the
notation of [2], and for every natural number n, we let C(n) denote the closed and
unbounded proper class of ordinals α which are Σn-correct in V , that is, ordinals
α such that Vα is a Σn-elementary substructure of V (denoted by Vα ≺n V ). Note
that the statement ‘‘α ∈ C(n)" is expressible by a Πn-formula, for every n > 1.

Given any function f and any A ⊆ dom(f), we write f � A for the restriction of f
to A, and f“A for the pointwise image of A under f , i.e., f“A = {f(x) : x ∈ A}. We
use the three-dot notation in order to indicate partial functions, that is, f ...X −→ Y
means that dom(f) ⊆ X, with the inclusion possibly being proper. If κ 6 λ are
(infinite) cardinals, we let Pκλ = {x ⊆ λ : |x| < κ}.

If P is a forcing poset and p, q ∈ P, we write p < q to mean than p is stronger
than q; in addition, we denote the greatest element of a poset by 1. If κ, λ are
regular cardinals, we let Add(κ, λ) denote the poset consisting of partial functions
p

... λ × κ −→ 2 with |p| < κ; the ordering is given by reversed inclusion. A poset
P is called weakly homogeneous if for every p, q ∈ P there is an automorphism
σp,q : P −→ P such that σ(p) and q are compatible. It is widely known that, for
any regular cardinals κ and λ, Add(κ, λ) is weakly homogeneous.

If j is a non-trivial elementary embedding we write cp(j) for its critical point.
Given an elementary embedding j with cp(j) = κ, we let j(n)(κ) denote the n-th
iterate as usual; i.e., j(0)(κ) = κ and, for every n > 0, j(n)(κ) = j(j(n−1)(κ)).
Whenever we lift embeddings to forcing extensions we follow the standard practice
and use the same letter j for the lifted version of the embedding.

Finally, we also recall some relevant definitions. For any n > 1, a cardinal
κ is called n-huge if there exists an elementary embedding j : V −→ M with
M transitive, cp(j) = κ and M closed under j(n)(κ)-sequences. If the latter
requirement is weakened to closure under < j(n)(κ)-sequences, then κ is called
almost n-huge. Moreover, we say that κ is super n-huge if, for every λ > κ,
there exists an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
λ < j(κ) and M closed under j(n)(κ)-sequences. Super almost n-huge cardinals
are defined accordingly. When n = 1, we just say that κ is huge, almost huge,
superhuge, and super almost huge, respectively. For more details on such notions
see [4] and [15].

2.2. Extendible cardinals. In order to motivate our study of ultrahuge cardinals,
let us briefly review some related earlier work, mainly from [18] and [19], in the
context of extendibility.
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Recall that a cardinal κ is called λ-extendible, for some λ > κ, if there is some
θ and an elementary embedding j : Vλ −→ Vθ such that cp(j) = κ and j(κ) > λ;
κ is called extendible if it is λ-extendible for all λ > κ. That is, traditionally,
extendibility is witnessed locally by set embeddings between rank initial segments
of the universe. Nevertheless, and at the core of our main idea, we also have a
characterization of extendibility in terms of class embeddings.

Definition 2.1 ([18]). A cardinal κ is called jointly λ-supercompact and θ-superstrong,
for some λ, θ > κ, if there is an elementary embedding j : V −→ M with M tran-
sitive, cp(j) = κ, j(κ) > λ, λM ⊆M and Vj(θ) ⊆M . In this case, we say that j is
jointly λ-supercompact and θ-superstrong for κ.

We say that κ is jointly supercompact and θ-superstrong, for some fixed θ > κ,
if it is jointly λ-supercompact and θ-superstrong, for every λ > κ; moreover, we
say that κ is jointly supercompact and superstrong if it is jointly λ-supercompact
and λ-superstrong, for every λ > κ.

Notice that if κ is the least supercompact, then it is not jointly λ-supercompact
and κ-superstrong, for any λ. In fact:

Theorem 2.2 ([18]). A cardinal κ is extendible if and only if it is jointly supercompact
and κ-superstrong if and only if it is jointly supercompact and superstrong.

The previous theorem follows from Corollary 2.31 in [18] and its subsequent re-
marks; indeed, we furthermore showed in [18] that such a characterization is also
available for the C(n)-version of extendible cardinals, as this was introduced by
Bagaria (cf. [2]).

It thus turns out that if one strengthens the notion of supercompactness by
requiring that the various witnessing embeddings are, in addition, sufficiently su-
perstrong above their target j(κ), then one naturally arrives at the large cardinal
notion of extendibility.

The previous characterizations of extendible cardinals have been particularly
useful in some contexts. For instance, they have been employed in an essential
way in [19] in order to (motivate the introduction and) derive the consistency of
the unbounded resurrection axioms. This is accomplished by first establishing the
existence of adequate Laver functions for extendible cardinals, as follows:1

Definition 2.3 ([19]). Let κ be an extendible cardinal. A function `
... κ −→ Vκ

is an extendibility Laver function for κ if for every cardinal λ > κ and any
x ∈ Hλ+ there is an (extender) elementary embedding j : V −→M which is jointly
λ-supercompact and λ-superstrong for κ, and such that j(`)(κ) = x.

Theorem 2.4 ([19]). Every extendible cardinal carries an extendibility Laver function
as above.

Furthermore, recent unpublished work of Audrito and Viale makes additional
use of the above characterization(s) of extendibility, this time in the context of
iterated resurrection axioms (see [1]).

3. Ultrahuge cardinals

From our perspective, the combination of supercompactness with sufficient super-
strongness above j(κ) (as made precise in Definition 2.1) was indeed a fruitful one,

1Of course, it should be mentioned that Corazza had already obtained the existence of Laver func-
tions for extendible cardinals (cf. [7]); nevertheless, in the current context and in the light of Theorem 2.2
above, we are interested in such functions in the presence of class elementary embeddings witnessing
extendibility.
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and although it led to the already familiar notion of extendibility, it nevertheless
allowed for various old and new results to (re)emerge.

We now wish to take this idea and apply it further to large cardinals at the
level of superhugeness. More precisely, we want to postulate the existence of
elementary embeddings which, apart from being (almost) huge, are also sufficiently
superstrong above their target, to any desired degree which is fixed beforehand.
Let us underline the fact that this idea, by design, naturally leads to global large
cardinal notions; this is the reason for focusing on superhuge as opposed to merely
huge cardinals.2

Thus, we now give the following central definition of this note.

Definition 3.1. We say that a cardinal κ is λ-ultrahuge, for some λ > κ, if
there exists an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ) > λ, j(κ)M ⊆M and Vj(λ) ⊆M . In such a case, we say that j is λ-ultrahuge
for κ. As expected, we say that κ is ultrahuge, if it is λ-ultrahuge for all λ > κ.

A natural variant of the above definition is that of λ-ultra almost hugeness, where
–as usual– the closure requirement j(κ)M ⊆M is weakened to <j(κ)M ⊆M .3

Observe that the extra requirement of ‘‘sufficient superstrongness above the
target j(κ)", which is expressed by the clause ‘‘Vj(λ) ⊆M ", is better tailored for the
notion of 1-hugeness, i.e., for embeddings with closure under j(κ)-sequences. This
is because, if n > 1, then every n-hugeness embedding of the form j : V −→M is
such that Vj(n)(κ)+1 ⊆ M anyway (where j(n)(κ) > j(λ)), with this following from
the closure of M under j(n)(κ)-sequences.

Moreover, notice that the statement ‘‘κ is λ-ultra (almost) huge" can be ex-
pressed by a Σ2-formula, since ultra (almost) huge embeddings can be captured
by extenders (either of the Martin-Steel form, or ordinary –but quite long– ones;
see the Appendix of [20] for related details). Consequently, the statement ‘‘κ is
ultra (almost) huge" is Π3-expressible and we note that, unless an inconsistency
in these layers of the large cardinal hierarchy emerges, this complexity bound is
optimal since every ultra (almost) huge cardinal is extendible and thus Σ3-correct
in the universe. Similar expressibility bounds are obtainable for super (almost)
huge cardinals as well.

It is already clear that ultrahugeness directly implies superhugeness. Moreover:

Proposition 3.2. If κ is an ultrahuge cardinal then there exists a normal measure
U on κ such that {α < κ : α is superhuge} ∈ U . In particular, the least superhuge
cardinal is below the least ultrahuge, assuming both exist.

Proof. Suppose that κ is ultrahuge and fix some inaccessible θ > κ and some
θ+1-ultrahuge embedding j : V −→M , i.e., M transitive, cp(j) = κ, j(κ) > θ+1,
j(κ)M ⊆ M and Vj(θ)+1 ⊆ M . Note that, in such a case, j(θ) is inaccessible. It is
enough to argue that κ is superhuge in M , from which the conclusion follows. In
turn, we just argue that κ is superhuge in Vj(κ), since j(κ) is Σ3-correct in M .

For this, we employ an elementary chain construction, using the fact that j is
θ + 1-ultrahuge with j(κ) and j(θ) inaccessibles.4 Let us start by picking some

2The latter are local notions, in the sense that they can be described by one single elementary
embedding or, equivalently, by one single (appropriate) ultrafilter; see § 24 in [15].

3Following Definition 2.1, one should perhaps call the relevent elementary embeddings jointly su-
per (almost) huge and λ-superstrong, but this would be a rather long and inconvenient terminology.
Assuming that the reader maintains in perspective the fact that each time we are referring to a single
embedding witnessing simultaneously (almost) hugeness and sufficient superstrongness, we chose the
more concise prefix ‘‘ultra" instead, with the hope that it is an adequate one.

4For more details on such constructions the reader is referred to [18] and [20], where various related
examples can be found.
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initial limit ordinal β0 ∈ (j(κ), j(θ)) and by letting

X0 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβ0} ≺M.

We also pick some γ < j(θ) with cof(γ) > j(κ), which will serve as the length
of our constructed chain. Then, for any ξ + 1 < γ, given βξ and Xξ, we let
βξ+1 = sup(Xξ ∩ j(θ)) + ω and

Xξ+1 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβξ+1
} ≺M.

If ξ < γ is limit and we have already defined βα and Xα for every α < ξ, we let
βξ = supα<ξ βα and Xξ =

⋃
α<ξXα ≺ M . Finally, we let βγ = supα<γ βα and

Xγ =
⋃
α<γ Xα, that is:

Xγ = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβγ} ≺M.

It is easy to see that the inaccessibility of j(θ) gives that βγ < j(θ), where clearly
cof(βγ) = cof(γ) > j(κ). We now consider the Mostowski collapse πγ : Xγ

∼= Mγ

and we then define the composed map jγ = πγ ◦ j : V −→ Mγ , producing a
commutative diagram of elementary embeddings:

V
j //

jγ

��

M

Mγ

kγ=π
−1
γ

>>}}}}}}}}}}}}}}}}

At this point, by standard arguments and the representation of the model Mγ ,
it is easy to check that jγ is a θ-ultrahuge embedding for κ, with cp(jγ) = κ,
jγ(κ) = j(κ) and

cp(kγ) = jγ(θ) = sup(Xγ ∩ j(θ)) = βγ .

Furthermore, again by the inaccessibility of j(θ), for every α < j(θ) we have that
jγ(α) < j(θ); hence, we may derive from the embedding jγ a relevant (either
Martin-Steel, or ordinary but long) extenderE which witnesses its θ-ultrahugeness,
and then it follows that E belongs to Vj(θ) and thus to M . Indeed, even the model
Vj(θ) can faithfully verify that E is a θ-ultrahuge extender for κ and thus, we have
that M |= “κ is θ-ultrahuge”.5

To conclude the proof, we observe that the extender E witnesses in M that, for
every λ ∈ (κ, j(κ)), κ is huge with target past λ; in other words, and since j(κ) is
Σ3-correct in M , we therefore have that Vj(κ) |= “κ is superhuge”, as desired. �

In the other direction, we can initially show the following.

Proposition 3.3. If κ is super almost 2-huge then it is ultrahuge and, moreover,
there exists a normal measure U on κ such that {α < κ : α is ultrahuge} ∈ U .
In particular, the least ultrahuge cardinal is below the least super almost 2-huge,
assuming both exist.

Proof. Suppose that κ is super almost 2-huge and, for some θ > κ with θ ∈ C(3),
fix some embedding j : V −→ M with M transitive, cp(j) = κ, j(κ) > θ and
<j(2)(κ)M ⊆ M . Note that Vj(2)(κ) ⊆ M and, additionally, M |= θ ∈ C(2) because
the latter is a Π2-expressible statement and it thus reflects to Vj(κ).

By the closure of M and the (easy) fact that 2j(κ) < j(2)(κ), we have that
the restricted map j � Vj(κ)+1 : Vj(κ)+1 −→ VM

j(2)(κ)+1
belongs to M ; indeed,

5Note that there is no (dangerous) contradiction here, since we started with a θ + 1-ultrahuge
embedding, which is a stronger (marginally, but still stronger) assumption.
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it witnesses in M the λ-ultrahugeness of κ, for every λ ∈ (κ, j(κ)]: to see this,
we extract in M the (ordinary but long) (κ, j(2)(κ))-extender E derived from the
map j � Vj(κ)+1, and then consider the corresponding extender embedding jE :
M −→ ME . It is now straightforward to check that the latter witnesses in M the
λ-ultrahugeness of κ, for every λ ∈ (κ, j(κ)], as claimed.

Thus, on the one hand, for every λ ∈ (κ, θ), the λ-ultrahugeness of κ in M is
reflected inside Vθ and, hence, Vθ |= “κ is ultrahuge”. But the latter is correct in
V , since θ ∈ C(3); i.e., κ is indeed an ultrahuge cardinal.

On the other hand, we similarly get that κ is actually ultrahuge in M as well,
since this is also witnessed inside Vj(κ) and j(κ) is Σ3-correct inM . Consequently,
a standard reflection argument gives that {α < κ : α is ultrahuge} ∈ U , where U
is the usual normal measure on κ which is derived from the embedding j. �

Note that the previous result gives a direct implication, as well as an unbounded
(indeed, stationary) set of α < κ which are ultrahuge in V . Nevertheless, we can
do better consistency-wise.

Theorem 3.4. If κ is an almost 2-huge cardinal then there exists a normal measure
U on κ such that {α < κ : Vκ |= “α is ultrahuge”} ∈ U .

Proof. Suppose that κ is almost 2-huge and let j : V −→ M be an elementary
embedding withM transitive, cp(j) = κ and <j(2)(κ)M ⊆M . Clearly, Vj(2)(κ) ⊆M .
Let us temporarily use the terminology ‘‘κ is (α, β, γ)-ultrahuge" to denote the fact
that there is an embedding h which is huge for κ and, in addition, is such that
h(κ) = α, h(2)(κ) = β and Vh(γ) is included in the target model; moreover, we
shall say that ‘‘κ is (α, γ)-ultrahuge" if we drop from the previous statement any
reference to the second iterate h(2)(κ) of the purported embedding h.

Now, as before, κ is (j(κ), j(2)(κ), j(κ))-ultrahuge in M and, thus, if U is the
usual normal measure on κ derived from j, we have that

S = {α < κ : α is (κ, j(κ), κ)-ultrahuge} ∈ U .

Fix α ∈ S. Then, by the closure of M , the fact that α is (κ, j(κ), κ)-ultrahuge
is true in M because it can be witnessed locally by some embedding of the form
h : Vκ+1 −→ Vj(κ)+1 with cp(h) = α, h(α) = κ and h(2)(α) = j(κ) (from which an
appropriate long extender may be derived, just as in the proof of Proposition 3.3).
Therefore, we can now easily see that

Sα = {ξ < κ : Vκ |= “α is (ξ, ξ)-ultrahuge”} ∈ U ,

and so, by considering unboundedly many ξ < κ, we have that α is ultrahuge
in Vκ. Therefore, it now follows that {α < κ : Vκ |= “α is ultrahuge”} ∈ U , as
desired. �

Consequently, if such notions are consistent, ultrahuge cardinals are strictly
between superhuge and almost 2-huge cardinals in consistency strength. More-
over, the least superhuge is below the least ultrahuge, which in turn is below the
least super almost 2-huge cardinal.

4. C(n)-ultrahuge cardinals

The so-called C(n)-cardinals were introduced in [2] by Bagaria, who showed that
such notions are closely related to the theme of reflection for the set-theoretic
universe; in particular, Bagaria obtained level-by-level correspondence between
C(n)-extendible cardinals and Vopěnka’s Principle (VP), with the latter being a sort
of reflection principle which carries high consistency strength. Subsequently, the
various C(n)-cardinals were further studied by the author in [18].
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In this section, we look at the C(n)-version of ultrahugeness and give some of its
basic properties. For more background details on C(n)-superhuge and C(n)-huge
cardinals the reader is referred to [2].

As usual in the context of C(n)-cardinals, the following is actually a schema of
definitions, one for each meta-theoretic natural number n > 1.

Definition 4.1. We say that a cardinal κ is λ-C(n)-ultrahuge, for some λ > κ, if
there exists an elementary embedding j : V −→ M with M transitive, cp(j) = κ,
j(κ) > λ, j(κ)M ⊆ M , Vj(λ) ⊆ M and j(κ) ∈ C(n). Moreover, we say that κ is
C(n)-ultrahuge, if it is λ-C(n)-ultrahuge for all λ > κ.

Note that, clearly, a cardinal κ is ultrahuge if and only if it is C(1)-ultrahuge. By
results in [2], and since any C(n)-ultrahuge cardinal is clearly C(n)-superhuge, we
have that if κ isC(n)-ultrahuge then it isC(n)-extendible; moreover, κ ∈ C(n+2) and
there is a normal measure U on κ such that {α < κ : α is C(n)-extendible} ∈ U .

Additionally, it is not difficult to see that, for every n > 1, the statement ‘‘κ is
λ-C(n)-ultrahuge" is Σn+1-expressible via the use of (long) extenders; hence, for
every n > 1, the statement ‘‘κ is C(n)-ultrahuge" is Πn+2-expressible.

In particular, for every n > 1, if κ is C(n+1)-ultrahuge then there are unbound-
edly many C(n)-ultrahuge cardinals below κ. Therefore, the C(n)-ultrahuge cardi-
nals form a strict hierarchy: for every n > 1, the least C(n)-ultrahuge is below the
least C(n+1)-ultrahuge, assuming both exist.

Let us now turn to the placement of C(n)-ultrahugeness in the usual large
cardinal hierarchy. Initially, we obtain the following upper bound.

Proposition 4.2. Fix n > 1. If κ ∈ C(n+1) is an almost 2-huge cardinal then there
is a normal measure U on κ such that {α < κ : Vκ |= “α is C(n)-ultrahuge”} ∈ U .

Proof. Suppose that j : V −→ M is an elementary embedding with M transitive,
cp(j) = κ and <j(2)(κ)M ⊆M . Note that Vj(2)(κ) ⊆M and M |= j(κ) ∈ C(n+1).

As before, the restricted map j � Vj(κ)+1 : Vj(κ)+1 −→ VM
j(2)(κ)+1

belongs to M ;
moreover, it witnesses in M the λ-C(n)-ultrahugeness of κ, for every λ ∈ (κ, j(κ)].
But since j(κ) is Σn+1-correct in M , it follows that Vj(κ) |= “κ is C(n)-ultrahuge”.
The conclusion now follows from a standard reflection argument, via the usual
normal measure U on κ which is derived from the embedding j. �

However, we can obtain a better consistency upper bound for C(n)-ultrahuge
cardinals, by appropriately modifying the proof of Theorem 3.4.

Theorem 4.3. Suppose that κ is almost 2-huge. Then, there is a normal measure U
on κ such that

{α < κ : ∀n ∈ ω (Vκ |= “α is C(n)-ultrahuge”)} ∈ U .

Proof. Recall that in the proof of Theorem 3.4, for any fixed α ∈ S, we had that

Sα = {ξ < κ : Vκ |= “α is (ξ, ξ)-ultrahuge”} ∈ U
and so, in particular, Sα is stationary in κ.

Now consider, for each n ∈ ω, the club C
(n)
κ ⊆ κ consisting exactly of those

ordinals below κ which are Σn-correct in the sense of Vκ. Then, for any n ∈ ω, we
may intersect C(n)

κ with Sα in order to deduce that α is actually C(n)-ultrahuge in
Vκ. �

Since C(n)-ultrahugeness implies C(n)-superhugeness, the previous result im-
proves the consistency upper bound for the C(n)-superhuge cardinals, both for
each individual n, and for all n simultaneously; previously, a known upper bound
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for each particular n was that of the existence of a C(n)-2-huge cardinal, while for
all n simultaneously the best consistency upper bound was at the level of rank-
into-rank embeddings (see [2]).

In addition, we have now established thatC(n)-ultrahugeness gives, consistency-
wise, a refinement of the large cardinal hierarchy between superhuge and almost
2-huge cardinals; indeed, the C(n)-ultrahuge cardinals form a proper hierarchy
which lies strictly between superhugeness and almost 2-hugeness, with the latter
being a sufficient assumption for deriving the consistency of a cardinal which is,
simultaneously, C(n)-ultrahuge for every n. These bounds seem optimal, although
such an issue remains open.

We conclude this section by stating the preservation of C(n)-ultrahuge cardinals
under small forcing.

Proposition 4.4. Fix n > 1. Suppose that κ is C(n)-ultrahuge and let P be a poset
with |P| < κ. Then, κ remains C(n)-ultrahuge in V P.

Proof. This follows from standard arguments, if we also employ Lemma 4.2 (i) from
[18] which shows that Σn-correct ordinals are preserved by small forcing. �

5. Ultrahuge cardinals and Laver functions

In this section, we show that ultrahuge cardinals carry their own, adequate, Laver
functions. This feature makes such cardinals slightly more appealing, at least in
this respect, than (super)huge ones, since for the latter it is typically the case that
one needs to assume slightly more than the cardinal at hand in order to obtain a
desired Laver function; for instance, to get a hugeness Laver function one has to
assume a super almost 2-huge cardinal (see Fact 13, and its subsequent remarks,
in [8]).

We start by giving the official definition of the function we are aiming at.

Definition 5.1. Suppose that κ is ultrahuge. A function `
... κ −→ Vκ is called an

ultrahugeness Laver function for κ if for every cardinal λ > κ and any x ∈ Hλ+

there is an (extender) elementary embedding j : V −→M which is λ-ultrahuge for
κ, and such that j(`)(κ) = x.

We are now ready to show the following, in a way parallel to the proof of Theorem
1.7 in [19].

Theorem 5.2. Every ultrahuge cardinal carries an ultrahugeness Laver function as
above.

Proof. We follow closely the proof of Theorem 1.7 in [19], adopting it appropriately
in the current context. We fix an ultrahuge cardinal κ and some well-ordering Cκ
of Vκ, and, towards a contradiction, we assume that there is no ultrahugeness
Laver function for κ.

We recursively construct a function `
... κ −→ Vκ as follows. Given α < κ and

` � α, we define `(α) only if `“α ⊆ Vα and there exists λ > α and x ∈ Hλ+ such
that, for every (extender) embedding j : V −→ M which is λ-ultrahuge for α,
j(` � α)(α) 6= x. In this case we let λα < κ be the least such cardinal λ > α, and
we let `(α) be the Cκ-minimal witness x ∈ Hλ+

α
. Otherwise, we leave ` undefined

at α. This concludes the recursive construction of ` ... κ −→ Vκ.
By our assumption, there exists a least λ∗ > κ and some x∗ ∈ Hλ∗+ such

that every λ∗-ultrahuge (extender) embedding j fails to ‘‘anticipate" the set x∗, i.e.,
j(`)(κ) 6= x∗. Let ψ(λ∗, x∗) be a fixed Π2-statement asserting this fact (using κ, ` as
parameters). Now fix some θ ∈ C(2) with θ > λ∗, some inaccessible θ > θ, and an
elementary embedding j : V −→M witnessing the θ-ultrahugeness of κ, with j(θ)
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inaccessible. It follows that, in M , θ ∈ C(2) and λ∗ is the least cardinal µ for which
ψ holds for some x ∈ Hµ+ ; that is, M thinks that λ∗ = λκ in the above notation.
Therefore, by elementarity and the recursive construction of `, there is y ∈ Hλ∗+

such that j(`)(κ) = y. Essentially by definition, we have that M |= ψ(λ∗, y). This
will lead to the desired contradiction, once we find an appropriate factor embedding
of j which is witnessed by some extender in M , and which anticipates the set y.

We now employ an elementary chain argument in order to obtain such a θ-
ultrahuge factor embedding of j. We fix some initial limit ordinal β0 ∈ (j(κ), j(θ))
and we pick some γ < j(θ) with cof(γ) > j(κ), which will serve as the length of
our constructed chain. We then let

X0 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβ0
} ≺M.

For any ξ + 1 < γ, given βξ and Xξ, we let βξ+1 = sup(Xξ ∩ j(θ)) + ω and

Xξ+1 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβξ+1
} ≺M.

If ξ < γ is limit and we have already defined βα and Xα for every α < ξ, we let
βξ = supα<ξ βα and Xξ =

⋃
α<ξXα ≺ M . Finally, we let βγ = supα<γ βα and

Xγ =
⋃
α<γ Xα, that is:

Xγ = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× Vθ −→ V, x ∈ Vβγ} ≺M.

The inaccessibility of j(θ) implies that βγ < j(θ), where cof(βγ) = cof(γ) > j(κ).
Let πγ : Xγ

∼= Mγ be the Mostowski collapse and consider the composed map
jγ = πγ ◦ j : V −→ Mγ , which produces a commutative diagram of elementary
embeddings as usual (with kγ = π−1γ ).

By standard arguments and the representation of Mγ , one can now check that
jγ is a θ-ultrahuge embedding for κ (and a factor of j) where, in fact, cp(jγ) = κ,
jγ(κ) = j(κ) and

cp(kγ) = jγ(θ) = sup(Xγ ∩ j(θ)) = βγ .

Furthermore, again by the inaccessibility of j(θ), for every α < j(θ) we have that
jγ(α) < j(θ); hence, the relevant (either Martin-Steel, or ordinary but long) exten-
der E which is derived from jγ and which witnesses its θ-ultrahugeness actually
belongs to Vj(θ) ⊆ M . Indeed, M certainly thinks that ‘‘E is λ∗-utrahuge for κ"
and, moreover, it correctly computes the value jE(`)(κ) (which is equal to jγ(`)(κ)).

To conclude, observe that κ, λ∗, Hλ∗+ and y all belong to Vβγ and are, therefore,
fixed by the collapse πγ . Hence, jγ(`)(κ) = jE(`)(κ) = y. But the latter contradicts
the fact that M |= ψ(λ∗, y). �

Given the previous result one might be tempted to consider the possibility of
making an ultrahuge cardinal indestructible under appropriate forcing notions, in
the spirit of Laver (cf. [14]). Yet, recent results show that this is impossible; indeed,
many of the popular posets which are used by set-theorists, such as Add(κ, 1),
Add(κ, κ++), etc., will destroy the superstrongness (and even the Σ3-extendibility)
of the cardinal κ (see [3] for more details).

Having brought up again the machinery of forcing, one natural question is
whether ultrahuge cardinals are preserved by other standard forcing construc-
tions. Let us now look at one important example, in the next section.

6. Ultrahuge cardinals and the GCH

It is typically the case that after forcing globally the GCH many of the usual large
cardinals are preserved. The first manifestation of this phenomenon was given
by Jensen, who proved the preservation of measurable cardinals (cf. [13]). Sub-
sequently, a similar result was proved by Menas for supercompacts (cf. [16]), by
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Hamkins for I1 embeddings (cf. [11]), and by Friedman for n-superstrong cardinals
(cf. [10]). Recently, the list was expanded further by Brooke-Taylor and Friedman
who accounted for 1-extendible cardinals (cf. [6]), by Brooke-Taylor who consid-
ered Vopěnka’s Principle (cf. [5]), and by the author who proved the preservation
of (fully) extendible cardinals (cf. [17]).

Here, we appeal to known techniques and we look at the case of ultrahuge
cardinals. Unfortunately, our results are not optimal in the sense that they start
with a stronger assumption in order to conclude the preservation of ultrahugeness
under the canonical GCH forcing. At any rate, our first step is to partially describe
ultrahuge and super n-huge cardinals in terms of embeddings between the Hλ’s.

Lemma 6.1. Fix n > 1 and suppose that κ is super n-huge. Then, for every λ > κ,
there is an elementary embedding j : Hj(n−1)(κ)+ −→ Hj(n)(κ)+ with cp(j) = κ and
j(κ) > λ.

Proof. Let n > 1 and λ > κ and fix an elementary embedding h : V −→ M

with M transitive, cp(h) = κ, h(κ) > λ, and h(n)(κ)M ⊆ M . Let θ = h(n−1)(κ)
and µ = h(θ), which are both inaccessible cardinals. Recall that Vµ+1 ⊆ M and
consider the restricted map:

h � Vθ+1 : Vθ+1 −→ Vµ+1.

Now, we can use standard techniques in order to code every element x ∈ Hθ+ by
some binary relation Ex ⊆ θ × θ, so that Ex ∈ Vθ+1.6 This leads to a definable
translation of every first-order formula ϕ with parameters xi ∈ Hθ+ to a formula
ϕ∗ with parameters the corresponding codes Exi ∈ Vθ+1, such that

Hθ+ |= ϕ(x1, . . . , xn)⇐⇒ Vθ+1 |= ϕ∗(Ex1 , . . . , Exn).

A similar process can be done for Hµ+ and Vµ+1, respectively. Then, using the
elementarity of the restricted map h � Vθ+1, we may define the desired elementary
embedding j : Hθ+ −→ Hµ+ by sending every x ∈ Hθ+ to π(max(h(Ex))), where
π denotes the Mostowski collapse of h(Ex), and where max(h(Ex)) denotes the
unique ordinal in the union of the domain and range of h(Ex) which is maximal
with respect to h(Ex). Finally, one easily checks that cp(j) = κ and j � (θ + 1) =
h � (θ + 1). �

A partial converse of the previous lemma is given below.

Lemma 6.2. Fix n > 1 and suppose that, for every λ > κ, there is an elementary
embedding j : Hj(n)(κ)+ −→ Hj(n+1)(κ)+ with cp(j) = κ and j(κ) > λ. Then, κ is
super n-huge.

Proof. Given an elementary embedding j : Hj(n)(κ)+ −→ Hj(n+1)(κ)+ with cp(j) = κ

and j(κ) > λ, consider E the (κ, j(n+1)(κ))-extender derived from j. Then, it is
straightforward to check that the extender embedding jE : V −→ME is such that
j
(n)
E (κ)ME ⊆ME and jE(κ) = j(κ) > λ. �

When n = 1, the proof of Lemma 6.2 (recall also the proof of Proposition 3.3) in
fact gives:

Corollary 6.3. Suppose that, for every λ > κ, there is an elementary embedding
j : Hj(κ)+ −→ Hj(2)(κ)+ with cp(j) = κ and j(κ) > λ. Then, κ is ultrahuge.

Let us now recall the following well-known forcing iteration.

6Essentially, we first fix some (any) bĳection fx : |trcl({x})| −→ trcl({x}) and then, for every
α, β ∈ dom(fx), we let 〈α, β〉 ∈ Ex if and only if fx(α) ∈ fx(β). For more details on such coding
arguments, as well as for a similar result in the case of extendibility, the reader is referred to Proposition
1.3 in [17].
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Definition 6.4. The canonical forcing P for global GCH is the class-length reverse
Easton iteration of 〈Q̇α : α ∈ ON〉, where P0 = {1} and, for each α, if α is an infinite
cardinal in V Pα , then Q̇α is the canonical Pα-name for the poset Add(α+, 1)V

Pα ;
otherwise, trivial forcing is done at that stage of the iteration. Finally, P is the
direct limit of the Pα’s, for α ∈ ON.

It is known that the weak homogeneity of the individual posets Add(α+, 1)V
Pα

transfers also to the class-length iteration and to its initial segments (see [9]). We
now show the following, in a way similar to that of Theorem 2.2 in [17].

Theorem 6.5. Suppose that κ is super 2-huge and let P be the canonical forcing for
global GCH. Then, κ remains ultrahuge in V P.

Proof. We follow closely the proof of Theorem 2.2 in [17], modifying it appropriately
in the current context. Fix a super 2-huge cardinal κ and some λ > κ. Further-
more, by Lemma 6.1, fix an elementary embedding j : Hj(κ)+ −→ Hj(2)(κ)+ with
cp(j) = κ and j(κ) > λ. Let θ = j(κ) and note that θ and j(θ) are inaccessibles.

Let G be P-generic over V . Our aim is to lift this ground model embedding j
to an embedding of the form j : H

V [G]
θ+ −→ H

V [G]
j(θ)+ and then, using Corollary 6.3,

to conclude that κ is ultrahuge in V [G], as desired. To begin with, we factor the
forcing iteration P as

Pκ ∗ Ṗ[κ,θ) ∗ Ṗ[θ,∞),

where each interval subscript indicates the (name for the) partial iteration which
occurs at the relevant ordinal stages; similar notation will be used for the various
projections of G, which are generic for the corresponding partial iterations of P.

Initially, we may easily lift through the forcing Pκ in order to get

j : Hθ+ [Gκ] −→ Hj(θ)+ [Gθ],

where Pθ = j(Pκ) ∈ Hj(θ)+ and j“Gκ = Gκ ⊆ Gθ.
The next step is to lift further through the forcing P[κ,θ) = (Ṗ[κ,θ))Gκ . For this,

we shall need to verify the lifting criterion j“G[κ,θ) ⊆ G[θ,j(θ)).
Notice that P[κ,θ) has size θ both in Hθ+ [Gκ] and in Hj(θ)+ [Gθ], and also j“θ ∈

Hj(θ)+ [Gθ]. In addition, observe that G[κ,θ) is part of the filter Gθ. Therefore,
it follows that j“G[κ,θ) belongs to Hj(θ)+ [Gθ] and, furthermore, it is a directed
subset of size θ of P[θ,j(θ)), with the latter being 6 θ-directed closed in Hj(θ)+ [Gθ].
Consequently, there exists a lower bound for j“G[κ,θ), i.e., there exists some r ∈
P[θ,j(θ)) such that r 6 j“G[κ,θ). Note, however, that this r may not belong to the
filter G[θ,j(θ)). To overcome this problem, we now produce an appropriate filter
G∗ which is P[θ,j(θ))-generic over Hj(θ)+ [Gθ] and which, in addition, is such that
r ∈ G∗.

By the weak homogeneity of P[θ,j(θ)) in the model Hj(θ)+ [Gθ], the set of con-
ditions t for which there is an automorphism e : P[θ,j(θ)) −→ P[θ,j(θ)) such that
e(t) 6 r is dense. Thus, by genericity of G[θ,j(θ)), there is such a t ∈ G[θ,j(θ)); then,
by standard forcing facts, if G∗ is the filter generated by e“G[θ,j(θ)), then G∗ is a
P[θ,j(θ))-generic filter over Hj(θ)+ [Gθ] with r ∈ G∗ and, moreover,

Hj(θ)+ [Gj(θ)] = Hj(θ)+ [Gθ][G
∗].

It follows that we may further lift j in order to obtain the embedding

j : Hθ+ [Gθ] −→ Hj(θ)+ [Gj(θ)].

Finally, by standard coding arguments and the fact that (the rest of the) iteration
Ṗ[θ,∞) is forced to be 6 θ-directed closed, we can easily see that

H
V [G]
θ+ = H

V [Gθ]
θ+ = Hθ+ [Gθ],
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and similarly HV [G]
j(θ)+ = Hj(θ)+ [Gj(θ)] as well. Hence, the currently lifted embedding

is indeed of the desired form j : H
V [G]
θ+ −→ H

V [G]
j(θ)+ , and this concludes the proof. �

Question 6.6. Can we optimize the previous theorem by directly proving that every
ultrahuge cardinal is preserved by the canonical forcing for global GCH? Moreover,
what about a similar preservation of super n-huge cardinals, for n > 1?

7. Final remarks

Let us conclude by giving a few general remarks and thoughts for further study.
First of all, both our earlier work on extendible cardinals (cf. [19]) and the current
note seem to suggest that the elementary chain method ties nicely with embeddings
which are sufficiently superstrong above their target. For example, this feature has
been exploited in Section 3 towards establishing consistency bounds, and also in
Section 5 in order to obtain adequate Laver functions. In this respect, and given
the generality and flexibility of the elementary chain method, it is worth looking
at other (global) large cardinal notions and try to fortify them with the additional
superstrongness assumption.

Furthermore, and as we have already pointed out, the initial application of our
methods in the context of extendibility lead to the introduction (and consistency)
of the unbounded resurrection axioms. In light of Viale’s recent work on the axiom
MM+++, one should perhaps observe that if we start with an ultrahuge cardinal
κ then the standard iteration of length κ will produce a model in which both
MM+++ and UR(ssp) hold, where the latter is the unbounded resurrection axiom
for stationary preserving posets. Indeed, since the ultrahugeness assumption is
already stronger than what is necessary for the consistency of MM+++, it is not
unlikely that more conclusions can be drawn from it regarding the properties that
the aforementioned model satisfies.7

In a more general setting, several questions can be asked regarding the theory
of C(n)-ultrahuge cardinals. For instance:

Question 7.1. What other forcing constructions preserve the C(n)-ultrahugeness
of a given κ?

Question 7.2. Fix n > 1 and suppose that κ is C(n)-ultrahuge. Can we force to
destroy its C(n)-ultrahugeness while preserving its ultrahugeness?

Conceivably, one might need a class forcing in order to tackle this latter problem.
A similar question has been left unanswered in the case of C(n)-supercompact
cardinals (see [18]).

Finally, let us repeat once more that, from our perspective, the blend of a given
large cardinal property with the sufficient superstrongness assumption seems to
be a rather appealing and fruitful one, and it has certainly not been fully explored
so far. Thus, we expect that it will lead to several new set-theoretic results and,
possibly, to more interesting applications in various contexts in the future.
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