next up previous
Next: Άσκηση 9 Up: Άσκηση 8 Previous: Υπόδειξη


Λύση

(α)     $ \int ^\infty _0 \frac{\sin x \cos x}{x} dx = \int ^\infty _0 \frac{\sin 2x}{2x...
...int ^\infty _0 \frac{\sin t}{t} dt = \frac{1}{2} \frac{\pi }{2} =\frac{\pi }{4}$ αφού όταν θέτω $t=2x \Rightarrow dt=2dx$.
(β)     Από την (α) έχω

\begin{eqnarray*}
\frac{\pi }{4} = \int ^\infty _0 \frac{\sin x \cos x}{x} dx &=...
...\\
&=& 0 + \frac{1}{2} \int ^\infty _0 \frac{\sin ^2 x}{x^2} dx
\end{eqnarray*}



Άρα $ \int ^\infty _0 \frac{\sin ^2 x}{x^2} dx=\frac{\pi }{2}$. (Θυμηθείτε ότι $\lim _{x \rightarrow 0} \frac{\sin ^2 x}{2x} =\lim _{x\rightarrow 0} \frac{\sin x}{2}
\ \cdot \ \frac{\sin x}{x}$ και $\lim _{x\rightarrow 0} \frac{\sin x}{x} =1 $)


(γ)    

\begin{eqnarray*}
\int ^\infty _0 \frac{\sin ^4 x}{x^2} dx &=&
\int ^\infty _0 \...
...{\pi }{2} -\frac{1}{4} \int ^\infty _0\frac{\sin ^2 2x}{x^2} dx
\end{eqnarray*}



Θέτω $2x=t \Rightarrow 2dx= dt$ άρα

\begin{eqnarray*}
\int ^\infty _0 \frac{\sin ^4 x}{x^2} dx&=&
\frac{\pi }{2} - \...
...rac{\pi }{2}\ \frac{1}{2}\ \frac{\pi }{2} \\
&=& \frac{\pi }{4}
\end{eqnarray*}




(δ)    

\begin{eqnarray*}
\int_0^\infty \frac{\sin^4 x}{x^4}\,dx &=& \int_0^\infty \left...
...2\int_0^\infty \frac{\sin^2 2x}{4x^2} \,dx -\frac23\frac{\pi}4 .
\end{eqnarray*}



Τώρα θέτω $t=2x$, $dt=2dx$ και έχω:

\begin{eqnarray*}
\int_0^\infty \frac{\sin^4 x}{x^4} &=& 2\int_0^\infty \frac{\s...
...ackrel{\hbox{(β)}}{=}& \frac{\pi}2\frac{\pi}6\\
&=& \frac{\pi}3
\end{eqnarray*}



Άσκηση 8 Υπόδειξη



root
1999-07-29