Λύση

Θέτοντας

,

και

,

η δοθείσα διαφορική εξίσωση Euler μετασχηματίζεται στην

, (1)

όπου . Η χαρακτηριστική εξίσωση της (1) είναι

,

με ρίζες , και άρα η γενική της λύση δίνεται από τον τύπο

,

οπότε

,

με αυθαίρετες πραγματικές σταθερές.

 

[Επιστροφή στην Άσκηση 1]